Section 3. ASIC Industry Trends

Total Page:16

File Type:pdf, Size:1020Kb

Section 3. ASIC Industry Trends 3 ASIC INDUSTRY TRENDS ASSPs AND ASICs The term ASIC (Application Specific IC) has been a misnomer from the very beginning. ASICs, as now known in the IC industry, are really customer specific ICs. In other words, the gate array or standard cell device is specifically made for one customer. ASIC, if taken literally, would mean the device was created for one particular type of system (e.g., a disk-drive), even if this device is sold to numerous customers and/or is put in the IC manufacturer’s catalog. Currently, a device type that is sold to more than one user, even if it is produced using ASIC tech- nology, is considered a standard IC or ASSP (Application Specific Standard Product). Thus, we are left with the following nomenclature guidelines (Figure 3-1). ASIC: A device produced for only one customer. PLDs are included as ASICs because the customer “programs” that device for its needs only. CSIC: What ASICs should have been called from the beginning. Some companies differentiate an ASIC from a CSIC by who completes or is responsible for the majority of the IC design effort. If it is the IC producer, the part is labeled a CSIC, if it is the end-user, the device is called an ASIC. This term is not currently used very often in the IC industry. ASSP: A relatively new term for ICs targeting specific types of systems. In many cases the IC will be manufactured using ASIC technology (e.g., gate or linear array or standard cell techniques) but will ultimately be sold as a standard device type to numerous users (i.e., put into a product catolog). If the end-user helped the IC producer design the ASSP, that user is typically given a market leadtime (i.e., window of opportunity) to use the device before it is made available to its competitors. CSP: Customizable Standard Products are 70 to 90 percent standard with 10 to 30 percent of the chip available for user-specified logic, memory, or peripheral functions. Source: ICE, "Status 1996" 19181A Figure 3-1. ASIC Industry Terminology INTEGRATED CIRCUIT ENGINEERING CORPORATION 3-1 ASIC Industry Trends One problem many IC producers have run into while producing ASSPs is that in order to provide the optimum part, the IC producer must understand the system application at least as well as the end-user. Because this system-level expertise is not easy to acquire, most ASSP vendors have formed close relationships or partnerships with end-users. In this way, the IC vendor and end- user work closely together early in the system design cycle in order to properly define the ASSP device. In general, as standard ICs take aim at ever finer segments of the marketplace, they ultimately evolve into ASSPs. In other words, at some point in time there could be very few standard ICs; most devices produced would be aimed at specific system needs. An example would be certain DRAMs architecturally optimized for a hand-held telecom system, laptop PC, or HDTV set. This is precisely the direction the IC industry is now heading. Figure 3-2 shows some of the devices that National Semiconductor considers ASSPs. As IC pro- ducers customize their devices for specific system needs, the list of ICs labeled as ASSPs contin- ues to expand. In 1995, Sharp Corporation plans to release an ASSP product based upon the 33MHz ARM RISC 32-bit MPU core. The ARM ASSP will include a 480x320 monochrome LCD controller, 115-kbaud serial data infrared transceiver, write-back cache controller, on-board SRAM optimized for real-time interrupt, and pulse-width modulators. As was mentioned earlier, 20 years from now there may be few “standard” ICs produced. • Mainframe connectivity solutions • FDDI devices • Local area network (LAN) ICs • Telecommunications products (e.g., CODECs) • Graphics ICs • Mass storage devices • Real-time clocks • DRAM management ICs • Floppy-disk devices • UARTs Source: ICE, "Status 1996" 17776 Figure 3-2. Sampling of ASSPs from National Semiconductor Although the 1995 ASIC market is estimated to have been $15.7 billion, the ASSP-type products (which are part of the special purpose MOS Logic category) are taking away some of its momen- tum (Figure 3-3). Overall, the ASIC market (not including full custom) is forecast to follow total IC industry growth rates fairly closely. 