High-Precision Time-Series Photometry for the Discovery and Characterization of Transiting Exoplanets

Total Page:16

File Type:pdf, Size:1020Kb

High-Precision Time-Series Photometry for the Discovery and Characterization of Transiting Exoplanets University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2015 High-precision time-series photometry for the discovery and characterization of transiting exoplanets. Karen Alicia Collins 1962- University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Collins, Karen Alicia 1962-, "High-precision time-series photometry for the discovery and characterization of transiting exoplanets." (2015). Electronic Theses and Dissertations. Paper 2104. https://doi.org/10.18297/etd/2104 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. HIGH-PRECISION TIME-SERIES PHOTOMETRY FOR THE DISCOVERY AND CHARACTERIZATION OF TRANSITING EXOPLANETS By Karen A. Collins B.S., Georgia Institute of Technology, 1984 M.S., Georgia Institute of Technology, 1990 M.S., University of Louisville, 2008 A Dissertation Submitted to the Faculty of the College of Arts and Sciences of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics Department of Physics and Astronomy University of Louisville Louisville, Kentucky May 2015 HIGH-PRECISION TIME-SERIES PHOTOMETRY FOR THE DISCOVERY AND CHARACTERIZATION OF TRANSITING EXOPLANETS By Karen A. Collins B.S., Georgia Institute of Technology, 1984 M.S., Georgia Institute of Technology, 1990 M.S., University of Louisville, 2008 A Dissertation Approved On April 17, 2015 by the following Dissertation Committee: Dissertation Director Dr. John F. Kielkopf Dr. James Lauroesch Dr. Gamini Sumanesekera Dr. John F. Naber Dr. Gerard M. Williger ii ACKNOWLEDGEMENTS I would like to sincerely thank my research advisor and dissertation director, Dr. John F. Kielkopf, for his guidance, for somehow working uncountable all night sessions to support my research while maintaining his daytime teaching responsibilities, for his tireless efforts to build Moore Observatory into a competitive research facility and to keep it in top operating condition, and for just being a kind and thoughtful mentor and friend. I would also like to thank my high school mathematics teacher, Gerald Hite, who took me under his wing and set me on a path toward the mathematically rich fields of science and engineering. I would like to thank my parents, Betty Ann Causey and Wilton Eugene Collins, for providing me the opportunity to obtain my BSEE degree from the Georgia Institute of Technology, which equipped me with a solid educational foundation and enabled my pursuit of advanced degrees. I would like to thank Dr. Gerard M. Williger for opening a connection with the KELT team. I would like to thank the KELT team leaders, Dr. B. Scott Gaudi, Dr. Keivan G. Stassun, and Dr. Joshua Pepper who have graciously extended incredible research and learning opportunities to me, and I would like to thank KELT science team members, Dr. Thomas G. Beatty, Dr. Jason D. Eastman, and Robert J. Siverd, for sharing experience and knowledge that have greatly enriched my research experience. I would like to thank my dissertation committee members, Dr. James Lauroesch, Dr. Gamini Sumanesekera, Dr. John F. Naber, and Dr. Gerard M. Williger, for supporting my research and graciously agreeing to participate as committee members. I would like to thank my best friends Beanie, Emily, Jenny, Georgia, Nicky, iii Snoopy, Abbie, and Zoey for (mostly) quiet friendship and companionship during many long nights of observing, AstroImageJ coding, and writing. And finally, thanks to my partner, Angela Dee White, who encouraged me to follow a path that is important and rewarding to me, even at the expense of living on opposite day/night schedules for years. This research was supported by graduate fellowships from the Kentucky Space Grant Consortium (KSGC). This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at exoplanets.org, the Extrasolar Planets Encyclopaedia at exoplanets.eu, the SIMBAD database, operated at CDS, Strasbourg, France, and the Systemic Console software package for RV and TTV analysis. I would like to thank Antonio Claret for computing the quadratic limb darkening coefficients for the CBB and Open filter bands which were critical to properly fitting many of the light curves presented herein. iv ABSTRACT HIGH-PRECISION TIME-SERIES PHOTOMETRY FOR THE DISCOVERY AND CHARACTERIZATION OF TRANSITING EXOPLANETS Karen A. Collins April 17, 2015 The discovery of more than a thousand planets orbiting stars other than the Sun (i.e. exoplanets) over the past 20 years has shown that