The Roll Stability Control ™ System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Rear Axle Steering System Technology for Commercial Vehicles
연구논문 Journal of Drive and Control, Vol.17 No.4 pp.152-159 Dec. 2020 ISSN 2671-7972(print) ISSN 2671-7980(online) http://dx.doi.org/10.7839/ksfc.2020.17.4.152 A Review of Rear Axle Steering System Technology for Commercial Vehicles 하룬 아흐마드 칸1․윤소남2*․정은아2․박정우2,3․유충목4․한성민4 Haroon Ahmad Khan1, So-Nam Yun2*, Eun-A Jeong2, Jeong-Woo Park2,3, Chung-Mok Yoo4 and Sung-Min Han4 Received: 02 Nov. 2020, Revised: 23 Nov. 2020, Accepted: 28 Nov. 2020 Key Words:Rear Axle Steering, Commercial Vehicles, Centering Cylinder, Tag Axle Steering, Maneuverability Abstract: This study reviews the rear or tag axle steering system’s concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations. -
Schaeffler Symposium 2018
2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control INTELLIGENT ACTIVE ROLL CONTROL SHAUN TATE 1 2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control Production Experience & Awards Series Production – 12V BMW 7 Series 2015 BMW 5 Series 2017 RR Phantom 2018 Series Production – 48V Bentley Bentayga 2015 Audi SQ7 2016 Porsche Panamera 2017 Porsche Cayenne 2017 Bentley Continental 2018 Award‐Winning System German Innovation Award Vehicle Dynamics International Award Auto Test Sieger PACE Award 2016 2016 2016 2017 Feature to Product Mapping Stationary Ride Comfort Feature Adaptive Suspension Setup Agility & Stability Conditions Improvement Control Response Clearance Vertical Acceleration Exit Base Stability / Roll Leveling Acceleration Steering Products ‐ Easy Loading Easy Entry Easy Parking Adapt Ground Adapt Wheel Increase Articulation Load Reduce Acceleration Reduce Lateral Reduce Yaw Adapt Self Adapt Steering Dynamic Body Trailer iARC 2 2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control Market Trends & Features Trend 3: Large Trucks/SUVs/Vans for improved comfort and more safety Weight Trend 2: HEV/EV for improved comfort and system availability Vehicle Trend 1: SUV for improved comfort and agility Vehicle Center of Gravity Selling Features Using Schaeffler iARC System Feature Driving Dynamics Comfort Features ADAS Support L3 / Active Safety ‐ Roll Into m Lane Mode ‐ Self Steering Yaw Ride Stability Body Tilt Control Control Emergency Split Free Speed Road Vehicle Class ‐ Stability Active Control -
Meritor® Tire Inflation System (Mtis) by Psi™ Including Meritor Thermalert™
MERITOR® TIRE INFLATION SYSTEM (MTIS) BY PSI™ INCLUDING MERITOR THERMALERT™ PB-9999 TABLE OF CONTENTS Control Box ............................................................................................................6 Exploded Views ......................................................................................................2 Guidelines for Specifying the Correct Kits for the Meritor Tire Infl ation System ......4 Hoses .....................................................................................................................8 Hubcaps ................................................................................................................11 Lights ....................................................................................................................6 Press Plug Kits ......................................................................................................9 Retrofi t Kit .............................................................................................................3 Through-Tees and Stators ......................................................................................8 Tools ......................................................................................................................10 Numerical Parts Listing .........................................................................................12 CONTROL BOX ASSEMBLY DUAL WHEEL END ASSEMBLY 2 U.S. 888-725-9355 Canada 800-387-3889 MERITOR TIRE INFLATION SYSTEM RETROFIT KIT Qty. Per Qty. Per Tandem Tandem -
1976 Technical Documentation Locomotive Truck Hunting M.Pdf
