Electronic Stability Control Systems for Heavy Vehicles; Proposed Rule

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Stability Control Systems for Heavy Vehicles; Proposed Rule Vol. 77 Wednesday, No. 100 May 23, 2012 Part III Department of Transportation National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy Vehicles; Proposed Rule VerDate Mar<15>2010 18:07 May 22, 2012 Jkt 226001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\23MYP2.SGM 23MYP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 30766 Federal Register / Vol. 77, No. 100 / Wednesday, May 23, 2012 / Proposed Rules DEPARTMENT OF TRANSPORTATION New Jersey Avenue SE., West Building A. UMTRI Study Ground Floor, Room W12–140, B. Simulator Study National Highway Traffic Safety Washington, DC 20590–0001 C. NHTSA Track Testing Administration • Hand Delivery or Courier: West 1. Effects of Stability Control Systems— Phase I Building Ground Floor, Room W12–140, 49 CFR Part 571 2. Developing a Dynamic Test Maneuver 1200 New Jersey Avenue SE., between and Performance Measure To Evaluate [Docket No. NHTSA–2012–0065] 9 a.m. and 5 p.m. ET, Monday through Roll Stability—Phase II Friday, except Federal holidays. (a) Test Maneuver Development RIN 2127–AK97 • Fax: (202) 493–2251 (b) Performance Measure Development Instructions: For detailed instructions 3. Developing a Dynamic Test Maneuver Federal Motor Vehicle Safety on submitting comments and additional and Performance Measure To Evaluate Standards; Electronic Stability Control information on the rulemaking process, Yaw Stability—Phase III Systems for Heavy Vehicles see the Public Participation heading of (a) Test Maneuver Development (b) Performance Measure Development the SUPPLEMENTARY INFORMATION AGENCY: National Highway Traffic section 4. Large Bus Testing Safety Administration (NHTSA), of this document. Note that all D. Truck & Engine Manufacturers Department of Transportation (DOT). comments received will be posted Association Testing ACTION: Notice of proposed rulemaking without change to http:// 1. Slowly Increasing Steer Maneuver (NPRM). www.regulations.gov, including any 2. Ramp Steer Maneuver personal information provided. Please 3. Sine With Dwell Maneuver SUMMARY: This document proposes to see the Privacy Act heading below. 4. Ramp With Dwell Maneuver establish a new Federal Motor Vehicle Privacy Act: Anyone is able to search 5. Vehicle J Testing Safety Standard No. 136 to require the electronic form of all comments (a) EMA Testing of Vehicle J electronic stability control (ESC) received into any of our dockets by the (b) NHTSA Testing of EMA’s Vehicle J E. Other Industry Research systems on truck tractors and certain name of the individual submitting the 1. Decreasing Radius Test buses with a gross vehicle weight rating comment (or signing the comment, if 2. Lane Change on a Large Diameter Circle of greater than 11,793 kilograms (26,000 submitted on behalf of an association, 3. Yaw Control Tests pounds). ESC systems in truck tractors business, labor union, etc.). You may V. Agency Proposal and large buses are designed to reduce review DOT’s complete Privacy Act A. NHTSA’s Statutory Authority untripped rollovers and mitigate severe Statement in the Federal Register B. Applicability understeer or oversteer conditions that published on April 11, 2000 (65 FR 1. Vehicle Types lead to loss of control by using 19477–78). 2. Retrofitting In-Service Truck Tractors, automatic computer-controlled braking Docket: For access to the docket to Trailers, and Buses 3. Exclusions From Stability Control and reducing engine torque output. read background documents or In 2012, we expect that about 26 Requirement comments received, go to http:// C. ESC System Capabilities percent of new truck tractors and 80 www.regulations.gov. Follow the online 1. Choosing ESC vs. RSC percent of new buses affected by this instructions for accessing the dockets. 