planetary systems are commonplace in the Milky Way galaxy. However, these discoveries are only a starting point in the quest to answer one of the most compelling questions posed by mankind for centuries – "are we alone in the universe?". This research aims to help build the foundation needed to search for that answer by optimizing data reduction techniques, determining and refining fundamental properties of known exoplanets, and searching for new exoplanets. Many exoplanets have been discovered using the radial velocity (RV) technique to measure small variations in a star’s motion that are gravitational induced by an orbiting planet. The RV signal reveals the planetary mass, orbital period, and orbital eccentricity. If an exoplanet crosses the face of its host star (i.e. transits) from the perspective of the observer, it causes an apparent periodic dimming of the star. The depth and shape of those brightness variations reveal the planet’s radius, its transit time, and some orbital characteristics. Combining the mass and radius measurements, a planet’s mean density can be calculated, thus constraining its composition. During transit, part of the star’s light v passes through the planetary atmosphere on its way to Earth, facilitating atmospheric measurements. Monitoring a planet’s transit timing variations (TTVs) on many epochs may reveal the presence of another planet in the system due to gravitational interactions. I report the development of a new tool, AstroImageJ (AIJ), that provides an interactive environment for the optimal extraction and analysis of high-precision photometry from time-series observations. Based on AIJ photometry, I report high-precision measurements of system parameters and tight upper limits on TTVs derived from global analyses of 23 WASP-12b and 18 Qatar-1b complete transits. I also report the detection of sodium in the atmosphere of the exoplanet HD 189733b, the detection of z0 band emission from the recently discovered hot brown dwarf, KELT-1b, and the discovery and characterization of the transiting hot-Saturn exoplanet, KELT-6b. Data for this research have been collected using the research-grade 0.6 m Moore Observatory RC (MORC) telescope, which is located near Louisville, Kentucky, and operated by the University of Louisville. vi TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iii ABSTRACT v LIST OF TABLES xiii LIST OF FIGURES xiv CHAPTER 1 INTRODUCTION 1 1.1 Star and Planet Formation . 2 1.2 The Discovery of Exoplanets . 3 1.3 Hot Jupiter Formation . 4 1.4 Exoplanet Discovery Methods . 5 1.4.1 Direct Imaging . 5 1.4.2 Radial Velocity Method . 6 1.4.3 Transit Method . 7 1.4.4 Transit Timing Variations . 10 1.4.5 Other Methods . 12 1.5 Characterization Methods . 12 1.5.1 Primary Transit Light Curve Modeling . 13 1.5.2 Rossiter-McLaughlin Effect . 16 1.5.3 Characterization of Exoplanet Atmospheres . 18 1.6 Wide-field Transit Surveys . 26 1.6.1 Ground-based . 27 1.6.2 Space-based . 32 vii 2 HIGH-PRECISION PHOTOMETRY 37 2.1 CCD Overview . 37 2.2 CCD Image Calibration . 38 2.2.1 Bias Subtraction . 38 2.2.2 CCD Nonlinearity Correction . 38 2.2.3 Dark Subtraction . 40 2.2.4 Flat-field Correction . 42 2.2.5 Median Combining . 44 2.2.6 Science Image Calibration . 45 2.3 Telescope Guiding . 45 2.4 Defocusing . 47 2.5 Aperture Photometry . 47 2.6 Variable Radius Aperture Photometry . 49 2.7 Differential Photometry . 50 2.8 Comparison Star Selection . 51 2.9 Detrending Time Series Photometry . 54 2.10 Real-time Monitoring of Observations . 55 2.11 Error Calculations . 56 3 INSTRUMENTATION 60 3.1 MORC Telescope . 60 3.2 CCD camera . 62 3.3 Filters . 63 3.4 Dome Enclosure . 65 3.5 Observatory Control Software . 67 3.5.1 XmTel Telescope Mount Control . 67 3.5.2 XmCCD Camera Control . 68 3.5.3 PyDome and PyFocus . 68 3.5.4 Guiding Scripts . 71 viii 3.5.5 Time of Day . 73 3.5.6 Remote Operation . 74 4 ANALYSIS TOOLS 76 4.1 AstroImageJ . 76 4.1.1 AIJ Toolbar . 77 4.1.2 Astronomical Image Display . 78 4.1.3 Data Processor . 81 4.1.4 Multi-Aperture . 84 4.1.5 Multi-Plot . 87 4.1.6 Light Curve Fitting and Detrending . 92 4.1.7 Comparison Ensemble Management . 97 4.1.8 Coordinate Converter . 97 4.1.9 FITS Header Editor . 101 4.1.10 Astrometry/Plate Solving . 103 4.1.11 Image Alignment . 106 4.1.12 AstroImageJ Updater . 106 4.2 EXOFAST . 108 4.3 Multi-EXOFAST . 109 5 WASP-12b CHARACTERIZATION AND TTV ANALYSIS 111 5.1 Introduction . 111 5.2 Observations . 112 5.3 Data Reduction . 112 5.4 Global Fit . 114 5.5 System Parameter Results . 119 5.6 TTV Results . 123 5.7 Conclusions . 127 ix 6 QATAR-1b CHARACTERIZATION AND TTV ANALYSIS 131 6.1 Introduction .
