Environmental DNA Detection of the Invasive Mussel Mytella Strigata As a Surveillance Tool
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
No. 8. September 2014
No 8, September 2014 News from the NOBANIS secretariat The secretary at NOBANIS Christina Fevejle Nielsen, started on her new job in the Nature Agency, Danish Ministry of Environment in December 2013, and Maya Helene Quaade Caspersen has since January 2014 been the new secretary at NOBANIS, with a current contract until February 2015. Maya has a master degree in biology from the University of Copenhagen, and has experience with IAS from working with regulation in Denmark. As the new secretary of NOBANIS, I would like to take this opportunity to thank all partners for welcoming me, and for the good collaboration the last couple of months. This year I will continue the work with revising the database that Helene started and finish the update of the remaining fact sheets. Another project that will have my attention in 2014 is the ATAN project “Achieving the Aichi Target 9, IAS in the Nordic and Baltic region”. Read more about the project further down. 10 years with NOBANIS (2004-2014) This year NOBANIS can celebrate its 10th anniversary. Here is a short summary with background information and achievements of the network (2004-2014) The Nordic-Baltic Network on Invasive Alien Species (NOBANIS) was initiated as a project funded by the Nordic Council of Ministers in 2004 to fulfilled parts of the CBD Decision VI/23, Guiding Principles for the prevention, introduction and mitigation of impacts of alien species that threaten ecosystems, habitats or species. The aim of the project was to develop a regional, distributed and interoperable network on the critical issue of invasive alien species (IAS) in the marine, freshwater and terrestrial environments and their consequences for biological diversity, the cultural landscape and outdoor life. -
The Malacological Society of London
ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45 -
Rangia Cuneata) Ecological Risk Screening Summary
U.S. Fish and Wildlife Service Atlantic Rangia (Rangia cuneata) Ecological Risk Screening Summary Web Version – 10/1/2012 Photo: USGS 1 Native Range and Nonindigenous Occurrences Native Range Gulf of Mexico (Benson 2012) From GISD (2011): “Rangia cuneata is considered to be native to the Gulf of Mexico and introduced to the NW Atlantic, where it is predominantly found in estuaries. “ Nonindigenous Occurrences From Benson (2012): “East coast of Florida to the Chesapeake Bay; James River and Potomac River in Virginia, lower portion of the Hudson River in New York.” From GISD (2011): Rangia cuneata Ecological Risk Screening Summary U.S. Fish and Wildlife Service – Web Version – 10/01/2012 “Known introduced range: lower portion of the Hudson River, New York …” Means of Introductions From Benson (2012): “Not seen on the Atlantic coast before 1956. Could have been an accidental release with oyster mariculture or perhaps with intracoastal ballast water.” Corroborated by Carlton (1992): “Ballast water or the movement of commercial oysters may have transported the clam Rangia cuneata from the Gulf of Mexico to Chesapeake Bay, from where it may have spread down the coast to Florida, and from where it may have been carried in ballast water to the Hudson River.” Remarks There has been some confusion over whether or not R. cuneata is a native species on the east coast of the United States. The current thinking by Fofonoff et al. (2003) is described on the National Exotic Marine and Estuarine Species Information System (NEMESIS) web site managed by the Smithsonian Environmental Research Center (SERC): “Conrad (1840) described Rangia cuneata (Gulf Wedge Clam) as 'an inhabitant of the estuaries of the Gulf of Mexico and occurring in the upper Tertiary formation in the bank of the Potomac River in Maryland and on the Neuse River, North Carolina '. -
Introini Giseleorlandi D.Pdf
