Journal of the Association of Lunar & Planetary Observers

Total Page:16

File Type:pdf, Size:1020Kb

Journal of the Association of Lunar & Planetary Observers ISSN-0039-2502 Journal of the Association of Lunar & Planetary Observers The Strolling Astronomer Volume 46, Number 3, Summer 2004 Now in Portable Document Format (PDF) for MacIntosh and PC-Compatible Computers Inside. * The Perseids are coming! The Perseids are coming! And guess what — almost NO Moon this time! * Some early personal reports on the Venus transit * A report on the 1996 Jupi- ter apparition * A writeup on This Issue’s Cover: A great shot of the Venus transit by Mercury Section Coordinator the Moon’s Frank Melillo from Holtsville, NY, USA. Taken June 8, 10:40 UT (6:40 a.m. local time) using a Celestron 8-inch Schmidt-Cassegrain at f/10 equipped with a Starlight Xpress MX5 CCD Maestlin camera; exposure 0.5 second; some clouds present. For an animation of this image, go to Region http://hometown.aol.com/frankj12/specialtransitpage1.html . plus LOTS of reports about your ALPO section activities and much, much more. The Strolling Astronomer Journal of the In This Issue: Association of Lunar & Inside the ALPO Point of View: It’s Nice to be Noticed – Again..... 1 Planetary Observers, ALPO Founder Walter Haas Injured in Fall..........2 In Memoriam: Janet Mattei .................................2 The Strolling Astronomer ALPO’s L. Garrett: Asteroid Discoverer ...............2 Reminder: Address Changes ...............................2 Volume 46, No. 3, Summer 2004 Report from the ALPO Membership Secretary/ This issue published in July 2004 for distribution in both Treasurer.........................................................2 portable document format (pdf) and also hardcopy for- Interest Section Reports mat. Computing Section .........................................3 ALPO Lunar & Planetary Training Program....3 This publication is the official journal of the Association The Federation of Galaxy Explorers: The Future of Lunar & Planetary Observers (ALPO). in Space..........................................................4 Observing Section Reports: The purpose of this journal is to share observation Eclipse Section................................................5 reports, opinions, and other news from ALPO members Meteors Section ..............................................5 with other members and the professional astronomical Solar Section ..................................................6 community. Mercury Section..............................................6 Venus Section .................................................6 © 2004, Association of Lunar and Planetary Observers Lunar Section: (ALPO). The ALPO hereby grants permission to educa- Lunar Meteoritic Impact Search ...................7 tors, academic libraries and the professional astronomi- Lunar Domes...............................................8 cal community to photocopy material for educational or Lunar Selected Areas ...................................8 research purposes as required. There is no charge for Lunar Transient Phenomena........................8 these uses provided that credit is given to The Strolling Mars Section ...................................................8 Astronomer, the “JALPO” or the ALPO itself, as appro- Minor Planets Section .....................................9 priate. All others must request permission from the Jupiter Section ...............................................9 ALPO. Saturn Section ...............................................9 Remote Planets Section ...............................10 For membership or general information about the ALPO Membership Online................................10 ALPO, contact: ALPO Sponsors, Sustaining Members, and Newest Members................................................. 11-15 Matthew Will ALPO Membership Secretary/Treasurer P.O. Box 13456 Features Springfield, Illinois 62791-3456 ALPO Book Review: David Levy’s Guide to Observing and Discovering Comets ..............16 E-mail to: [email protected] Viewing the 2004 Perseid Meteor Shower ........18 The Late, Great Transit of Venus.......................24 The Maestlin Lunar Region: Geology and Geologic Visit the ALPO online at: History .........................................................26 http://www.lpl.arizona.edu/alpo Jupiter –The 1995 - 1997 Apparition................31 Observing Alert: Eclipses of Jupiter’s Satellites ..42 ALPO Resources ALPO Board of Directors ..................................44 Publications Staff ..............................................44 Interest Section Staff .........................................44 Observing Section Staff............................... 44-46 ALPO Board/Staff E-mail Directory...................46 ALPO Publications...................................... 