2. Definition of ESC proposed rule will be equipped with FOR FURTHER INFORMATION CONTACT: For D. ESC Disablement ESC systems. We believe that ESC technical issues, you may contact E. ESC Malfunction Detection, Telltale, and systems could prevent 40 to 56 percent George Soodoo, Office of Crash Activation Indicator of untripped rollover crashes and 14 Avoidance Standards, by telephone at 1. ESC Malfunction Detection 2. ESC Malfunction Telltale percent of loss-of-control crashes. By (202) 366–4931, and by fax at (202) 366– requiring that ESC systems be installed 3. ESC Activation Indicator 7002. For legal issues, you may contact F. Performance Requirements and on truck tractors and large buses, this David Jasinski, Office of the Chief proposal would prevent 1,807 to 2,329 Compliance Testing Counsel, by telephone at (202) 366– 1. Characterization Test—SIS crashes, 649 to 858 injuries, and 49 to 2992, and by fax at (202) 366–3820. You 2. Roll and Yaw Stability Test—SWD 60 fatalities at less than $3 million per may send mail to both of these officials (a) Roll Stability Performance equivalent life saved, while generating at the National Highway Traffic Safety (b) Yaw Stability Performance positive net benefits. Administration, 1200 New Jersey (c) Lateral Displacement DATES: Comments: Submit comments on Avenue SE., Washington, DC 20590. 3. Alternative Test Maneuvers Considered or before August 21, 2012. (a) Characterization Maneuver SUPPLEMENTARY INFORMATION: Public Hearing: NHTSA will hold a (b) Roll Stability Test Maneuvers public hearing in the summer of 2012. Table of Contents (c) Yaw Stability Test Maneuvers NHTSA will announce the date for the (d) Lack of an Understeer Test I. Executive Summary 4. ESC Malfunction Test hearing in a supplemental Federal II. Safety Problem 5. Test Instrumentation and Equipment Register document. The agency will A. Heavy Vehicle Crash Problem (a) Outriggers accept comments to the rulemaking at B. Contributing Factors in Rollover and (b) Automated Steering Machine this hearing. Loss-of-Control Crashes (c) Anti-Jackknife Cables ADDRESSES: You may submit comments C. NTSB Safety Recommendations (d) Control Trailer electronically [identified by DOT Docket D. Motorcoach Safety Plan (e) Sensors Number NHTSA–2012–0065] by visiting E. International Regulation 6. Test Conditions the following Web site III. Stability Control Technologies (a) Ambient Conditions • Federal eRulemaking Portal: Go to A. Dynamics of a Rollover (b) Road Test Surface http://www.regulations.gov. Follow the B. Description of RSC System Functions (c) Vehicle Test Weight C. Description of ESC System Functions (d) Tires online instructions for submitting D. How ESC Prevents Loss of Control (e) Mass Estimation Drive Cycle comments. E. Situations in Which Stability Control (f) Brake Conditioning Alternatively, you can file comments Systems May Not Be Effective 7. Data Filtering and Post Processing using the following methods: F. Difference in Vehicle Dynamics Between G. Compliance Dates and Implementation • Mail: Docket Management Facility: Light Vehicles and Heavy Vehicles Schedule U.S. Department of Transportation, 1200 IV. Research and Testing VI. Benefits and Costs VerDate Mar<15>2010 18:07 May 22, 2012 Jkt 226001 PO 00000 Frm 00002 Fmt 4701 Sfmt 4702 E:\FR\FM\23MYP2.SGM 23MYP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 Federal Register / Vol. 77, No. 100 / Wednesday, May 23, 2012 / Proposed Rules 30767 A. System Effectiveness collision. Based on the agency’s the agency was able to develop reliable B. Target Crash Population estimates regarding the effectiveness of and repeatable test maneuvers that C. Benefits Estimate ESC systems, we believe that an ESC could demonstrate a stability control D. Cost Estimate E. Cost Effectiveness standard could annually prevent 1,807 system’s ability to prevent rollover and F. Comparison of Regulatory Alternatives to 2,329 crashes, 649 to 858 injuries, loss of directional control among the VII. Public Participation and 49 to 60 fatalities, while providing varied configurations of truck tractors VIII. Regulatory Analyses and Notices net economic benefits. and buses in the fleet. A. Executive Order 12866, Executive Order There have been two types of stability In order to realize these benefits, the 13563, and DOT Regulatory Policies and control systems developed for heavy agency is proposing to require new Procedures vehicles. A roll stability control (RSC) truck tractors and certain buses with a B. Regulatory Flexibility Act system is designed to prevent rollover C. Executive Order 13132 (Federalism) GVWR of greater than 11,793 kilograms D. Executive Order 12988 (Civil Justice by decelerating the vehicle using (26,000 pounds) to be equipped with an Reform) braking and engine