Etude Multi-Locus Des Pressions Évolutives S'exerçant Sur Les

Total Page:16

File Type:pdf, Size:1020Kb

Etude Multi-Locus Des Pressions Évolutives S'exerçant Sur Les Etude multi-locus des pressions évolutives s’exerçant sur les bivalves marins en situation d’hybridation : cas des moules hydrothermales du genre Bathymodiolus des dorsales médio-Atlantique et est-Pacifique Jean-Baptiste Faure To cite this version: Jean-Baptiste Faure. Etude multi-locus des pressions évolutives s’exerçant sur les bivalves marins en situation d’hybridation : cas des moules hydrothermales du genre Bathymodiolus des dorsales médio- Atlantique et est-Pacifique. Ecosystèmes. Montpellier II, 2008. Français. tel-01112819 HAL Id: tel-01112819 https://hal.sorbonne-universite.fr/tel-01112819 Submitted on 3 Feb 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Avertissement Au vu de la législation sur les droits d'auteur, ce travail de thèse demeure la propriété de son auteur, et toute reproduction de cette oeuvre doit faire l'objet d'une autorisation de l'auteur. (cf Loi n°92-597; 1/07/1992. Journal Officiel, 2/07/1992) UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC T H E S E pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie des Populations et Ecologie Ecole Doctorale : Systèmes Intégrés en Biologie, Agronomie, Géoscience, Hydroscience, Environnement présentée et soutenue publiquement M. Baptiste FAURE Le 19 septembre 2008 _______ Etude multi-locus des pressions évolutives s’exerçant sur des bivalves marins en situation d’hybridation : cas des moules hydrothermales du genre Bathymodiolus des dorsales médio- atlantique et est-pacifique. ______ Devant le jury composé de : Pr. Xavier VEKEMANS, Univ. Lille I Rapporteur ; Président Pr. Grant POGSON, Univ. Calif. Santa Cruz Rapporteur Dr. François BONHOMME, CNRS - Univ. Montpellier II Directeur de Thèse Dr. Didier JOLLIVET, CNRS - Station Biologique de Roscoff Examinateur Dr. Nicolas BIERNE, CNRS - Univ. Montpellier II Examinateur Dr. Pierre BOUDRY, Ifremer Examinateur G ! S # $ $ S % $ & ' ( )* + , - . / 0 S / 0 S S 1 S & ' S - # 2& #3 G GS 5 6 7 8 S 0 7 - 6S # # S S 5 0 S S 0# / # ' # # & , ! / # S # #G S $ 0 S S $S S - 5 0 6 & # : 0 # % 6 0 S $ # S & S $ G 5 $ ' S;%2551 S $ & S & ! 5 < S /! ! # # # 0 S S & &5 = ! $ .S # # 56S -! >$ S # S # S $S $ # G 0 , 8 ! 0 0 # % E F 6 0! S S B+,0S # 0 & B+,03 ' 7 . . : % % : '- - % 8 . 0 / 5 0 # & & S ' # S $ S # S ! 0 S B+,0 # & 8 7 0 % = 0 0 0 & S ' , = 0 0 0 5 % - # 7 /- ) % 6 : 7 8 - ! 0 & # & S & # !/# S ' % - % ; . B :30 0 0 0 7 . = < =E 5G 0 & $S # '0 $. + F: - * ) . 2 . + : % 7 < ,G : G 0 S:6. 3 & '0 3 $ ! S S $ 0 # 55 & & % 3 & 2 S $ ! HB & $ IE. 50 3 # # 0 E K%F # # # 0 0 S +G S # = G : S < 6 # # 2 0 % , $S '-82L 5 B 0 8 = . 3 # : ! $S ' S 5 - H # <G 5 , S < 0 . 0 -! 6 :& ,G B # & $ # # 550 # 0 # 5 : 0 F K 2 F - , / '2 : 6S # +,..6,0 . + 0 0 % K ) : -! .S $ HB. 8 0 &S # 5 # SM ') + . 2 O 5B HB % /G0 #5 8 S + - S G # 5 :/ 8 ' 0 < 8 # - 0 S $ S 0 S .S $S 50 # # ' *# # 0 S1# L *!%# - = 0 S S < $ # S ,% # : S 8 # - 6S S # 0 -! S S: $ $ ' 5 0 - B K . ! 6 37 0 # $ $ -0B B P $ # 5 % - 8 & 2G# 0 50 6 38 , ! SB 8 # 0 ' K < < B 7 : ! 0 < 2 3 S $ B S # 0 S 6 S# 0 : S R # / : 3 Sommaire Introduction ..........................................................................................................................- 1 - 1. Notion d’espèce et spéciation.........................................................................................- 1 - 2. Mécanismes d’isolement reproductif .............................................................................- 1 - 3. Modes de Spéciation ......................................................................................................- 5 - 4. Théorie de la coalescence...............................................................................................- 7 - 5. Comportement des gènes en condition d’hybridation :..................................................- 9 - 6. Intérêt des bivalves marins pour la génétique ..............................................................- 11 - 7. Les environnements marins réduits..............................................................................- 14 - 8. Un milieu contrasté, riche en microhabitats et potentiellement favorable à la sélection diversifiante......................................................................................................................- 19 - 9. Le peuplement associé aux sources hydrothermales....................................................- 21 - 9.1. Les polychètes.......................................................................................................- 24 - 9.2. Les bivalves...........................................................................................................- 25 - 9.3. Le milieu hydrothermal: un milieu fragmenté et instable.....................................- 29 - 10. Dispersion larvaire dans le milieu hydrothermal. ......................................................- 30 - 11. Zones d’étude et objectifs de la thèse.........................................................................- 35 - 11.1. La dorsale est pacifique.......................................................................................- 35 - 11.2. La dorsale Atlantique ..........................................................................................