3-2 INTEGRATED CIRCUIT ENGINEERING CORPORATION ASIC Industry Trends 8 7.63 7 28% 5.98 6 5 4.74 26% 4 3.75 26% 3 Billions of Dollars 2 1 0 1992 1993 1994 1995 (EST) Year Source: ICE, "Status 1996" 20204A Figure 3-3. Special Purpose MOS Logic Market (1992-1995) Does the proliferation of ASSPs and more customer-specific standard products mean an end to the ASIC market? No. This is because most of the pros and cons of ASICs versus ASSPs or standard products still exist. The primary advantage of ASSPs or standard products is the ability to immediately (most of the time) purchase the ICs and get the system to market quickly. However, ASIC devices allow the system producer to differentiate its product from the competition. The result is that many times the system producer is able to gain marketshare and/or better profit margins. In some cases standard products and ASICs are merging in an attempt to offer the benefits of both approaches. In 1993, TI announced that it was merging an enhanced version of its standard fixed- point TMS320C25 DSP chip and 15,000 usable and customizable 0.8-micron CMOS gate-array gates on one device. Thus, the user is able to take advantage of well characterized high-perfor- mance DSP circuitry while at the same time adding unique features to give its system a differen- tial advantage over its competitors. TI estimated that 30 percent of its total DSP IC sales in 1995 would be in customizable version form.* This percentage was expected to rise to 50 percent in 2000. * Through 1995 TI’s belief in the success of its customizable DSP was well founded. TI’s big jump in gate array sales in 1994 and 1995 was greatly due to the success of its gate array DSP program. INTEGRATED CIRCUIT ENGINEERING CORPORATION 3-3 ASIC Industry Trends Another grey area is where Cirrus Logic takes one of its ASSP ICs and customizes a portion of it for one of its customers. Typically only about 5-10 percent of the new design is customized for the end-user. This “tweaked” device is still normally classified as an ASSP since the majority of the circuitry is still ASSP-based. There is no question that the IC industry will continue to evolve toward devices that are specifi- cally suited for the customers’ needs. ICE believes that various versions of ASICs and ASSPs will co-exist to help serve those needs in the most economical and efficient manner possible. ASIC Definitions Some basic definitions and classifications are shown below in order to define what ICE means when using the various terms used to describe today’s ASIC devices. ASIC stands for Application Specific Integrated Circuit and according to ICE’s definition includes gate arrays, standard cells (sometimes called cell-based), full custom, and programmable logic devices (PLDs). These devices are classified as either semicustom, custom, or PLDs. Formal definitions are given in Figure 3-4. I. Semicustom IC - A monolithic circuit that has one or more customized mask layers, but does not have all mask layers customized, and is sold to only one customer. Gate Array - A monolithic IC usually composed of columns and rows of transistors (organized in blocks of gates). One or more layers of metal interconnect are used to customize the chip. Sometimes called an uncommitted logic array (ULA). Linear Array - An array of transistors and resistors that performs the functions of several linear ICs and discrete devices. II. Custom IC - A monolithic circuit that is customized on all mask layers and is sold to only one customer. Standard Cell IC - A monolithic IC that is customized on all mask levels using a cell library that embodies pre-characterized circuit structures. ICs that are designed with a silicon compiler are included in this category. Most "embedded" arrays are included in this category. Full Custom IC - A monolithic IC that is at least partially "handcrafted". Handcrafting refers to custom layout and connection work that is accomplished without the aid of a silicon compiler or standard cells. Source: ICE, "Status 1996" 13660E Figure 3-4. ASIC Definitions 3-4 INTEGRATED CIRCUIT ENGINEERING CORPORATION ASIC Industry Trends III. Programmable Logic Device (PLD) - A monolithic circuit with fuse, antifuse, or memory cell-based circuitry that may be programmed (customized), and in some cases, reprogrammed by the user (in- system or prototype form). Simple PLD (SPLD) - Usually a PAL or PLA, typically contains less than 750 logic gates. Complex PLD (CPLD) - A hierarchical arrangement of multiple PAL-like blocks. Field Programmable Gate Array (FPGA) - A PLD that offers fully flexible interconnects, fully flexible logic arrays, and requires functional placement and routing. Electrically Programmable Analog Circuit (EPAC) - A PLD that allows the user to program and reprogram basic analog functions. Source: ICE, "Status 1996" 13660E Figure 3-4. ASIC Definitions (continued) ICE does not include ASSPs in its ASIC market figures. An example of an ASSP part that is not classified as an ASIC by ICE is Hitachi’s H8/300H Series of microcontrollers. Although the H8/300H user is able to customize this MCU using an extensive Hitachi cell library, the finished devices are almost always allowed to be sold to other Hitachi customers after a certain period of time (Motorola has a similar program using its 68HC05 MCUs).