torque control. The ESC system. This proposal is made E. Protection of Children From other type of stability control system is pursuant to the authority granted to Environmental Health and Safety Risks ESC, which includes all of the functions NHTSA under the National Traffic and F. Paperwork Reduction Act of an RSC system plus the ability to Motor Vehicle Safety Act (‘‘Motor G. National Technology Transfer and mitigate severe oversteer or understeer Vehicle Safety Act’’). Under 49 U.S.C. Advancement Act by automatically applying brake force at Chapter 301, Motor Vehicle Safety (49 H. Unfunded Mandates Reform Act selected wheel-ends to help maintain I. National Environmental Policy Act U.S.C. 30101 et seq.), the Secretary of J. Plain Language directional control of a vehicle. To date, Transportation is responsible for K. Regulatory Identifier Number (RIN) ESC and RSC systems for heavy vehicles prescribing motor vehicle safety L. Privacy Act have been developed for air-braked
Recommended publications
  • Schaeffler Symposium 2018
    2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control INTELLIGENT ACTIVE ROLL CONTROL SHAUN TATE 1 2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control Production Experience & Awards Series Production – 12V BMW 7 Series 2015 BMW 5 Series 2017 RR Phantom 2018 Series Production – 48V Bentley Bentayga 2015 Audi SQ7 2016 Porsche Panamera 2017 Porsche Cayenne 2017 Bentley Continental 2018 Award‐Winning System German Innovation Award Vehicle Dynamics International Award Auto Test Sieger PACE Award 2016 2016 2016 2017 Feature to Product Mapping Stationary Ride Comfort Feature Adaptive Suspension Setup Agility & Stability Conditions Improvement Control Response Clearance Vertical Acceleration Exit Base Stability / Roll Leveling Acceleration Steering Products ‐ Easy Loading Easy Entry Easy Parking Adapt Ground Adapt Wheel Increase Articulation Load Reduce Acceleration Reduce Lateral Reduce Yaw Adapt Self Adapt Steering Dynamic Body Trailer iARC 2 2018 Schaeffler Symposium 9/6/2018 Intelligent Active Roll Control Market Trends & Features Trend 3: Large Trucks/SUVs/Vans for improved comfort and more safety Weight Trend 2: HEV/EV for improved comfort and system availability Vehicle Trend 1: SUV for improved comfort and agility Vehicle Center of Gravity Selling Features Using Schaeffler iARC System Feature Driving Dynamics Comfort Features ADAS Support L3 / Active Safety ‐ Roll Into m Lane Mode ‐ Self Steering Yaw Ride Stability Body Tilt Control Control Emergency Split Free Speed Road Vehicle Class ‐ Stability Active Control
    [Show full text]
  • Design, Analysis and Optimization of Anti-Roll Bar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Pravin Bharane et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 4), September 2014, pp.137-140 RESEARCH ARTICLE OPEN ACCESS Design, Analysis and Optimization of Anti-Roll Bar Pravin Bharane*, Kshitijit Tanpure**, Amit Patil***, Ganesh Kerkal**** *,**,***,****( Assistant Professor, Department of Mechanical Engg., Dnyanganga College of Engg. & Research, Pune) ABSTRACT Vehicle anti-roll bar is part of an automobile suspension system which limits body roll angle. This U-shaped metal bar connects opposite wheels together through short lever arms and is clamped to the vehicle chassis with rubber bushes. Its function is to reduce body roll while cornering, also while travelling on uneven road which enhances safety and comfort during driving. Design changes of anti-roll bars are quite common at various steps of vehicle production and a design analysis must be performed for each change. So Finite Element Analysis (FEA) can be effectively used in design analysis of anti-roll bars. The finite element analysis is performed by ANSYS. This paper includes pre-processing, analysis, post processing, and analyzing the FEA results by using APDL (Ansys Parametric Design Language). The effects of anti-roll bar design parameters on final anti-roll bar properties are also evaluated by performing sample analyses with the FEA program developed in this project. Keywords: FEA, Anti Roll Bar, APDL, Design Parameters. I. INTRODUCTION Anti-roll bar, also referred to as stabilizer or ensure directional control and stability with adequate sway bar, is a rod or tube, usually made of steel, that traction and braking capabilities [1].