- 39 - 12. Objectifs de la thèse ...................................................................................................- 42 - 13. Déroulement du manuscrit .........................................................................................- 42 - Chapitre I. Matériel et Méthodes Générales ...................................................................- 45 - I.1. Stratégie d’échantillonnage........................................................................................- 45 - I.1.1. Préparation des échantillons. ..............................................................................- 46 - I.1.2. Choix des marqueurs génétiques. .......................................................................- 47 - I.1.3. Informations sur les gènes étudiés ......................................................................- 49 - I.2. Amplification, marquage/recapture, clonage et séquençage......................................- 52 - I.2.1. Amplification des marqueurs..............................................................................- 54 - I.2.2. Traitement des séquences avant analyse.............................................................- 57 - I.2.3. Alignement et correction des séquences.............................................................- 57 - I.2.4. Correction des jeux de données ..........................................................................- 58 - I.3. Méthodes d’analyse ...................................................................................................- 59 - I.3.1. Méthodes
Recommended publications
  • Introini Giseleorlandi D.Pdf
    I II III Dedico esta tese a minha mãe, Maria do Carmo Orlandi, meu porto seguro. IV “We will have to repent in this generation not merely for the hateful words and actions of the bad people,” wrote Martin Luther King , “but for the appalling silence of the good people.” "Tell me, and I will forget. Teach me, and I will remember. Involve me, and I will learn" Benjamin Franklin “Gather a shell from the strown beach And listen at its lips: they sigh The same desire and mystery, The echo of the whole sea´s speech.” Dante Gabriel Rosseti V AGRADECIMENTOS A professora doutora Shirlei Maria Recco-Pimentel por me orientar desde o mestrado, sempre proporcionado todas as condições para que a pesquisa fosse realizada com excelência. Incentivando, discutindo resultados e me estimulando a prosseguir sempre. Por ser um exemplo de seriedade, compromisso e dedicação ao trabalho. A FAPESP pela concessão da bolsa de doutorado (Proc. n o. 04/13887-4). A CAPES, entidade do Governo Brasileiro voltada para a formação de recursos humanos, pelo apoio para a realização desse trabalho. A UNITAS MALACOLOGICA, Malacological Society of London e Sociedade Brasileira de Malacologia pelos auxílios financeiros para participação em Congressos Nacionais e Internacionais. Aos professores Dr. Osmar Domaneschi in memoriam , Dr. Flávio Dias Passos e a Dra. Eliane Pintor de Arruda por tão gentilmente me auxiliarem a identificar exemplares de diversas espécies de bivalves, contribuindo de forma efetiva para o êxito de nossas análises. A Dra. Cláudia Alves de Magalhães por ter me introduzido ao universo das coletas de moluscos, por me incentivar sempre e por ser uma amiga muito especial.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Environmental DNA Detection of the Invasive Mussel Mytella Strigata As a Surveillance Tool
    Management of Biological Invasions (2021) Volume 12, Issue 3: 578–598 CORRECTED PROOF Research Article Environmental DNA detection of the invasive mussel Mytella strigata as a surveillance tool Zhi Ting Yip1,*, Chin Sing Lim2, Ywee Chieh Tay3, Yong How Jonathan Tan4, Stephen Beng5, Karenne Tun4, Serena Lay-Ming Teo2 and Danwei Huang1,2,6 1Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 2Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore 3Temasek Life Sciences Laboratory, Singapore 117604, Singapore 4National Biodiversity Centre, National Parks Board, Singapore 259569, Singapore 5Marine Conservation Group, Nature Society (Singapore), Singapore 389466, Singapore 6Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore Author e-mails: [email protected] (ZTY), [email protected] (CSL), [email protected] (YCT), [email protected] (YHJT), [email protected] (SB), [email protected] (KT), [email protected] (SLMT), [email protected] (DH) *Corresponding author Citation: Yip ZT, Lim CS, Tay YC, Tan YHJ, Beng S, Tun K, Teo SLM, Huang D Abstract (2021) Environmental DNA detection of the invasive mussel Mytella strigata as a The American charru mussel Mytella strigata (Hanley, 1843) is an invasive species surveillance tool. Management of of great concern along the shores of North America and Asia. As with most invasive Biological Invasions 12(3): 578–598, mussels, it is very difficult to eradicate once established. Surveillance therefore plays https://doi.org/10.3391/mbi.2021.12.3.05 a vital role in controlling its spread. Molecular tools like environmental DNA Received: 27 July 2020 (eDNA) have proved to be useful in recent years to assist in the early detection and Accepted: 7 February 2021 management of invasive species, with considerable advantages over conventional Published: 19 April 2021 methods like substrate monitoring and sampling, which can be relatively laborious and time-intensive.