47-48 Membership in the ALPO......... Inside Back Cover Volume 46, No. 3 Summer 2004 The Strolling Astronomer Inside the ALPO Member, section and activity news Association of Lunar and Planetary Observers (ALPO) Point of View Board of Directors It’s Nice to be Noticed – Executive Director (Chair); Richard Schmude Associate Director, Treasurer, and Again Membership Secretary; Matthew Will Founder/Director Emeritus; Walter H. Haas By Ken Poshedly, editor, Member of the Board; Julius L. Benton, Jr. The Strolling Astronomer Member of the Board; Donald C. Parker Member of the Board; Ken Poshedly Well, once more a celestial event has put Member of the Board; Michael D. Reynolds astronomy and astronomers back in the pub- Member of the Board; John E. Westfall lic eye. Member of the Board, Secretary; Elizabeth W. Westfall While it’s too bad it takes a rare event to make it happen, it IS nice to be sought out by the Publications great unwashed for answers to questions we (the knowing) can handle easily. Editor & Publisher, Ken Poshedly This time, it was the transit of Venus on June Primary Observing Coordinators, 8. And what makes it perhaps even more spe- Other Staff cial is that no one alive today saw the last (See full listing in ALPO Resources at end of issue) one, which occurred in 1882. Lunar& Planetary Training Program: Coordinator; Timothy J. Robertson So once more, co-workers and friends who Solar Section: Acting Coordinator, Rick Gossett may think our hobby or avocation is “odd” Mercury Section: Coordinator; Frank Melillo sought us out asking if we ourselves saw the Venus Section: Coordinator; Julius L. Benton, Jr. event, why doesn’t it happen more often, why Mercury/Venus Transit Section: Coordinator; couldn’t it be seen without a telescope, etc. John E. Westfall Lunar Section: The mainstream media helped by mentioning Coordinator; Selected Areas Program; it and even seeking out groups that planned Julius L. Benton, Jr. organized observing activities. (We in metro Coordinator; Lunar Meteoritic Impact Search; Atlanta, Georgia, were pretty much clouded out; so some folks travelled from here south Brian Cudnik to Florida and north to other points and got Coordinator; Lunar Transient Phenomena; great views.) Anthony Cook Mars Section: Coordinator, all observations, U.S. cor- So once again, for a few fleeting days, we respondence; Daniel M. Troiani were the celebrities of the office, the school or Minor Planets Section: Coordinator; Frederick Pilcher the workplace. And, yes, it DID feel good to Jupiter Section: Coordinator; Richard W. Schmude, Jr. take the “mystery” out of one of Mother Saturn Section: Coordinator; Julius L. Benton, Jr. Nature’s occasional treats. Remote Planets Section: Coordinator; Richard W. Schmude, Jr. But like I said earlier, it’s too bad that it takes a Comets Section: Coordinator; Open once-every-so-often event like this to get peo- Meteors Section: Coordinator; Robert D. Lunsford ple to look up and appreciate or at least Meteorites Section: Coordinator; Dolores Hill inquire about the heavens. Computing Section: Coordinator; Kim Hay Youth Section: Coordinator; Timothy J. Robertson By the way, you can probably expect another Historical Section: Coordinator; Richard Baum round of questions in early August – with little Instruments Section: Coordinator; R.B. Minton interference from the Moon, this year’s Per- Eclipse Section: Coordinator; Michael D. Reynolds seids should be much more noticeable. And Webmaster: Coordinator; Richard Hill so it goes. Volume 46, No. 3 Summer 2004 Page 1 The Strolling Astronomer Inside the ALPO Member, section and activity news (continued) ALPO Founder Walter Haas Near Earth Object Confirmation Page (NEOCP) as SW40E3, for others to attempt. Injured in Fall On June 19, 17h30 UT, MPEC-2004 M25 Walter Haas, age 86 and founder of this organization, announced this object as 2004 MO1, earning me my is currently recovering from a broken hip suffered first designation. from a fall while in London on June 14. The announcement was made to ALPO officers by his This object is quite small at H 23.3, or roughly 200 daughter, Mary Haas Alba ([email protected]) feet in diameter. Because it was observed for just a 2 day arc, it is now lost, which is normal for this type of When he will return to the United States is uncertain, near-Earth object of the Amor class. From its current but it is certain that he will not be at the upcoming orbital elements, this object will return to near-Earth ALCON event. space in 2023, to be rediscovered, and hopefully linked to this passage. This linkage would result in a Walter can be contacted via David Oosterman (e- permanent number. mail: [email protected], telephone 011 44 207-701-1408). While the discoverer of this object, I may lose the rights to suggest a name for this object to a future In Memoriam: Janet Mattei astronomer.