    [Show full text]
  • INDEPENDENT TORQUE DISTRIBUTION MANAGEMENT SYSTEMS for VEHICLE STABILITY CONTROL Indrasen Karogal Clemson University, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Clemson University: TigerPrints Clemson University TigerPrints All Theses Theses 12-2008 INDEPENDENT TORQUE DISTRIBUTION MANAGEMENT SYSTEMS FOR VEHICLE STABILITY CONTROL Indrasen Karogal Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons Recommended Citation Karogal, Indrasen, "INDEPENDENT TORQUE DISTRIBUTION MANAGEMENT SYSTEMS FOR VEHICLE STABILITY CONTROL" (2008). All Theses. 490. https://tigerprints.clemson.edu/all_theses/490 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INDEPENDENT TORQUE DISTRIBUTION MANAGEMENT SYSTEMS FOR VEHICLE STABILITY CONTROL A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Indrasen Suresh Karogal December 2008 Accepted by: Dr. Beshah Ayalew, Committee Chair Dr. Harry Law Dr. Pierluigi Pisu ABSTRACT Vehicle Dynamics Control (VDC) systems, also called Electronic Stability Control (ESC) systems, are active on-board safety systems intended to stabilize the dynamics of vehicle lateral motion. In so doing, these systems reduce the possibility of the driver’s loss of control of the vehicle in some critical or aggressive maneuvers. One approach to vehicle dynamics control is the use of appropriate drive torque distribution to the wheels of the vehicle. This thesis focuses on particular torque distribution management systems suitable for vehicles with independently driven wheels.
    [Show full text]
  • Development of Vehicle Dynamics Tools for Motorsports
    AN ABSTRACT OF THE DISSERTATION OF Chris Patton for the degree of Doctor of Philosophy in Mechanical Engineering presented on February 7, 2013. Title: Development of Vehicle Dynamics Tools for Motorsports. Abstract approved: ______________________________________________________________________________ Robert K. Paasch In this dissertation, a group of vehicle dynamics simulation tools is developed with two primary goals: to accurately represent vehicle behavior and to provide insight that improves the understanding of vehicle performance. Three tools are developed that focus on tire modeling, vehicle modeling and lap time simulation. Tire modeling is based on Nondimensional Tire Theory, which is extended to provide a flexible model structure that allows arbitrary inputs to be included. For example, rim width is incorporated as a continuous variable in addition to vertical load, inclination angle and inflation pressure. Model order is determined statistically and only significant effects are included. The fitting process is shown to provide satisfactory fits while fit parameters clearly demonstrate characteristic behavior of the tire. To represent the behavior of a complete vehicle, a Nondimensional Tire Model is used, along with a three degree of freedom vehicle model, to create Milliken Moment Diagrams (MMD) at different speeds, longitudinal accelerations, and under various yaw rate conditions. In addition to the normal utility of MMDs for understanding vehicle performance, they are used to develop Limit Acceleration Surfaces that represent the longitudinal, lateral and yaw acceleration limits of the vehicle. Quasi-transient lap time simulation is developed that simulates the performance of a vehicle on a predetermined path based on the Limit Acceleration Surfaces described above. The method improves on the quasi-static simulation method by representing yaw dynamics and indicating the vehicle’s stability and controllability over the lap.