Recommended publications
  • Paul Sykes Lecture – Sat, Jan 27 @ 7:30Pm Ice on Mercury, Featuring Dr
    NOVANEWSLETTEROFTHEVANCOUVERCENTRERASC VOLUME2018ISSUE1JANUARYFEBRUARY2018 Paul Sykes Lecture – Sat, Jan 27 @ 7:30pm Ice on Mercury, Featuring Dr. Nancy Chabot of Johns Hopkins University SFU Burnaby Campus, Room SWH 10081 Even though Mercury is the Dr. Nancy L. Chabot is a and Case Western Reserve Uni- planet closest to the Sun, there planetary scientist at the Johns versity. She has been a mem- are places at its poles that never Hopkins Applied Physics Labo- ber of five field teams with the receive sunlight and are very ratory (apl). She received an Antarctic Search for Meteorites cold—cold enough to hold wa- (ansmet) program and served ter ice! In this presentation, Dr. as the Instrument Scientist for Chabot will show the multiple the Mercury Dual Imaging Sys- lines of evidence that regions tem (mdis) on the messenger near Mercury’s poles hold water mission. Her research interests ice—from the first discovery involve understanding the evo- by Earth-based radar observa- lution of rocky planetary bod- tions to multiple data sets from ies in the Solar System, and at nasa’s messenger spacecraft, apl she oversees an experimen- the first spacecraft ever to or- tal geochemistry laboratory bit the planet Mercury. These that is used to conduct experi- combined results suggest that ments related to this topic. Dr. Mercury’s polar ice deposits Chabot has served as an Associ- are substantial, perhaps compa- ate Editor for the journal Mete- rable to the amount of water in oritics and Planetary Science, Lake Ontario! Where did the chair of nasa’s Small Bodies ice come from and how did it undergraduate degree in physics Assessment Group, a member get there? Dr.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015
    THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015 ****************************************************************************************************************************** AUSTRALIAN CRATER HIDDEN STARS A team of geophysicists has found the twin scars of Scientists found a bright nebula around the Milky the impacts of a huge meteorite that broke in two Way”s nearby star 48 Librae in a patch of sky that moments before it slammed into the Earth millions of appears totally black in visible light but appears in infra- years ago in central Australia. It is the largest impact red. They said: "This cluster is probably a group of very zone ever found on Earth – 400 kilometers wide. young stars forming inside a previously undiscovered “YELLOW BALLS” molecular cloud, and the 48 Librae nebula apparently is Citizen scientists recently found a new class of due to a huge cloud of dust around the star.” curiosities that had gone unrecognized before: yellow HUBBLE IS 25! balls. Many "citizen scientist" projects make up the Hubble, the first telescope to revolutionize modern Zooniverse website which relies on “crowd-sourcing” to astronomy and change our view of the universe by help process scientific data. offering glimpses of distant galaxies, has marked its 25th The rounded features are not actually yellow but year in space. A senior scientist said: "Hubble absolutely appear that way in the infrared images the telescope has changed the way humans look at the universe and sends to Earth. See: http://www.spxdaily.com/images- our place in it." lg/yellow-balls-process-star-formation-lg.jpg A DISTANT PLANET and http://www.zooniverse.org The Spitzer Space Telescope teamed up with CANADA’S NEW TMT TELESCOPE Poland’s OGLE telescope in Chile to find a remote gas Canada and an international partnership are funding planet about 13,000 light-years away, making it one of the construction of the Thirty Meter Telescope - the top the most distant planets known.