Recommended publications
  • SPHERE: the Exoplanet Imager for the Very Large Telescope J.-L
    Astronomy & Astrophysics manuscript no. paper c ESO 2019 October 4, 2019 SPHERE: the exoplanet imager for the Very Large Telescope J.-L. Beuzit1; 2, A. Vigan2, D. Mouillet1, K. Dohlen2, R. Gratton3, A. Boccaletti4, J.-F. Sauvage2; 7, H. M. Schmid5, M. Langlois2; 8, C. Petit7, A. Baruffolo3, M. Feldt6, J. Milli13, Z. Wahhaj13, L. Abe11, U. Anselmi3, J. Antichi3, R. Barette2, J. Baudrand4, P. Baudoz4, A. Bazzon5, P. Bernardi4, P. Blanchard2, R. Brast12, P. Bruno18, T. Buey4, M. Carbillet11, M. Carle2, E. Cascone17, F. Chapron4, J. Charton1, G. Chauvin1; 23, R. Claudi3, A. Costille2, V. De Caprio17, J. de Boer9, A. Delboulbé1, S. Desidera3, C. Dominik15, M. Downing12, O. Dupuis4, C. Fabron2, D. Fantinel3, G. Farisato3, P. Feautrier1, E. Fedrigo12, T. Fusco7; 2, P. Gigan4, C. Ginski15; 9, J. Girard1; 14, E. Giro19, D. Gisler5, L. Gluck1, C. Gry2, T. Henning6, N. Hubin12, E. Hugot2, S. Incorvaia19, M. Jaquet2, M. Kasper12, E. Lagadec11, A.-M. Lagrange1, H. Le Coroller2, D. Le Mignant2, B. Le Ruyet4, G. Lessio3, J.-L. Lizon12, M. Llored2, L. Lundin12, F. Madec2, Y. Magnard1, M. Marteaud4, P. Martinez11, D. Maurel1, F. Ménard1, D. Mesa3, O. Möller-Nilsson6, T. Moulin1, C. Moutou2, A. Origné2, J. Parisot4, A. Pavlov6, D. Perret4, J. Pragt16, P. Puget1, P. Rabou1, J. Ramos6, J.-M. Reess4, F. Rigal16, S. Rochat1, R. Roelfsema16, G. Rousset4, A. Roux1, M. Saisse2, B. Salasnich3, E. Santambrogio19, S. Scuderi18, D. Segransan10, A. Sevin4, R. Siebenmorgen12 C. Soenke12, E. Stadler1, M. Suarez12, D. Tiphène4, M. Turatto3, S. Udry10, F. Vakili11, L. B. F. M. Waters20; 15, L.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
    Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process
    [Show full text]
  • Apollo 12 Photography Index
    %uem%xed_ uo!:q.oe_ s1:s._l"e,d_e_em'I flxos'p_zedns O_q _/ " uo,re_ "O X_ pea-eden{ Z 0 (D I I 696L R_K_D._(I _ m,_ -4 0", _z 0', l',,o ._ rT1 0 X mm9t _ m_o& ]G[GNI XHdV_OOZOHd Z L 0T'I0_V 0 0 11_IdVdONI_OM T_OINHDZZ L6L_-6 GYM J_OV}KJ_IO0VSVN 0 C O_i_lOd-VJD_IfO1_d 0 _ •'_ i wO _U -4 -_" _ 0 _4 _O-69-gM& "oN GSVH/O_q / .-, Z9946T-_D-VSVN FOREWORD This working paper presents the screening results of Apollo 12, 70mmand 16mmphotography. Photographic frame descriptions, along with ground coverage footprints of the Apollo 12 Mission are inaluded within, by Appendix. This report was prepared by Lockheed Electronics Company,Houston Aerospace Systems Division, under Contract NAS9-5191 in response to Job Order 62-094 Action Document094.24-10, "Apollo 12 Screening IndeX', issued by the Mapping Sciences Laboratory, MannedSpacecraft Center, Houston, Texas. Acknowledgement is made to those membersof the Mapping Sciences Department, Image Analysis Section, who contributed to the results of this documentation. Messrs. H. Almond, G. Baron, F. Beatty, W. Daley, J. Disler, C. Dole, I. Duggan, D. Hixon, T. Johnson, A. Kryszewski, R. Pinter, F. Solomon, and S. Topiwalla. Acknowledgementis also made to R. Kassey and E. Mager of Raytheon Antometric Company ! I ii TABLE OF CONTENTS Section Forward ii I. Introduction I II. Procedures 1 III. Discussion 2 IV. Conclusions 3 V. Recommendations 3 VI. Appendix - Magazine Summary and Index 70mm Magazine Q II II R ii It S II II T II I! U II t! V tl It .X ,, ,, y II tl Z I! If EE S0-158 Experiment AA, BB, CC, & DD 16mm Magazines A through P VII.