    [Show full text]
  • COMPARATIVE STUDY of VEHICLE ROLL STABILITY Final Report
    COMPARATIVE STUDY OF VEHICLE ROLL STABILITY Final Report Contract No, FH-11-9577 Phase V T.D. Gillespie R.D. Ervin May 1983 Tuluicol RwDocuumtati'm P- I. RepmNo, Z Accessim (lo. 3. Recipient's Cedmq (lo. I 4. Title d Subtitie 5. RvtDate COMPARATIVE STUDY OF VEHICLE ROLL STABILITY May 1983 6. P-mag Orqmir.ri.r, Cdr 8. Per4emiag OmdmRm No. 7. kihu's) T.D. Gillespie and R.D. Ervin UMTRI-83-25 9. Pduming Orl.niadir Nuad Mess 10. Work Uait No. The University of Michigan 1 Transportation Research Institute 2901 Baxter Road - - 7 (Phase V) Ann Arbor, Michigan 48109 13. Trr ef RW 4p.,iocl had 12 Wag4mnq Nu ad Ahss U.S. Department of Transportation Final 2118183-5/18/83 Federal Highway Administration ' Washington, D.C. 20590 1'. Srmwing Amyae 1.6. Abshct The roll stability levels of a broad range of motor vehicles were determined using computer simulation. The input data needed for these calculations were obtained from both direct measurements and from pre- viously published information. The vehicles of interest covered the range from subcompact passenger cars through heavy-duty truck combinations. The results are discussed in the light of two issues, namely: 1) the roll stability levels of step-van-type trucks used by the bakery industry relative to the stability levels of other vehicles and I 2) the influence of width parameters on the roll stability of heavy truck combinations. 17. Key Wrb roll stability, passenger I 18- D's"hM ] cars, light trucks, bakery trucks, I I heavy-duty trucks I UNLIMITED I 19.
    [Show full text]
  • The Roll Stability Control ™ System
    ROLL RATE BASED STABILITY CONTROL - THE ROLL STABILITY CONTROL ™ SYSTEM Jianbo Lu Dave Messih Albert Salib Ford Motor Company United States Paper Number 07-136 ABSTRACT precise detection of potential rollover conditions and driving conditions such as road bank and vehicle This paper presents the Roll Stability Control ™ loading, the aforementioned approaches need to system developed at Ford Motor Company. It is an conduct necessary trade-offs between control active safety system for passenger vehicles. It uses a sensitivity and robustness. roll rate sensor together with the information from the conventional electronic stability control hardware to In this paper, a system referred to as Roll Stability detect a vehicle's roll condition associated with a Control™ (RSC), is presented. Such a system is potential rollover and executes proper brake control designed specifically to mitigate vehicular rollovers. and engine torque reduction in response to the The idea of RSC, first documented in [10], was detected roll condition so as to mitigate a vehicular developed at Ford Motor Company and has been rollover. implemented on various vehicles within Ford Motor Company since its debut on the 2003 Volvo XC90. INTRODUCTION The RSC system adds a roll rate sensor and necessary control algorithms to an existing ESC system. The The traditional electronic stability control (ESC) roll rate sensor, together with the information from systems aim to control the yaw and sideslip angle of a the ESC system, help to effectively identify the moving vehicle through individual wheel braking and critical roll conditions which could lead to a potential engine torque reduction such that the desired path of vehicular rollover.
    [Show full text]
  • Lateral Vehicle Dynamics Control and Vehicle State Estimation: a Tyre Force Measurement Based Approach
    Delft University of Technology Lateral vehicle dynamics control and vehicle state estimation: A tyre force measurement based approach Kunnappillil Madhusudhanan, Anil DOI 10.4233/uuid:9cadd5c4-0a61-49ad-9fb7-8d0d2b07dc65 Publication date 2016 Document Version Final published version Citation (APA) Kunnappillil Madhusudhanan, A. (2016). Lateral vehicle dynamics control and vehicle state estimation: A tyre force measurement based approach. https://doi.org/10.4233/uuid:9cadd5c4-0a61-49ad-9fb7- 8d0d2b07dc65 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. LATERAL VEHICLE DYNAMICS CONTROL AND VEHICLE STATE ESTIMATION ATYRE FORCE MEASUREMENTBASED APPROACH Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op woensdag 22 juni 2016 om 15:00 uur door Anil KUNNAPPILLIL MADHUSUDHANAN Ingenieur Systems and Control, Technische Universiteit Delft, Nederland, geboren te Thodupuzha, India.