    [Show full text]
  • Magnetism, Dynamo Action and the Solar-Stellar Connection
    Living Rev. Sol. Phys. (2017) 14:4 DOI 10.1007/s41116-017-0007-8 REVIEW ARTICLE Magnetism, dynamo action and the solar-stellar connection Allan Sacha Brun1 · Matthew K. Browning2 Received: 23 August 2016 / Accepted: 28 July 2017 © The Author(s) 2017. This article is an open access publication Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observa- tions of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connec- tion”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, includ- ing a very brief discussion of mean-field theory and related concepts.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • 2014-08 AUG.Pdf
    August First Light Newsletter 1 message August, 2014 Issue 122 AlachuaAstronomyClub.org North Central Florida's Amateur Astronomy Club Serving Alachua County since 1987 BREAKING NEWS -- ROSETTA HAS JUST ARRIVED AT COMET 67/P Member Member Astronomical League Initiated in late 1993 by Europe and the USA, and launched in 2004, the International Rosetta Mission is an historic first: Send a spacecraft to chase and orbit a comet, ride along as the comet plunges sun ward to learn how a frozen comet transforms by the Sun's warmth, and dispatch a controlled lander to make in situ measurements and make first images Member from a comet's surface. NASA Night Sky Network Ten years later Rosetta has now arrived at Comet 67P/Churyumov- Gerasimenko and just successfully made orbit today, 2014 August 6! Unfortunately, global events have foreshadowed this memorable event and news media have largely ignored this impressive space mission. AAC Member photo: The Rosetta comet mission may be the beginning of a story that will tell more about us -- both about our origins and evolution. (Hence, its name "rosetta" for the black basalt stone with inscriptions giving the first clues to deciphering Egyptian hieroglyphics.) Pictures received over past weeks are remarkable with the latest in the past 24 hours showing awesome and incredible detail including views that show the comet is a connected binary object rotating as a unit in 12 hours. Anyone see the glorious pairing of Venus and Jupiter this morning (2016 Aug. 18)? For images see http://www.esa.int/ spaceinimages/Missions/ Except when Mars is occasionally brighter Rosetta than Jupiter, these two planets are the brightest nighttime sky objects (discounting Example Image (Aug.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Chemical-Composition-Of-The-Circumstellar-Disk-Around-AB-Aurigae.Pdf (1.034Mb)
    Astronomy & Astrophysics manuscript no. AB_Aur_final c ESO 2015 May 12, 2015 Chemical composition of the circumstellar disk around AB Aurigae S. Pacheco-Vázquez1 , A. Fuente1, M. Agúndez2, C. Pinte6, 7, T. Alonso-Albi1, R. Neri3, J. Cernicharo2,J. R. Goicoechea2, O. Berné4, 5, L. Wiesenfeld6, R. Bachiller1, and B. Lefloch6 1 Observatorio Astronómico Nacional (OAN), Apdo 112, E-28803 Alcalá de Henares, Madrid, Spain e-mail: [email protected], [email protected] 2 Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Spain e-mail: [email protected] 3 Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, F-38406 Saint Martin d’Hères, France 4 Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 5 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France 6 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Université UJF-Grenoble 1/CNRS-INSU, F-38041 Grenoble, France 7 UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago, Chile e-mail: [email protected] Received September 15, 1996; accepted March 16, 1997 ABSTRACT Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions).
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • Ring Structure in the MWC 480 Disk Revealed by ALMA? Yao Liu1,2, Giovanni Dipierro3, Enrico Ragusa4, Giuseppe Lodato4, Gregory J
    A&A 622, A75 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834157 & © ESO 2019 Astrophysics Ring structure in the MWC 480 disk revealed by ALMA? Yao Liu1,2, Giovanni Dipierro3, Enrico Ragusa4, Giuseppe Lodato4, Gregory J. Herczeg5, Feng Long5, Daniel Harsono6, Yann Boehler7,8, Francois Menard8, Doug Johnstone9,10, Ilaria Pascucci11,12, Paola Pinilla13, Colette Salyk14, Gerrit van der Plas8, Sylvie Cabrit8,15, William J. Fischer16, Nathan Hendler11, Carlo F. Manara17, Brunella Nisini18, Elisabetta Rigliaco19, Henning Avenhaus1, Andrea Banzatti11, and Michael Gully-Santiago20 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 2 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008, PR China e-mail: [email protected] 3 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK 4 Dipartimento di Fisica, Universita` Degli Studi di Milano, Via Celoria, 16, Milano, 20133, Italy 5 Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan 5, Haidian Qu, 100871 Beijing, PR China 6 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 7 Rice University, Department of Physics and Astronomy, Main Street, 77005 Houston, USA 8 Université Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 9 NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada 10 Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • IC-342 IC-342 Is an Intermediate Spiral Galaxy in the Constellation Camelopardalis
    MONTHLY OBSERVER’S CHALLENGE Las Vegas Astronomical Society Compiled by: Roger Ivester, Boiling Springs, North Carolina & Fred Rayworth, Las Vegas, Nevada With special assistance from: Rob Lambert, Las Vegas, Nevada November 2010 IC 342 (Caldwell 5) - Hidden Galaxy in Camelopardalis Introduction The purpose of the observer’s challenge is to encourage the pursuit of visual observing. It is open to everyone that is interested, and if you are able to contribute notes, drawings, or photographs, we will be happy to include them in our monthly summary. Observing is not only a pleasure, but an art. With the main focus of amateur astronomy on astrophotography, many times people tend to forget how it was in the days before cameras, clock drives, and GOTO. Astronomy depended on what was seen through the eyepiece. Not only did it satisfy an innate curiosity, but it allowed the first astronomers to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what the astronomer saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings and that is the tradition we are stressing in the observers challenge. By combining our visual observations with our drawings, and sometimes, astrophotography (from those with the equipment and talent to do so), we get a unique understanding of what it is like to look through an eyepiece, and to see what is really there. The hope is that you will read through these notes and become inspired to take more time at the eyepiece studying each object, and looking for those subtle details that you might never have noticed before.
    [Show full text]