Recommended publications
  • Introduction to ASIC Design
    ’14EC770 : ASIC DESIGN’ An Introduction Application - Specific Integrated Circuit Dr.K.Kalyani AP, ECE, TCE. 1 VLSI COMPANIES IN INDIA • Motorola India – IC design center • Texas Instruments – IC design center in Bangalore • VLSI India – ASIC design and FPGA services • VLSI Software – Design of electronic design automation tools • Microchip Technology – Offers VLSI CMOS semiconductor components for embedded systems • Delsoft – Electronic design automation, digital video technology and VLSI design services • Horizon Semiconductors – ASIC, VLSI and IC design training • Bit Mapper – Design, development & training • Calorex Institute of Technology – Courses in VLSI chip design, DSP and Verilog HDL • ControlNet India – VLSI design, network monitoring products and services • E Infochips – ASIC chip design, embedded systems and software development • EDAIndia – Resource on VLSI design centres and tutorials • Cypress Semiconductor – US semiconductor major Cypress has set up a VLSI development center in Bangalore • VDAT 2000 – Info on VLSI design and test workshops 2 VLSI COMPANIES IN INDIA • Sandeepani – VLSI design training courses • Sanyo LSI Technology – Semiconductor design centre of Sanyo Electronics • Semiconductor Complex – Manufacturer of microelectronics equipment like VLSIs & VLSI based systems & sub systems • Sequence Design – Provider of electronic design automation tools • Trident Techlabs – Power systems analysis software and electrical machine design services • VEDA IIT – Offers courses & training in VLSI design & development • Zensonet Technologies – VLSI IC design firm eg3.com – Useful links for the design engineer • Analog Devices India Product Development Center – Designs DSPs in Bangalore • CG-CoreEl Programmable Solutions – Design services in telecommunications, networking and DSP 3 Physical Design, CAD Tools. • SiCore Systems Pvt. Ltd. 161, Greams Road, ... • Silicon Automation Systems (India) Pvt. Ltd. ( SASI) ... • Tata Elxsi Ltd.
    [Show full text]
  • ICS904/EN2 : Design of Digital Integrated Circuits
    ICS904/EN2 : Design of Digital Integrated Circuits L5 : Design automation : The "liberty" file format Yves MATHIEU [email protected] Standard Cell characterization "Liberty" files Give all necessary informations to the synthesis and P&R tools A de-facto standard : "Liberty" files from "Synopsys" company. For each cell : • Logic behavior • Area • Power Consumption • Timing But also, for a whole library : • Characterization conditions (Process, Supply Voltage , Temperature) • Characterization conditions (Max rising time, Max capacitances,...) • Statistical capacitance model for wiring... 3/35 ICS904-EN2-L5 Yves MATHIEU An example library Nangate 45nm Open Cell Library Nangate is company creating characterization tools for standard cell libraries. Library distributed by Si2 (Silicon Integration Initiative) an association of electronic design automation companies. No way to process any true circuit, but usable for research and teaching purposes. Based on the NCSU (North Carolina State University) FreePDK45 process kit. FreePDK45 : An open source fictitious, non manufacturable process. 4/35 ICS904-EN2-L5 Yves MATHIEU Nangate 45nm Open Cell Library Units for measurements /* Units Attributes */ voltage_unit : "1V"; current_unit : "1mA"; pulling_resistance_unit : "1kohm"; capacitive_load_unit (1,ff); All measurements use defined units. 6/35 ICS904-EN2-L5 Yves MATHIEU Nangate 45nm Open Cell Library Characterization conditions /* Operation Conditions */ nom_process : 1.00; nom_temperature : 25.00; nom_voltage : 1.10; voltage_map (VDD,1.10);
    [Show full text]
  • Full-Custom Ics Standard-Cell-Based