TECHNICAL DOCUMENTATION LOCOMOTIVE TRUCK HUNTING MODEL V. K. Garg OHO G. C. Martin P. W. Hartmann J. G. Tolomei mnnnn irnational Government-Industry 04 - Locomotives ch Program on Track Train Dynamics R-219 TE C H N IC A L DOCUMENTATION rnn nnn LOCOMOTIVE TRUCK HUNTING MODEL V. K. Garg G. C. Martin P. W. Hartmann a a J. G. Tolomei dD 11 TT|[inr i3^1 i i H§ic§ An International Government-Industry Research Program on Track Train Dynamics Chairman L. A. Peterson J. L. Cann Director Vice President Office of Rail Safety Research Steering Operation and Maintenance Federal Railroad Administration Canadian National Railways G. E. Reed Vice Chairman Director Committee W. J. Harris, Jr. Railroad Sales Vice President AMCAR Division Research and Test Department ACF Industries Association of American Railroads D. V. Sartore or the E. F. Lind Chief Engineer Design Project Director-Phase I Burlington Northern, Inc. Track Train Dynamics Southern Pacific Transportation Co. P. S. Settle Tack Tain President M. D. Armstrong Railway Maintenance Corporation Chairman Transportation Development Agency W. W. Simpson Dynamics Canadian Ministry of Transport Vice President Engineering W. S. Autrey Southern Railway System Chief Engineer Atchison, Topeka & Santa Fe Railway Co. W. S. Smith Vice President and M. W. Beilis Director of Transportation Manager General Mills, Inc. Locomotive Engineering General Electric Company J. B. Stauffer Director M. Ephraim Transportation Test Center Chief Engineer Federal Railroad Administration Electro Motive Division General Motors Corporation R. D. Spence (Chairman) J. G. German President Vice President ConRail Engineering Missouri Pacific Co. L. S. Crane (Chairman) President and Chief W. -
Specifiers & Installers Guide to TORSION BAR APPLICATIONS
Specifiers & Installers Guide To TORSION BAR APPLICATIONS WELCOME Thank you for specifying Sauber Torsion Bars. By choosing us as your stability partner, you derive the following benefits: * Improved Stability * Stability is safety, and safety is our first concern. A Sauber Torsion Bar can eliminate unwanted counterweight, offering your users an extra safety margin. Because Sauber bars don't rigidize the chassis frame, they always provide a smooth, quiet ride. * Long Life * Premium bronze and galvanized components. Bushings guaranteed and replaced as/if needed for 10 years. 10 Year parts coverage when inspected at no greater than four month intervals. * Excellent Documentation * Our comprehensive applications charts, installation instructions and detailed drawings provide the vital information you and your installers need in an organized format. * Superior Support * Toll-free phone and fax service from anywhere in North America provides easy access to the resources of our organization through your personal company representative. * Lower Life Cycle Costs * Since it takes less time to mount our bar, its installed cost can actually be less than other alternatives. Sauber Torsion Bars are designed and built to last as long as your chassis. * Extensive Inventory * Our inventory power puts our bar on the floor just when you want it. Your production schedule can't wait on your suppliers, and with us as your partner, it won't. * More Choices * Underframe or overframe, nobody provides more installation options than we do. More choices mean a better -
Road Map for the Future Making the Case for Full-Stability
ROAD MAP FOR THE FUTURE MAKING THE CASE FOR FULL-STABILITY Bendix Commercial Vehicle Systems LLC 901 Cleveland Street • Elyria, Ohio 44035 1-800-247-2725 • www.bendix.com/abs6 road map for the future : making the case for full-stability TABLE OF CONTENTS 1 : Important Terms ............................................... 3-4 2 : Executive Summary ............................................. 5-7 3 : Understanding Stability Systems .................................. 8-12 4 : The Difference Between Roll-Only and Full-Stability Systems ...........13-23 5 : Stability for Straight Trucks/Vocational Vehicles ......................24-26 6 : Why Data Supports Full-Stability Systems ..........................27-30 7 : The Safety ROI of Stability Systems ................................31-33 8 : Recognizing the Limitations of Stability Systems ......................34-37 9 : Stability System Maintenance .....................................38-40 10 : Stability as the Foundation for Future Technologies ...................41-42 11 : Conclusion .................................................. 43-44 12 : Appendix A: Analysis of the “Large Truck Crash Causation Study” ..... 45-46 13 : About the Authors ................................................47 road map for the future : making the case for full-stability 1 : 1 2 IMPORtant teRMS Directional Instability Before delving into information about the The loss of the vehicle’s ability to follow the driver’s steering, technological differences acceleration or braking input. between commercial vehicle -
Electronic Stability Control Systems for Heavy Vehicles; Proposed Rule