I II III Dedico esta tese a minha mãe, Maria do Carmo Orlandi, meu porto seguro. IV “We will have to repent in this generation not merely for the hateful words and actions of the bad people,” wrote Martin Luther King , “but for the appalling silence of the good people.” "Tell me, and I will forget. Teach me, and I will remember. Involve me, and I will learn" Benjamin Franklin “Gather a shell from the strown beach And listen at its lips: they sigh The same desire and mystery, The echo of the whole sea´s speech.” Dante Gabriel Rosseti V AGRADECIMENTOS A professora doutora Shirlei Maria Recco-Pimentel por me orientar desde o mestrado, sempre proporcionado todas as condições para que a pesquisa fosse realizada com excelência. Incentivando, discutindo resultados e me estimulando a prosseguir sempre. Por ser um exemplo de seriedade, compromisso e dedicação ao trabalho. A FAPESP pela concessão da bolsa de doutorado (Proc. n o. 04/13887-4). A CAPES, entidade do Governo Brasileiro voltada para a formação de recursos humanos, pelo apoio para a realização desse trabalho. A UNITAS MALACOLOGICA, Malacological Society of London e Sociedade Brasileira de Malacologia pelos auxílios financeiros para participação em Congressos Nacionais e Internacionais. Aos professores Dr. Osmar Domaneschi in memoriam , Dr. Flávio Dias Passos e a Dra. Eliane Pintor de Arruda por tão gentilmente me auxiliarem a identificar exemplares de diversas espécies de bivalves, contribuindo de forma efetiva para o êxito de nossas análises. A Dra. Cláudia Alves de Magalhães por ter me introduzido ao universo das coletas de moluscos, por me incentivar sempre e por ser uma amiga muito especial. -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North -
First Report of the Mussel Mytella Strigata (Hanley, 1843) in the Venezuelan Caribbean from an Invasion in a Shrimp Farm
Latin American Journal of Aquatic Research,First 49(3 ):report 531-537 of ,Mytella 2021 strigata in the Venezuelan Caribbean 531 DOI: 10.3856/vol49-issue3-fulltext-2626 Short Communication First report of the mussel Mytella strigata (Hanley, 1843) in the Venezuelan Caribbean from an invasion in a shrimp farm César Lodeiros1,2 , Dailos Hernández-Reyes3 , José Miguel Salazar4 Manuel Rey-Méndez5 & Nieves González-Henríquez3 1Grupo de Investigación en Biología y Cultivo de Moluscos, Escuela de Acuicultura y Pesquería Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Bahía de Caráquez, Ecuador 2Instituto Oceanográfico de Venezuela, Universidad de Oriente, Cumaná, Venezuela 3Laboratorio BioMol, Departamento de Biología, Facultad de Ciencias del Mar Universidad de Las Palmas de Gran Canaria, España 4Consultoría y Servicios Múltiples de Acuicultura, Cumaná, Venezuela 5Laboratorio de Sistemática Molecular e Instituto de Acuicultura, CIBUS, Campus Vida Universidad de Santiago de Compostela, Santiago de Compostela, España Corresponding author: César Lodeiros ([email protected]) ABSTRACT. Individuals of mussels were collected in ponds from a commercial shrimp farm in the Unare region, Anzoátegui State, Venezuela. Identification was carried out using dichotomous keys and corroborated via analysis of similarities between the sequences of partial mitochondrial DNA of the cytochrome oxidase gene and Mytella strigata (Hanley, 1843) reported in GenBank with 99-100% similarity. Morphological analyses further supported the identification of the specimen. The first report of M. strigata in the Venezuelan Caribbean coast suggests that it could be a transplanted species. Possible negative effects of M. strigata on commercial shrimp production systems are discussed. Keywords: Mytella strigata; bivalve mollusks; Penaeus vannamei; shrimp aquaculture; parasitic vector; COI; GenBank In aquatic ecosystems, bivalve mollusks are among the farms where a reduction in production performance was most invasive groups. -
Gametogenic Cycle of <I>Rangia Cuneata</I> (Mactridae, Mollusca
BULLETIN OF MARINE SCIENCE, 45(1): 130-138, 1989 GAMETOGENIC CYCLE OF RANGIA CUNEATA (MACTRIDAE, MOLLUSCA) IN MOBILE BAY, ALABAMA, WITH COMMENTS ON GEOGRAPHIC VARIATION M. C. Jovanovich and K. R. Marion ABSTRACT Stages of the gametogenic cycle of the brackish water clam Rangia cuneata were investigated in Mobile Bay, Alabama, by histological examination of the gonads. Water temperature and salinity measurements were related to the gametogenic cycle and compared to those made in other studies on the same species in different locations. Clams in the early active phase were found from February through April, and those in the late active phase predominated in May. Gonads were ripe from July through September and were partially spawned from September through October. Clams became spent between November and January. Changes in meat, gonad, and total wet weight reflected the stages of the gametogenic cycle, while length of the shells remained nearly constant year round. The gametogenic cycle of R. cuneata in Mobile Bay followed a similar pattern to that observed in clams studied in other locations, except that gametogenesis began earlier, during late winter, and clams became spent earlier in the fall. It is suggested that the interactive effects of temperature, salinity, and nutrients can account for the differences in the timing and length of the stages of the gametogenic cycle between locations. Rangia cuneata (Gray) is a brackish water clam (Family Mactridae) abundant in the estuaries of the Gulf of Mexico. It is also found throughout the coastal areas of the eastern United States as far north as the upper Chesapeake Bay (Woodburn, 1962; Pfitzenmeyer, 1970). -