    Full-Custom ICs Design a chip from scratch. Engineers design some or all of the logic cells, circuits, and the chip layout specifi- cally for a full-custom IC. Custom mask layers are created in order to fabricate a full-custom IC. Advantages: complete flexibility, high degree of optimization in performance and area. Disadvantages: large amount of design effort, expensive. 1 Standard-Cell-Based ICs Use predesigned, pretested and precharacterized logic cells from standard-cell li- brary as building blocks. The chip layout (defining the location of the building blocks and wiring between them) is customized. As in full-custom design, all mask layers need to be customized to fabricate a new chip. Advantages: save design time and money, reduce risk compared to full-custom design. Disadvantages: still incurs high non-recurring-engineering (NRE) cost and long manufacture time. 2 D A B C A B B D C D A A B B Cell A Cell B Cell C Cell D Feedthrough Cell Standard-cell-based IC design. 3 Gate-Array Parts of the chip are pre-fabricated, and other parts are custom fabricated for a particular customer’s circuit. Idential base cells are pre-fabricated in the form of a 2-D array on a gate-array (this partially finished chip is called gate-array template). The wires between the transistors inside the cells and between the cells are custom fabricated for each customer. Custom masks are made for the wiring only. Advantages: cost saving (fabrication cost of a large number of identical template wafers is amortized over different customers), shorter manufacture lead time.
    [Show full text]
  • Standard Cell Library Design and Optimization with CDM for Deeply Scaled Finfet Devices
    Standard Cell Library Design and Optimization with CDM for Deeply Scaled FinFET Devices. by Ashish Joshi, B.E A Thesis In Electrical Engineering Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES IN ELECTRICAL ENGINEERING Approved Dr. Tooraj Nikoubin Chair of Committee Dr. Brian Nutter Dr. Stephen Bayne Mark Sheridan Dean of the Graduate School May, 2016 © Ashish Joshi, 2016 Texas Tech University, Ashish Joshi, May 2016 ACKNOWLEDGEMENTS I would like to sincerely thank my supervisor Dr. Nikoubin for providing me the opportunity to pursue my thesis under his guidance. He has been a commendable support and guidance throughout the journey and his thoughtful ideas for problems faced really been the tremendous help. His immense knowledge in VLSI designs constitute the rich source that I have been sampling since the beginning of my research. I am especially indebted to my thesis committee members Dr. Bayne and Dr. Nutter. They have been very gracious and generous with their time, ideas and support. I appreciate Dr. Nutter’s insights in discussing my ideas and depth to which he forces me to think. I would like to thank Texas Instruments and my colleagues Mayank Garg, Jun, Alex, Amber, William, Wenxiao, Shyam, Toshio, Suchi at Texas Instruments for providing me the opportunity to do summer internship with them. I continue to be inspired by their hard work and innovative thinking. I learnt a lot during that tenure and it helped me identifying my field of interest. Internship not only helped me with the technical aspects but also build the confidence to accept the challenges and come up with the innovative solutions.
    [Show full text]
  • Development and Verification of a Small CMOS Digital Standard Cell Library Based on SMIC 130Nm Process
    4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2015) Development and Verification of A Small CMOS Digital Standard Cell Library Based on SMIC 130nm Process Yiwen Wang1,a,*, Hang Su1,a, Mingjiang Wang1,a, Jipan Huang2,b, Hao Chen2,b 1School of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China 2School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, China [email protected], [email protected] Keywords: Standard cell library; Full adder; Optimization; Verification; P&R Abstract. Nowadays, Semi-custom design based on the standard cells is the mainstream design method for digital IC chip. In this thesis, the standard cell library is built and verified based on the SMIC 130nm technology, especially the optimization of a 1-bit full adder cell, during which the structure and layout of the full adder in the SMIC library is analyzed. As a result, the structure and size of the adder cell are improved better, which is simulated by H-spice. The comparison shows that the optimized adder is not only smaller in area, with width decreased by 0.82μm, but also have advantages in power consumption and timing, with energy delay product reduced by 7.7% .In the end, the s298 circuit in ISCAS Benchmark89 is used as the benchmark to complete the verification method of the standard cell library. Introduction Standard cell library is the basis of gate-level module based circuit design, and it has a direct impact on the performance[1,2], power consumption, size and yield of the final flowing out circuits.