Vol. 77 Wednesday, No. 100 May 23, 2012 Part III Department of Transportation National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy Vehicles; Proposed Rule VerDate Mar<15>2010 18:07 May 22, 2012 Jkt 226001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\23MYP2.SGM 23MYP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 30766 Federal Register / Vol. 77, No. 100 / Wednesday, May 23, 2012 / Proposed Rules DEPARTMENT OF TRANSPORTATION New Jersey Avenue SE., West Building A. UMTRI Study Ground Floor, Room W12–140, B. Simulator Study National Highway Traffic Safety Washington, DC 20590–0001 C. NHTSA Track Testing Administration • Hand Delivery or Courier: West 1. Effects of Stability Control Systems— Phase I Building Ground Floor, Room W12–140, 49 CFR Part 571 2. Developing a Dynamic Test Maneuver 1200 New Jersey Avenue SE., between and Performance Measure To Evaluate [Docket No. NHTSA–2012–0065] 9 a.m. and 5 p.m. ET, Monday through Roll Stability—Phase II Friday, except Federal holidays. (a) Test Maneuver Development RIN 2127–AK97 • Fax: (202) 493–2251 (b) Performance Measure Development Instructions: For detailed instructions 3. Developing a Dynamic Test Maneuver Federal Motor Vehicle Safety on submitting comments and additional and Performance Measure To Evaluate Standards; Electronic Stability Control information on the rulemaking process, Yaw Stability—Phase III Systems for Heavy Vehicles see the Public Participation heading of (a) Test Maneuver Development (b) Performance Measure Development the SUPPLEMENTARY INFORMATION AGENCY: National Highway Traffic section 4. Large Bus Testing Safety Administration (NHTSA), of this document. -
Eaton® Repair Information
® Eaton October, 1991 Hydrostatic Transaxle Repair Information A 751, 851, 771, and 781 Transaxle 1 The following repair information applies to mance. Work in a clean area. After disassem- the Eaton 751, 851,771, and 781 series hydro- bly, wash all parts with clean solvent and blow static transaxles. the parts dry with air. Inspect all mating sur- faces. Replace any damaged parts that could cause internal leakage. Do not use grit paper, files or grinders on finished parts. Note: Whenever a transaxle is disassembled, our recommendation is to replace all seals. Lubricate the new seals with petroleum jelly before installation. Use only clean, recom- mended hydraulic fluid on the finished sur- faces at reassembly. Part Number, Date of Assembly, and Input Rotation Stamped on this Surface 6 The following tools are required for disas- Assembly Date of Part Number Input Rotation Build Code sembly and reassembly of the transaxle. (CW or CCW) • 3/8 in. Socket or End Wrench Customer • 1 in. Socket or End Wrench Part Number XXX-XXX XXX XXXXXX Factory ( if Required ) XXXXXX XX/XX/XX 11 Rebuild • Ratchet Wrench Code • Torque Wrench 300 lb-in [34 Nm] Original Build Factory Rebuild ( example - 010191 ) ( example - 01/01/91 11 ) • 5/32 Hex Wrench 01 01 91 01 01 91 11 • Small screwdriver (4 in [102 mm] to 6 in. Year Number of [150 mm] long) Day Year Times Rebuilt (2) • No. 5 or 7 Internal Retaining Ring Pliers Month Day Month • No. 4 or 5 External Retaining Ring Pliers • 6 in. [150 mm] or 8 In. -
Design, Analysis and Optimization of Anti-Roll Bar
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Pravin Bharane et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 4), September 2014, pp.137-140 RESEARCH ARTICLE OPEN ACCESS Design, Analysis and Optimization of Anti-Roll Bar Pravin Bharane*, Kshitijit Tanpure**, Amit Patil***, Ganesh Kerkal**** *,**,***,****( Assistant Professor, Department of Mechanical Engg., Dnyanganga College of Engg. & Research, Pune) ABSTRACT Vehicle anti-roll bar is part of an automobile suspension system which limits body roll angle. This U-shaped metal bar connects opposite wheels together through short lever arms and is clamped to the vehicle chassis with rubber bushes. Its function is to reduce body roll while cornering, also while travelling on uneven road which enhances safety and comfort during driving. Design changes of anti-roll bars are quite common at various steps of vehicle production and a design analysis must be performed for each change. So Finite Element Analysis (FEA) can be effectively used in design analysis of anti-roll bars. The finite element analysis is performed by ANSYS. This paper includes pre-processing, analysis, post processing, and analyzing the FEA results by using APDL (Ansys Parametric Design Language). The effects of anti-roll bar design parameters on final anti-roll bar properties are also evaluated by performing sample analyses with the FEA program developed in this project. Keywords: FEA, Anti Roll Bar, APDL, Design Parameters. I. INTRODUCTION Anti-roll bar, also referred to as stabilizer or ensure directional control and stability with adequate sway bar, is a rod or tube, usually made of steel, that traction and braking capabilities [1]. -