    [Show full text]
  • Astronomy and Astrophysics
    THE DECADE OF DISCOVERY IN ASTRONOMY AND ASTROPHYSICS Astronomy and Astrophysics Survey Committee Board on Physics and Astronomy Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 NATIONAL ACADEMY PRESS • 2101 Constitution Avenue, NW • Washington, DC 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special compe_nces and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. This project was supported by the Department of Energy under Grant No. DE-FGO5- 89ER40421, the National Aeronautics and Space Administration and the National Science Foundation under Grant No. AST-8901685, the Naval Research Laboratory under Contract No. N00173-90-M-9744, and the Smithsonian Institution under Purchase Order No. SF0022430000. Additional support was provided by the Maurice Ewing Earth and Planetary Sciences Fund of the National Academy of Sciences created through a gift from the Palisades Geophysical Institute, Inc., and an anonymous donor. Library of Congress Cataloging-in-Publication Data National Research Council (U.S.). Astronomy and Astrophysics Survey Committee. The decade of discovery in astronomy and astrophysics / Astronomy and Astrophysics Survey Committee, Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications, National Research Council.
    [Show full text]
  • The Bursty Star Formation History of the Fornax Dwarf Spheroidal Galaxy Revealed with the HST
    MNRAS 000,1–20 (2020) Preprint 12 January 2021 Compiled using MNRAS LATEX style file v3.0 The bursty star formation history of the Fornax dwarf spheroidal galaxy revealed with the HST V. Rusakov,1,2,3¢ M. Monelli,4,5 C. Gallart,4,5 T. K. Fritz,4,5 T. Ruiz-Lara,4,5,6 E. J. Bernard,7 S. Cassisi.8,9 1Department of Physics, University of Surrey, Guildford GU2 7XH, UK 2Cosmic Dawn Center (DAWN) 3Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen Ø, Denmark 4Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain 5Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 6Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands 7Universite Côte dÁzur, Observatoire de la Côte dÁzur, CNRS, Laboratoire Lagrange, France 8INAF - Astronomical Observatory of Abruzzo, Via M. Maggini, I-64100 Teramo, Italy 9INFN, Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy Accepted 2020 December 24. Received 2020 December 7; in original form 2020 February 22 ABSTRACT We present a new derivation of the star formation history (SFH) of the dSph galaxy Fornax in two central regions, characterised by unprecedented precision and age resolution. It reveals that star formation has proceeded in sharp bursts separated by periods of low-level or quies- cent activity. The SFH was derived through colour-magnitude diagram (CMD) fitting of two extremely deep Hubble Space Telescope CMDs, sampling the centre and one core radius. The attained age resolution allowed us to single out a major star formation episode at early times, a second strong burst 4.6 ± 0.4 Gyr ago and recent intermittent episodes ∼ 2 − 0.2 Gyr ago.