    [Show full text]
  • Eg, Nangate 15 Nm Standard Cell Library
    Nanosystem Design Kit (NDK): Transforming Emerging Technologies into Physical Designs of VLSI Systems G. Hills, M. Shulaker, C.-S. Lee, H.-S. P. Wong, S. Mitra Stanford Massachusetts University Institute of Technology Abundant-Data Explosion “Swimming in sensors, drowning in data” Wide variety & complexity Unstructured data 0 40K 0 ExaB (Billionsof GB) 2006 Year 2020 Mine, search, analyze data in near real-time Data centers, mobile phones, robots 2 Abundant-Data Applications Huge memory wall: processors, accelerators Energy Measurements Genomics classification Natural language processing 5% 18 % 0% 0% … 95 82 % % Compute Memory Intel performance counter monitors 2 CPUs, 8-cores/CPU + 128GB DRAM 3 US National Academy of Sciences (2011) 4 Computing Today 2-Dimensional 5 3-Dimensional Nanosystems Computation immersed in memory 6 3-Dimensional Nanosystems Computation immersed in memory Increased functionality Fine-grained, Memory ultra-dense 3D Computing logic Impossible with today’s technologies 7 Enabling Technologies 3D Resistive RAM Massive storage No TSV 1D CNFET, 2D FET Compute, RAM access thermal STT MRAM Ultra-dense, Quick access fine-grained 1D CNFET, 2D FET vias Compute, RAM access thermal 1D CNFET, 2D FET Silicon Compute, Power, Clock compatible thermal 8 Nanosystems: Compact Models Essential 3D Resistive RAM nanohub Massive storage 1D CNFET, 2D FET Compute, RAM access thermal STT MRAM Quick access m-Cell 1D CNFET, 2D FET Compute, RAM access thermal 1D CNFET, 2D FET Compute, Power, Clock thermal 9 Compact Models: Insufficient Alone Design for Realistic Systems Wire parasitics Inter-module interface circuits Routing congestion Application-dependent workloads Multiple clock domains Cache architecture Memory access patterns Processor vs.
    [Show full text]
  • Standard Cell Library Design with Transistor Folding Using
    STANDARD CELL LIBRARY DESIGN WITH TRANSISTOR FOLDING USING 65NM TECHNOLOGY BY GLOBAL FOUNDRIES by Vibhav Kumarswami Salimath APPROVED BY SUPERVISORY COMMITTEE: ___________________________________________ Dr. Carl M. Sechen, Chair ___________________________________________ Dr. William Swartz ___________________________________________ Dr. Benjamin Carrion Schaefer Copyright 2018 Vibhav Kumarswami Salimath All Rights Reserved To my family and my teachers STANDARD CELL LIBRARY DESIGN WITH TRANSISTOR FOLDING USING 65NM TECHNOLOGY BY GLOBAL FOUNDRIES by VIBHAV KUMARSWAMI SALIMATH, B.E. THESIS Presented to the Faculty of The University of Texas at Dallas in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING THE UNIVERSITY OF TEXAS AT DALLAS May 2018 ACKNOWLEDGMENTS I want to thank my advisor, Dr. Carl Sechen, for his continuous supervision and guidance. I took Dr. Sechen’s course during my first semester in the master’s degree program. I loved the way he taught and came away from the course with a clear idea of my research interests. Working at the Nanometer Design Lab has been an incredible experience and I am most grateful for this opportunity. Thank you to my friends at Nanometer Design Lab for their valuable input, especially Xiangyu Xu and Qiongdan Huang (Olivia). I wish to specially thank Dr. William Swartz Jr. for providing me with timely help and support. Thank you to Dr. William Swartz Jr. and Dr. Benjamin Carrion Schaefer for serving as the committee members for my defense and providing me with their support and advice. I am extremely grateful to my family and friends for their encouragement, which has motivated me to do my best academically.