    [Show full text]
  • Lake Macquarie Benthos Survey
    Lake Macquarie Benthos Survey Prepared for Great Southern Energy Pty. Ltd. (trading as Delta Coal) Chain Valley Colliery Report No. 16 By Dr John H. Laxton, Dr Emma Laxton and Ms Zofia Laxton September 2019 J.H. & E.S. Laxton - Environmental Consultants P/L 170 Warrimoo Avenue, St. Ives. NSW 2075 Australia Telephone 0447 653 387 Email [email protected] Table of Contents 1. Summary of Findings 4 2. Introduction 6 3. Location of Sampling Stations 7 4. Selection and Evaluation of the Sampling Method 7 5. Sampling Procedure 11 6. Factors Affecting the Depth of water in Lake Macquarie 12 7. Water Quality of Lake Macquarie (April 1983 – March 1997) 13 8. Light attenuation in Lake Macquarie (1983 – 1997) 15 9. Results 16 10. Benthos of Study Area – February 2012 to September 2019 16 11. Molluscs found as dead shells 23 12. Benthic organisms of the Study Area – September 2019 29 13. Sediment Analysis 40 14. Water Quality Profiles – September 2019 42 15. Analysis of data 43 16. Conclusions 48 17. References and Acknowledgements 49 2 List of Tables 1. Co-ordinates of Benthos Sampling Stations prepared by the LDO team 10 2. Water Quality of the body of Lake Macquarie (1983-1997) 14 3. Organisms found at sampling Stations on 10th and 11th March 2019 30 4. Number of species found at each station from February 2012 to September 2019 37 Mean number of marine benthic organisms for Control, Reference and Impact Stations 5. 39 (September 2019) 7. Percent mud in sediment from each station - February 2012 to September 2019 41 8.
    [Show full text]
  • Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia)
    Article Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia) Samuele Greco 1, Marco Gerdol 1,*, Paolo Edomi 1 and Alberto Pallavicini 1,2,3 1 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (S.G.); [email protected] (P.E.); [email protected] (A.P.) 2 National Institute of Oceanography and Applied Geophysics, 34151 Trieste, Italy 3 Anton Dohrn Zoological Station, 80121 Naples, Italy * Correspondence: [email protected]; Tel.: +39-040-558-8676 Received: 31 December 2019; Accepted: 15 January 2020; Published: 19 January 2020 Abstract: The CS-αβ architecture is a structural scaffold shared by a high number of small, cationic, cysteine-rich defense peptides, found in nearly all the major branches of the tree of life. Although several CS-αβ peptides involved in innate immune response have been described so far in bivalve mollusks, a clear-cut definition of their molecular diversity is still lacking, leaving the evolutionary relationship among defensins, mytilins, myticins and other structurally similar antimicrobial peptides still unclear. In this study, we performed a comprehensive bioinformatic screening of the genomes and transcriptomes available for marine mussels (Mytilida), redefining the distribution of mytilin-like CS-αβ peptides, which in spite of limited primary sequence similarity maintain in all cases a well-conserved backbone, stabilized by four disulfide bonds. Variations in the size of the alpha-helix and the two antiparallel beta strand region, as well as the positioning of the cysteine residues involved in the formation of the C1–C5 disulfide bond might allow a certain degree of structural flexibility, whose functional implications remain to be investigated.