    [Show full text]
  • Design, Analysis and Optimization of Anti-Roll Bar
    Pravin Bharane et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 9( Version 4), September 2014, pp.137-140 RESEARCH ARTICLE OPEN ACCESS Design, Analysis and Optimization of Anti-Roll Bar Pravin Bharane*, Kshitijit Tanpure**, Amit Patil***, Ganesh Kerkal**** *,**,***,****( Assistant Professor, Department of Mechanical Engg., Dnyanganga College of Engg. & Research, Pune) ABSTRACT Vehicle anti-roll bar is part of an automobile suspension system which limits body roll angle. This U-shaped metal bar connects opposite wheels together through short lever arms and is clamped to the vehicle chassis with rubber bushes. Its function is to reduce body roll while cornering, also while travelling on uneven road which enhances safety and comfort during driving. Design changes of anti-roll bars are quite common at various steps of vehicle production and a design analysis must be performed for each change. So Finite Element Analysis (FEA) can be effectively used in design analysis of anti-roll bars. The finite element analysis is performed by ANSYS. This paper includes pre-processing, analysis, post processing, and analyzing the FEA results by using APDL (Ansys Parametric Design Language). The effects of anti-roll bar design parameters on final anti-roll bar properties are also evaluated by performing sample analyses with the FEA program developed in this project. Keywords: FEA, Anti Roll Bar, APDL, Design Parameters. I. INTRODUCTION Anti-roll bar, also referred to as stabilizer or ensure directional control and stability with adequate sway bar, is a rod or tube, usually made of steel, that traction and braking capabilities [1].
    [Show full text]
  • 45Th ANNUAL LAW ENFORCEMENT VEHICLE TEST and EVALUATION PROGRAM
    45th ANNUAL LAW ENFORCEMENT VEHICLE TEST AND EVALUATION PROGRAM VEHICLE MODEL YEAR 2020 Alex Villanueva, SHERIFF 1 TABLE OF CONTENTS CONTENTS PAGES PREFACE 3 ACKNOWLEDGEMENTS 4 - 5 TEST VEHICLE DESCRIPTION 6 - 7 VEHICLE SPECIFICATION 8 - 18 VEHICLE DYNAMICS EVALUATION (32 LAP HIGH SPEED COURSE) 19 - 41 CITY COURSE EVALUATION 42 - 53 BRAKE EVALUATION 54 - 55 ACCELERATION EVALUATION 56 - 58 HEAT EVALUATION 59 - 62 COMMUNICATION EVALUATION 63 - 71 ERGONOMICS EVALUATION 72 - 100 FUEL EFFICIENCY EVALUATION 101 2 PREFACE The Los Angeles County Sheriff’s Department first implemented its police vehicle testing program in 1974. Since that time, our department has become nationally recognized as a major source of information relative to police vehicles and their use. It is our goal to provide law enforcement agencies with the information they require to successfully evaluate those vehicles currently being offered for police service. The Los Angeles County Sheriff’s Department is proud to publish this information, via the internet, to all law enforcement agen- cies. Since the inception of our vehicle testing program in 1974, we have continually refined our efforts in this area in order to provide the law enforcement community with the most current information available. During the 1997 model year testing, the Sheriff’s department expanded its existing criteria to include an urban or city street course. This course consists of multiple city block distances punctuated by the various types of turns normally found in most inner city environments. The city street course is designed to simulate the conditions encountered by most officers working in typical urban communities. The test is only conducted on vehicles offered with a factory “police package”.