    [Show full text]
  • Introduction • ASIC Is an Acronym for Application Specific Integrated Circuit
    Introduction • ASIC is an acronym for Application Specific Integrated Circuit. • As the name indicates, ASIC is a non- standard integrated circuit that is designed for a specific use or application. • Generally an ASIC design will be undertaken for a product that will have a large production run , and the ASIC may contain a very large part of the electronics needed on a single integrated circuit. SCRIET(CCS University Meerut) 1 Contd. • Examples for ASIC Ics are : a chip for a toy bear that talks; a chip for a satellite; a chip designed to handle the interface between memory and a microprocessor for a workstation CPU; and a chip containing a microprocessor as a cell together with other logic. SCRIET(CCS University Meerut) 2 Contd. • Two ICs that might or might not be considered as ASICs are, a controller chip for a PC and a chip for a modem. Both of these examples are specific to an application (shades of an ASIC) but are sold to many different system vendors (shades of a standard part). ASICs such as these are sometimes called application- specific standard products ( ASSPs ). SCRIET(CCS University Meerut) 3 Types of • The classificationASICs of ASICs is shown below SCRIET(CCS University Meerut) 4 Full-Custom ASICs • A Full custom ASIC is one which includes some (possibly all) logic cells that are customized and all mask layers that are customized. • A microprocessor is an example of a full-custom IC . Designers spend many hours squeezing the most out of every last square micron of microprocessor chip space by hand.
    [Show full text]
  • Standard Cell Library Design and Optimization Methodology for ASAP7
    Standard Cell Library Design and Optimization Methodology for ASAP7 PDK (Invited Paper) Xiaoqing Xu1, Nishi Shah1, Andrew Evans1, Saurabh Sinha1,BrianCline1,andGregYeric1 1ARM Inc., Austin, TX, USA xiaoqing.xu,nishi.shah,andrew.evans,saurabh.sinha,brian.cline,greg.yeric @arm.com { } ABSTRACT explore the impact of lithography design rules and SC archi- Standard cell libraries are the foundation for the entire back- tectures [2,7–9]. However, very few SC design and optimiza- end design and optimization flow in modern application-specific tion techniques are discussed for complex logic/sequential integrated circuit designs. At 7nm technology node and be- cells. More importantly, none of them are publicly available, yond, standard cell library design and optimization is becom- which prevents academic researchers from exploring novel SC ing increasingly difficult due to extremely complex design design and optimization techniques. constraints, as described in the ASAP7 process design kit Therefore, this study proposes a set of design and opti- (PDK). Notable complexities include discrete transistor siz- mization techniques to create publicly-available SC libraries ing due to FinFETs, complicated design rules from lithogra- with ASAP7 PDK [10–12]. We first discuss exhaustive tran- phy and restrictive layout space from modern standard cell ar- sistor sizing for cell timing optimization taking advantage of chitectures. The design methodology presented in this paper the discrete transistor sizing for a FinFET-based SC design. enables efficient and high-quality standard cell library design Generalized Euler path theory [13] is adopted to generate and optimization with the ASAP7 PDK. The key techniques high-quality transistor placement results. The generalized include exhaustive transistor sizing for cell timing optimiza- Euler paths lead to a much larger solution space than that of tion, transistor placement with generalized Euler paths and conventional Euler path theory, while accommodating pin ac- back-end design prototyping for library-level explorations.
    [Show full text]
  • Mathematical Methods for Physical Layout of Printed Circuit Boards: an Overview
    Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany NADINE ABBOUD MARTIN GRO¨ TSCHEL THORSTEN KOCH Mathematical Methods for Physical Layout of Printed Circuit Boards: An Overview Work supported the DFG Research Center Mathematics for key technologies: Modelling, simulation, and optimization of real-world processes (MATHEON) ZIB-Report 06-29 (Dec 2006) Abstract This article surveys mathematical models and methods used for the physical layout of printed circuit boards, in particular component placement and wire routing. The main concepts are briefly described together with relevant references. Mathematics Subject Classification (2000): 90C90 90-02 68R05 1 Introduction Printed circuit boards (PCBs), see Figures 2 and 3 for an example, are ubiquituous. PCBs are the backbones of almost every electronic device, and therefore, PCB design and manufacturing are extremly important components of many industrial production processes. Before a PCB can serve its task it evolves through three main steps. The first one is the logic design, which defines the components to be used and their interconnections. The second step is the physical layout of the PCB where the geometric positions of the components and their physical connections are decided. The final step is the industrial production of the PCB. In this article we give an overview on the mathematical models and methods used in the second step, the physical design of the board. The two major issues here are component placement and wire routing as depicted in Figure 1. Step 1 Step 2 Step 3 Logical Design Physical Layout PCB Production Determine form factor and number of layers Component placement Pin assignment Layer assignment Wire routing Via minimization Figure 1: Tasks in PCB design A digital logic circuit consists of a collection of interconnected parts.