    [Show full text]
  • Table of Contents
    PAGE: 1 PAGE: 2 Table of Contents LEXILE® MEASURE 3 Copernicus, King of Craters 870L 4 Catching Andromeda’s Light 890L 6 Merry Christmas from the Moon! 810L ©Highlights for Children, Inc. This item is permitted to be used by a teacher or educator free of charge for classroom use by printing or photocopying one copy for each student in the class. Highlights® Fun with a Purpose® ISBN 978-1-62091-227-0 PAGE: 32 object—either a rocky asteroid or an icy comet—was more than a mile in diameter. Still, there are larger craters on the Moon, so why is Copernicus special? The answer is simple: because the crater faces Earth directly, it looks nice and round, exactly the way everyone thinks a crater should look. But what really makes Coper- nicus special is its halo of rays. These wispy streamers stretch outward in every direction. Like the crater itself, they are brightest when the Moon is full. Take a close look at these feather-like Copernicus splashes. When a big object blasts out a crater, the smallest particles travel farthest from the point of impact. This spray of rock then falls in a splash pattern onto the lunar surface. This material looks bright because it’s made up of crushed and broken rock, which Copernicus, King of Craters By Edmund A. Fortier On the Moon, this crater rules. The best-known impact crater on to the left of the Moon’s center. reflects light better than the dust- Earth is Meteor Crater. It is You’ll see a small bright spot covered lava plain.
    [Show full text]
  • Jjmo News 06 19.Pdf
    alactic Observer John J. McCarthy Observatory G Volume 12, No. 6 June 2019 GalacticGalactic MerMergggererers --s DancingDancing withwith thethe STSTARSARS AAAor PLANET Deadly Dos-I-Dos? IS BORN See page 18 inside http://www.mccarthyobservatory.org JJMO June 2019 • 1 The John J. McCarthy Observatory Galactic Observvvererer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Phone/Fax: (860) 354-1595 Production & Design www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory has established itself as a significant educational and Technical Support recreational resource within the western Connecticut Bob Lambert community. Dr. Parker Moreland Steve Barone Peter Gagne Marc Polansky Colin Campbell Louise Gagnon Joe Privitera Dennis Cartolano John Gebauer Danielle Ragonnet Route Mike Chiarella Elaine Green Monty Robson Jeff Chodak Jim Johnstone Don Ross Bill Cloutier Carly KleinStern Gene Schilling Doug Delisle Bob Lambert Katie Shusdock Cecilia Detrich Roger Moore Jim Wood Dirk Feather Parker Moreland, PhD Paul Woodell Randy Fender Allan Ostergren Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT .................................... 3 SUNRISE AND SUNSET ...................................................... 13 KIES PI LAVA DOME ....................................................... 4 SUMMER NIGHTS ........................................................... 13
    [Show full text]
  • The Bulge Asymmetries and Dynamical Evolution (Baade) Sio Maser Survey at 86 Ghz with ALMA
    DRAFT VERSION SEPTEMBER 6, 2019 Typeset using LATEX twocolumn style in AASTeX62 The Bulge Asymmetries and Dynamical Evolution (BAaDE) SiO Maser Survey at 86 GHz with ALMA ∗ MICHAEL C. STROH,1 YLVA M. PIHLSTRÖM,1 , LORÁNT O. SJOUWERMAN,2 MEGAN O. LEWIS,1 MARK JCLAUSSEN,2 MARK R. MORRIS,3 AND R. MICHAEL RICH3 1Department of Physics & Astronomy, The University of New Mexico, Albuquerque, NM 87131 2National Radio Astronomy Observatory, Array Operations Center, Socorro, NM 87801 3Department of Physics & Astronomy, University of California, Los Angeles, CA 90095 (Accepted August 14th, 2019) ABSTRACT We report on the first 1,432 sources observed using the Atacama Large Millimeter/submillimeter Array (ALMA), from the Bulge Asymmetries and Dynamical Evolution (BAaDE) survey, which aims to obtain tens of thousands of line-of-sight velocities from SiO masers in Asymptotic Giant Branch (AGB) stars in the Milky Way. A 71% detection rate of 86 GHz SiO masers is obtained from the infrared color-selected sample, and increases to 80% when considering the likely oxygen-rich stars using Midcourse Space Experiment (MSX) col- ors isolated in a region where [D] - [E] ≤ 1:38. Based on Galactic distributions, the presence of extended CS emission, and likely kinematic associations, the population of sources with [D] - [E] > 1:38 probably consists of young stellar objects, or alternatively, planetary nebulae. For the SiO detections we examined whether indi- vidual SiO transitions provide comparable stellar line-of-sight velocities, and found that any SiO transition is suitable for determining a stellar AGB line-of-sight velocity. Finally, we discuss the relative SiO detection rates and line strengths in the context of current pumping models.