Genomics and Transcriptomics of the Green Mussel Explain the Durability
www.nature.com/scientificreports OPEN Genomics and transcriptomics of the green mussel explain the durability of its byssus Koji Inoue1*, Yuki Yoshioka1,2, Hiroyuki Tanaka3, Azusa Kinjo1, Mieko Sassa1,2, Ikuo Ueda4,5, Chuya Shinzato1, Atsushi Toyoda6 & Takehiko Itoh3 Mussels, which occupy important positions in marine ecosystems, attach tightly to underwater substrates using a proteinaceous holdfast known as the byssus, which is tough, durable, and resistant to enzymatic degradation. Although various byssal proteins have been identifed, the mechanisms by which it achieves such durability are unknown. Here we report comprehensive identifcation of genes involved in byssus formation through whole-genome and foot-specifc transcriptomic analyses of the green mussel, Perna viridis. Interestingly, proteins encoded by highly expressed genes include proteinase inhibitors and defense proteins, including lysozyme and lectins, in addition to structural proteins and protein modifcation enzymes that probably catalyze polymerization and insolubilization. This assemblage of structural and protective molecules constitutes a multi-pronged strategy to render the byssus highly resistant to environmental insults. Mussels of the bivalve family Mytilidae occur in a variety of environments from freshwater to deep-sea. Te family incudes ecologically important taxa such as coastal species of the genera Mytilus and Perna, the freshwa- ter mussel, Limnoperna fortuneri, and deep-sea species of the genus Bathymodiolus, which constitute keystone species in their respective ecosystems 1. One of the most important characteristics of mussels is their capacity to attach to underwater substrates using a structure known as the byssus, a proteinous holdfast consisting of threads and adhesive plaques (Fig. 1)2. Using the byssus, mussels ofen form dense clusters called “mussel beds.” Te piled-up structure of mussel beds enables mussels to support large biomass per unit area, and also creates habitat for other species in these communities 3,4. -
Mytella Charruana (Bivalvia: Mytilidae): in Mosquito Lagoon
120(1) 34-:36. OQ(J6 TT.TE 1\AUTILUS Pab"e :34 Mytella charruana (Bivalvia: Mytilidae): a new, invasive bivalve in Mosquito Lagoon, Florida 1 Michelle L. BoudrealLx Linda J. Walters2 Department of' Binlo�')' Ulli,-ersit,·• of' Cent rnl Fkwicla !000 Central Floridfl HoniP\'<l rcl Orlando, FL :32Hl (.; USA 1 mI bou d re�u1� 03<g>1, otn ':1i l.cn m 2 [email protected] lNTHODUCTlO! \'t'Hl'Zlwla to A rgf'nl'ina (Kct�n, I �)71; Carlton, J 992; ' Szefer et al., l\-J9H: Boehs et al., 200·J). The> charm mnssel Biological invasions an:' recognized'- as one of the most ' also occurs 011 tlte eastern Pacific Oceau fro111 Guaymas, .seliOliS problelliS confroutiug the integrity ur llati\'t' spe- Sonora , \lkxico to El Salvador and the Calapagos Islands cies and ecos\'s, te m s aronnd the world (Carlto11 and Gel- (Cardella:; and Aranda. 2000). lar. I 9!)3). Inva�iw spe-cies often hm·<� no natural C'IH'rni<�s Jlytclla clwrnt<llta res<:-mhles the c:onn11on edible blue to I imit thcir re-production and sprcad; hcncc, thcv l'rc llliiSSvl M!Jlilu� cdulis (Linn at·n s. 1/.')R) i11 shape. Mm;i <-Juently become l'Slahlishe·cl at the c:�pensc or tilt• ll<ltive llllllllre-corded sl.cll le-ngth is .1.,') em (Szcfer ct al., '199R). species aud <:-utin:· <:-cusysten1s (Ellstr<\lld and Scl1iere11- 2000). lts e�termu shell color mav• \'aJY* rrom li'gh t \_gref'n to black. bec:k. ln aquatic eco;,·ystf:'111S. -
First Record of the Charru Mussel Mytella Charruana D'orbignyi, 1846