    [Show full text]
  • Glossary of Suspension Terms
    Chapter 2: Glossary of Terms Chapter Two: Glossary of Suspension Terms RIT Baja SAE Introduction This glossary of terms is intended to provide a brief and accu- rate description of both conceptual and component terms used in design, manufacturing, and tuning of R.I.T. Baja SAE Suspension Systems. For quick referencing this chapter is divided into two sec- tions. The first section of the chapter focuses on theoretical concept definitions used in describing the analysis and design of off-road suspension system dynamics. The second segment contains compo- nent descriptions and visual references . Figure 1: (2005-2006)SLA A- Arm Rear Suspension Chapter 2: Glossary of Terms Glossary of Suspension Theory Terms Camber A measurement of wheel angle relative to vertical as viewed from the front or rear of the car. In a double A-arm system, camber is dictated mainly by control arm geometry. Positive Camber occurs when the top Negative Camber occurs when the of the tire tips away from the chassis. top of the tire tips towards the chassis. Commonly, a system in droop will Commonly, a system in compression have positive camber. will have negative camber. Figure 2: Positive Camber Figure 3: Negative Camber Toe A measurement of wheel angle relative to the centerline of the car as viewed from top. Toe can be measured by comparing the vehicle centerline to front of tire distance with the vehicle centerline to rear of tire distance. In a double A-arm “steerable,” or front suspension system, this is controlled by tie-rod length in conjunction with the steering system.
    [Show full text]
  • Rolling Stability Control Based on Electronic Stability Program for In-Wheel-Motor Electric Vehicle
    Page 0034 World Electric Vehicle Journal Vol. 3 - ISSN 2032-6653 - © 2009 AVERE EVS24 Stavanger, Norway, May 13 - 16, 2009 Rolling Stability Control Based on Electronic Stability Program for In-wheel-motor Electric Vehicle Kiyotaka Kawashima, Toshiyuki Uchida, Yoichi Hori University of Tokyo, Tokyo, Japan, [email protected] Abstract In this paper, a novel robust rolling stability control (RSC) based on electronic stability program (ESP) for electric vehicle (EV) is proposed. Since EVs are driven by electric motors, they have the following four remarkable advan- tages: (1) motor torque generation is quick and accurate; (2) motor torque can be estimated precisely; (3) a motor can be attached to each wheel; and (4) motor can output negative torque as a brake actuator. These advantages en- able high performance three dimensional vehicle motion control with a distributed in-wheel-motor system. RSC is designed using two-degree-of-freedom control (2-DOF), which achieves tracking capability to reference value and disturbance suppression. Generally, RSC and YSC are incompatible. Therefore, ESP, which is composed of estima- tion system(S1) and integrated vehicle motion control system(S2) is proposed. A distribution ratio of RSC and YSC is defined based on rollover index (RI) which is calculated in S1 from rolling state information. The effectiveness of proposed methods are shown by simulation and experimental results. Keywords:rolling stability control, electric vehicle, disturbance observer, two-degrees-of-freedom control, vehicle
    [Show full text]
  • Truck Handling Stability Simulation and Comparison of Taper-Leaf and Multi-Leaf Spring Suspensions with the Same Vertical Stiffness
    applied sciences Article Truck Handling Stability Simulation and Comparison of Taper-Leaf and Multi-Leaf Spring Suspensions with the Same Vertical Stiffness Leilei Zhao 1, Yunshan Zhang 2, Yuewei Yu 1,*, Changcheng Zhou 1,*, Xiaohan Li 1 and Hongyan Li 3 1 School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China; [email protected] (L.Z.); [email protected] (X.L.) 2 Shandong Automobile Spring Factory Zibo Co.,Ltd., Zibo 255000, China; [email protected] 3 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; [email protected] * Correspondence: [email protected] (Y.Y.); [email protected] (C.Z.); Tel.: +86-135-7338-7800 (C.Z.) Received: 16 December 2019; Accepted: 31 January 2020; Published: 14 February 2020 Abstract: The lightweight design of trucks is of great importance to enhance the load capacity and reduce the production cost. As a result, the taper-leaf spring will gradually replace the multi-leaf spring to become the main elastic element of the suspension for trucks. To reveal the changes of the handling stability after the replacement, the simulations and comparison of the taper-leaf and the multi-leaf spring suspensions with the same vertical stiffness for trucks were conducted. Firstly, to ensure the same comfort of the truck before and after the replacement, an analytical method of replacing the multi-leaf spring with the taper-leaf spring was proposed. Secondly, the effectiveness of the method was verified by the stiffness tests based on a case study. Thirdly, the dynamic models of the taper-leaf spring and the multi-leaf spring with the same vertical stiffness are established and validated, respectively.
    [Show full text]