MICHELIN® Truck Tire Reference Chart
MICHELI N® Truck Tire Reference Chart January 2012 MICHELIN ® TRUCK TIRE REFERENCE CHART STEER / ALL-POSITION TIRES (3) XZA3 ®+ EVERTREAD ™ XZA ® (365/70R22.5) XZA2 ® ENERGY • Ultra-fuel-efficient tire (1) that delivers • Advanced Technology ™ compounding • Optimized channel design allows for long our longest mileage in line haul steer offers excellent fuel economy (1) tread life and minimized irregular wear applications • Engineered for irregular wear resistance • Low rolling resistance compounds for fuel • Dual Compound Tread delivers more • Over 7,000 trapezoidal micro sipes on economy (1) in highway service mileage without compromising ultra- groove edges help break water surface • Optimized for steer axle service fuel-efficiency and retreadability tension to promote traction on wet and • Directional tread with enhanced shoulder slippery road surfaces rib designed to deliver even wear to the end • Original shoulder groove design offers • 3-Retread Limited Warranty (2) enhanced resistance to uneven shoulder wear LH R O/O U LH R O/O U LH R O/O U 275/80R22.5 Tread Depth 365/70R22.5 Tread Depth 315/80R22.5 Tread Depth MICHELIN ® XZA3 ®+ EVERTREAD ™ 19 MICHELIN ® XZA ® 19 MICHELIN ® XZA2 ® ENERGY 16 Goodyear ® G395 LHS Fuel Max 18 Goodyear ® N/A Goodyear ® G291 18 Bridgestone ® R287A 16 Bridgestone ® N/A Bridgestone ® R294 19 XZA ®-1+ XZA ®1(3) XZE ® • Decoupling groove built for resistance to • Optimized for all-position heavy axle • Solid shoulders to help resist scrub irregular wear loads • Curb guards on sidewalls • Optimized for steer -
Design of Automotive X-By-Wire Systems Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion
Design of automotive X-by-Wire systems Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion To cite this version: Cédric Wilwert, Nicolas Navet, Ye-Qiong Song, Françoise Simonot-Lion. Design of automotive X-by- Wire systems. Richard Zurawski. The Industrial Communication Technology Handbook, CRC Press, 2005, 0849330777. inria-00000562 HAL Id: inria-00000562 https://hal.inria.fr/inria-00000562 Submitted on 27 Aug 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of automotive X-by-Wire systems Cédric Wilwert PSA Peugeot - Citroën 92000 La Garenne Colombe - France Fax: +33 3 83 58 17 01 Phone: +33 3 83 58 17 17 [email protected] Nicolas Navet LORIA UMR 7503 – INRIA Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 58 17 01 Phone : +33 3 83 58 17 61 [email protected] Ye Qiong Song LORIA UMR 7503 – Université Henri Poincaré Nancy I Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 58 17 01 Phone : +33 3 83 58 17 64 [email protected] Françoise Simonot-Lion LORIA UMR 7503 – Institut National Polytechnique de Lorraine Campus Scientifique - BP 239 - 54506 VANDOEUVRE-lès-NANCY CEDEX Fax: +33 3 83 27 83 19 Phone : +33 3 83 58 17 62 [email protected] CONTENTS Design of automotive X-by-Wire systems ...................................................................................................... -
COMPARATIVE STUDY of VEHICLE ROLL STABILITY Final Report
COMPARATIVE STUDY OF VEHICLE ROLL STABILITY Final Report Contract No, FH-11-9577 Phase V T.D. Gillespie R.D. Ervin May 1983 Tuluicol RwDocuumtati'm P- I. RepmNo, Z Accessim (lo. 3. Recipient's Cedmq (lo. I 4. Title d Subtitie 5. RvtDate COMPARATIVE STUDY OF VEHICLE ROLL STABILITY May 1983 6. P-mag Orqmir.ri.r, Cdr 8. Per4emiag OmdmRm No. 7. kihu's) T.D. Gillespie and R.D. Ervin UMTRI-83-25 9. Pduming Orl.niadir Nuad Mess 10. Work Uait No. The University of Michigan 1 Transportation Research Institute 2901 Baxter Road - - 7 (Phase V) Ann Arbor, Michigan 48109 13. Trr ef RW 4p.,iocl had 12 Wag4mnq Nu ad Ahss U.S. Department of Transportation Final 2118183-5/18/83 Federal Highway Administration ' Washington, D.C. 20590 1'. Srmwing Amyae 1.6. Abshct The roll stability levels of a broad range of motor vehicles were determined using computer simulation. The input data needed for these calculations were obtained from both direct measurements and from pre- viously published information. The vehicles of interest covered the range from subcompact passenger cars through heavy-duty truck combinations. The results are discussed in the light of two issues, namely: 1) the roll stability levels of step-van-type trucks used by the bakery industry relative to the stability levels of other vehicles and I 2) the influence of width parameters on the roll stability of heavy truck combinations. 17. Key Wrb roll stability, passenger I 18- D's"hM ] cars, light trucks, bakery trucks, I I heavy-duty trucks I UNLIMITED I 19.