BioInvasions Records (2017) Volume 6, Issue 1: 49–55 Open Access DOI: https://doi.org/10.3391/bir.2017.6.1.08 © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article First record of the Charru mussel Mytella charruana d’Orbignyi, 1846 (Bivalvia: Mytilidae) from Manila Bay, Luzon, Philippines Benjamin Vallejo Jr1,2,*, Jeniffer Conejar-Espedido3, Leanna Manubag4,5, Kevin Carlo C. Artiaga6, Amor M. Damatac II6, Ivan Christian V.J. Imperial6, Tyrll Adolf B. Itong6, Ian Kendrich Fontanilla6 and Ernelea P. Cao6 1Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines 2Science and Society Program, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines 3Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna, Philippines 4Manila Ocean Park, Luneta, Ermita, Manila 1000, Philippines 5Biodiversity Management Bureau, Ninoy Aquino Park, Diliman, Quezon City, Philippines 6Institute of Biology, College of Science, University of the Philippines Diliman, 1101 Quezon City, Philippines *Corresponding author E-mail: [email protected] Received: 21 December 2015 / Accepted: 8 December 2016 / Published online: 30 December 2016 Handling editor: Christopher McKindsey Abstract This study reports the presence of the Charru mussel Mytella charruana d’Orbignyi, 1846 (Bivalvia: Mytilidae) in Manila South Harbor, Manila Bay, Luzon Island, Philippines. In 2014, mussels previously identified as Mytilus spp. were reported in Manila Bay. The species was detected as part of an ecological dynamics study of previously-recorded marine non-indigenous mollusc species. DNA barcoding results suggest that the previously identified Mytilus are in fact Mytella charruana with an average identity match of 94%. -
Rangia Cuneata (Mollusca: Bivalvia), in Northwestern France
Aquatic Invasions (2020) Volume 15, Issue 3: 367–381 CORRECTED PROOF Research Article Establishment and population features of the non-native Atlantic rangia, Rangia cuneata (Mollusca: Bivalvia), in northwestern France Robin Faillettaz1,2, Christophe Roger2,3, Michel Mathieu2,3, Jean Paul Robin2,3 and Katherine Costil2,3,* 1University of Miami Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA 2BOREA (Biologie des Organismes et Ecosystèmes Aquatiques); MNHN, UPMC, UCN, CNRS-7208, IRD-207; Université de Caen Normandie, Esplanade de la Paix, 14032 Caen Cedex 5, France 3Normandie Université, F-14032 Caen, France Author e-mails: [email protected] (RF), [email protected] (CR), [email protected] (MM), [email protected] (JPR), [email protected] (KC) *Corresponding author Citation: Faillettaz R, Roger C, Mathieu M, Robin JP, Costil K (2020) Establishment Abstract and population features of the non-native Atlantic rangia, Rangia cuneata (Mollusca: The presence of shells of the Atlantic rangia, Rangia cuneata, a brackish-water Bivalvia), in northwestern France. Aquatic species native from the Gulf of Mexico also known as gulf wedge clam, was Invasions 15(3): 367–381, https://doi.org/10. reported in 2017 on the French coasts of the English Channel, in the waterway that 3391/ai.2020.15.3.02 connects Caen to the sea. However, no information was available on whether a Received: 21 November 2019 population of this alien species had successfully established in the region. Here, Accepted: 20 March 2020 only empty shells—except for one live individual—were sampled in that waterway, Published: 29 April 2020 and the sampling was shifted to the nearby marina of Ouistreham, where water is mesohaline (6.89 ± SD 0.06 PSU). -
Limited Success of the Non-Indigenous Bivalve Clam
Oceanologia (2019) 61, 341—349 Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE Limited success of the non-indigenous bivalve clam Rangia cuneata in the Lithuanian coastal waters of the Baltic Sea and the Curonian Lagoon a,b, a a Sabina Solovjova *, Aurelija Samuilovienė , Greta Srėbalienė , a,c a Dan Minchin , Sergej Olenin a Marine Research Institute, Klaipėda University, Klaipėda, Lithuania b Department of Environmental Research, Environmental Protection Agency, Klaipėda, Lithuania c Marine Organism Investigations, Ballina, Killaloe, Ireland Received 29 January 2018; accepted 29 January 2019 Available online 13 February 2019 KEYWORDS Summary The gulf wedge clam, common rangia Rangia cuneata, with a native origin in the Gulf of Mexico has spread to north European brackish and freshwaters. This semitropical species is able to Semitropical bivalve; survive in conditions of low winter temperatures in boreal environment of the Baltic Sea. Its expansion Coastal lagoon; within lagoons and sheltered bays in the southern and eastern parts of the Baltic Sea appears to be Exposed coast; with natural spread and its discontinuous distribution is likely to have been with shipping, either Winter conditions; within ballast water or as settled stages transported with dredged material. In this account, we report Ballast water; on the occurrence of R. cuneata in Lithuanian waters. We compare habitats of the common rangia in Natural spread. the Curonian Lagoon and in the exposed coastal waters of the Baltic Sea. We notice high mortality of the species in the Lithuanian waters in comparison to the neighboring Vistula Lagoon. Based on finding of small specimens of R.