    [Show full text]
  • The Messenger
    THE MESSENGER ( , New Meteorite Finds At Imilac No. 47 - March 1987 H. PEDERSEN, ESO, and F. GARe/A, elo ESO Introduction hand, depend more on the preserving some 7,500 meteorites were recovered Stones falling from the sky have been conditions of the terrain, and the extent by Japanese and American expeditions. collected since prehistoric times. They to which it allows meteorites to be spot­ They come from a smaller, but yet un­ were, until recently, the only source of ted. Most meteorites are found by known number of independent falls. The extraterrestrial material available for chance. Active searching is, in general, meteorites appear where glaciers are laboratory studies and they remain, too time consuming to be of interest. pressed up towards a mountain range, even in our space age, a valuable However, the blue-ice fields of Antarctis allowing the ice to evaporate. Some source for investigation of the solar sys­ have proven to be a happy hunting have been Iying in the ice for as much as tem's early history. ground. During the last two decades 700,000 years. It is estimated that, on the average, each square kilometre of the Earth's surface is hit once every million years by a meteorite heavier than 500 grammes. Most are lost in the oceans, or fall in sparsely populated regions. As a result, museums around the world receive as few as about 6 meteorites annually from witnessed falls. Others are due to acci­ dental finds. These have most often fallen in prehistoric times. Each of the two groups, 'falls' and 'finds', consists of material from about one thousand catalogued, individual meteorites.
    [Show full text]
  • The Isabel Williamson Lunar Observing Program
    The Isabel Williamson Lunar Observing Program by The RASC Observing Committee Revised Third Edition September 2015 © Copyright The Royal Astronomical Society of Canada. All Rights Reserved. TABLE OF CONTENTS FOR The Isabel Williamson Lunar Observing Program Foreword by David H. Levy vii Certificate Guidelines 1 Goals 1 Requirements 1 Program Organization 2 Equipment 2 Lunar Maps & Atlases 2 Resources 2 A Lunar Geographical Primer 3 Lunar History 3 Pre-Nectarian Era 3 Nectarian Era 3 Lower Imbrian Era 3 Upper Imbrian Era 3 Eratosthenian Era 3 Copernican Era 3 Inner Structure of the Moon 4 Crust 4 Lithosphere / Upper Mantle 4 Asthenosphere / Lower Mantle 4 Core 4 Lunar Surface Features 4 1. Impact Craters 4 Simple Craters 4 Intermediate Craters 4 Complex Craters 4 Basins 5 Secondary Craters 5 2. Main Crater Features 5 Rays 5 Ejecta Blankets 5 Central Peaks 5 Terraced Walls 5 ii Table of Contents 3. Volcanic Features 5 Domes 5 Rilles 5 Dark Mantling Materials 6 Caldera 6 4. Tectonic Features 6 Wrinkle Ridges 6 Faults or Rifts 6 Arcuate Rilles 6 Erosion & Destruction 6 Lunar Geographical Feature Names 7 Key to a Few Abbreviations Used 8 Libration 8 Observing Tips 8 Acknowledgements 9 Part One – Introducing the Moon 10 A – Lunar Phases and Orbital Motion 10 B – Major Basins (Maria) & Pickering Unaided Eye Scale 10 C – Ray System Extent 11 D – Crescent Moon Less than 24 Hours from New 11 E – Binocular & Unaided Eye Libration 11 Part Two – Main Observing List 12 1 – Mare Crisium – The “Sea of Cries” – 17.0 N, 70-50 E;
    [Show full text]