    [Show full text]
  • Standard Cell Design Standard Cell Libraries Standard Cell Libraries Are
    Advanced VLSI Design Standard Cell Design CMPE 641 Standard Cell Libraries Standard cell libraries are required by almost all CAD tools for chip design Standard cell libraries contain primitive cells required for digital design However, more complex cells that have been specially optimized can also be included The main purpose of the CAD tools is to implement the so called RTL-to-GDS flow The input to the design process, in most cases, is the circuit description at the register- transfer level (RTL) The final output from the design process is the full chip layout, mostly in the GDSII (gds2) format To produce a functionally correct design that meets all the specifications and constraints, requires a combination of different tools in the design flows These tools require specific information in different formats for each of the cells in the stan- dard cell library provided to them for the design 1 Advanced VLSI Design Standard Cell Design CMPE 641 Standard Cell Library Formats The formats explained here are for Cadence tools, howerver similar information is required for other tool suites. Physical Layout (gdsII, Virtuoso Layout Editor) Should follow specific design standards eg. constant height, offsets etc. Logical View (verilog description or TLF or LIB) Verilog is required for dynamic simulation. Place and route tools usually can use TLF. Verilog description should preferably support back annotation of timing information. Abstract View (Cadence Abstract Generator, LEF) LEF: Contains information about each cell as well as technology information Timing, power and parasitics (TLF or LIB) Transistor and interconnect parasitics are extracted using Cadence or other extraction tools.
    [Show full text]
  • ASIC & FPGA Chip Design
    ASIC & FPGA Chip Design: FPGA Architectures Mahdi Shabany Department of Electrical Engineering Sharif University of technology © M. Shabany, ASIC/FPGA Chip Design Outline Introduction Simple Programmable Logic Designs (SPLDs) PLA PAL Complex Programmable Logic Designs (CPLDs) Field-Programmable Gate Array (FPGAs) Logic Blocks Programmable Routing Switches I/O Pads Commercial FPGA Products Application Specific Integrated Circuits (ASICs) © M. Shabany, ASIC/FPGA Chip Design 2 Outline Introduction Simple Programmable Logic Designs (SPLDs) PLA PAL Complex Programmable Logic Designs (CPLDs) Field-Programmable Gate Array (FPGAs) Logic Blocks Programmable Routing Switches I/O Pads Commercial FPGA Products Application Specific Integrated Circuits (ASICs) © M. Shabany, ASIC/FPGA Chip Design 3 Introduction: Digital System Design To design digital systems there are three options: Microprocessors and DSP [software-based] . Fetch & execute software instructions (e.g., running a word processing program) . Very efficient for complex sequential math-intensive tasks . Slow & Power hungry Programmable Logic devices (PLDs) [Hardware-based] . Directly implements logic functions on hardware Course . Faster Focus . Less power consumption Application Specific Integrated Circuit (ASIC) [Hardware-Based] . Fastest . Lowest power consumption © M. Shabany, ASIC/FPGA Chip Design Introduction: Digital System Design DSP [software-based] Easy to program (usually standard C) Very efficient for complex sequential math-intensive tasks Fixed data path-width. Ex: 24-bit adder, is not efficient for 5-bit addition Limited resources FPGA & ASIC [Hardware-based] Requires HDL language programming Efficient for highly parallel applications Efficient for bit-level operations Large number of gates and resources Does not support floating point, must construct your own © M. Shabany, ASIC/FPGA Chip Design Introduction: Digital System Design I.
    [Show full text]