    [Show full text]
  • Evolutionary Insights on a Novel Mussel-Specific Foot Protein-3Α
    ISJ 18: 19-32, 2020 ISSN 1824-307X RESEARCH REPORT Evolutionary insights on a novel mussel-specific foot protein-3 gene family E Bortoletto1, P Venier1, A Figueras2, B Novoa2, U Rosani1,3* 1Department of Biology, University of Padua, Padua, Italy 2Institute of Marine Research (IIM), Spanish National Research Council (CSIC). Vigo, Spain 3Coastal Ecology Section, AWI - Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List auf Sylt, Germany This is an open access article published under the CC BY license Accepted December 18, 2020 Abstract Silky byssus threads enable a number of marine and freshwater bivalve mollusks to attach themselves to hard substrates. Byssus production is an energy-costly process, which accompany the switch from planktonic to sessile life. Pointing the attention to a small foot protein (fp-3α) first identified in Perna viridis and abundantly secreted during the bissogenesis, we report the presence of a fp-3α gene family in species of the Mytilus complex, byssogenic bivalve mollusks mostly inhabiting marine waters. In the genome of Mytilus galloprovincialis we identified twelve fp-3α genes showing differences in exon-intron organization and suggesting that, as in the case of arthropod and mollusk defensins, exon shuffling could have played an important role in the evolution of this gene family. Also, the different tissue expression patterns of these mussel genes support their functional diversification. All predicted fp-3α proteins curiously possess a Csαβ three-dimensional motif based on 10 highly conserved cysteines and exhibit structural similarity to invertebrate defensins. The role of these small cysteine-rich proteins in supporting the byssus-mediated mussel adhesion or their action as host defence peptides remains to be established with further study.
    [Show full text]
  • Comparing Spawning, Larval Development, and Recruitments of Four Mussel Species (Bivalvia: Mytilidae) from South Australia 1,2Medy Ompi, 2Ib Svane
    Comparing spawning, larval development, and recruitments of four mussel species (Bivalvia: Mytilidae) from South Australia 1,2Medy Ompi, 2Ib Svane 1 Faculty of Fisheries and Marine Science, University of Sam Ratulangi Kampus-Bahu, Manado, 95115, Indonesia; 2 Lincoln Marine Sciences Centre, School of Biological Sciences, Faculty of Sciences and Engineering, Flinders University, South Australia, Australia. Corresponding author: M. Ompi, [email protected] Abstract. This study describes spawning, larval development, and new recruits of four mytilid species. Each of the mussel species was induced by standard thermal shock and natural seawater temperature changing. Fertilized eggs were incubated at a density of 30 mL-1. When fertilized eggs reached D-stage, larvae were also stocked at the same density and fed a microalgae diet. New recruits were determined monthly after allowing them to settle on substratum provided and removed after one month in the field. The results show that Mytilus galloprovincialis spawned in June to October, Brachidontes erosus in November to January, Brachidontes rostratus in January to March, w hi l e Trichomya hirsuta spawned in October to December. M. galloprovincialis released four times as many eggs as the other mytilid species investigated. Eggs diameter of B. eros us ranged from 91 to 106 µm, which were larger than other species observed. M. galloprovinci al i s reached settlement stage in 16 days, B. rostratus a nd T . h i r s ut a i n 15days, and B . er o s u s in 9 days. Larvae of B. erosus were larger in size compare to other species at the early D-stage, but this changed when metamorphosis occurred.
    [Show full text]
  • From Midden to Sieve
    From Midden to Sieve: The Impact of Differential Recovery and Quantification Techniques on Interpretations of Shellfish Remains in Australian Coastal Archaeology Robyn A. Jenkins A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Social Science with Honours in the School of Social Science, University of Queensland October 2006 ii I declare that the work presented in this thesis is the result of my own independent research, except where otherwise acknowledged in the reference list. This material has not been submitted either in whole or in part, for a degree at this or any other university. Robyn A. Jenkins October 2006 Brisbane, Australia I certify that I have read the final draft of this thesis and it is ready for submission in accordance with the thesis requirements as set out in the School of Social Science policy documents. Dr Sean Ulm Dr Jon Prangnell October 2006 October 2006 Brisbane, Australia Brisbane, Australia iii iv TABLE OF CONTENTS LIST OF TABLES vii LIST OF FIGURES ix ACKNOWLEDGEMENTS xi ABSTRACT xiii CHAPTER 1: INTRODUCTION Introduction 1 Research Questions and Aims 1 Background and Rationale 2 Research Design 3 Thesis Outline 4 CHAPTER 2: SHELLS, SIEVING AND QUANTIFICATION Introduction 7 Shell in Australian Coastal Archaeology 7 Recovery and Quantification in Australian Coastal Archaeology 9 Archaeological Studies of Recovery Methods 11 Vertebrate Remains 12 Shellfish Remains 14 Archaeological Studies of Quantification Methods 16 Shell Structure, Fragmentation and Taphonomy 19 Implications
    [Show full text]
  • Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia)
    antibiotics Article Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia) Samuele Greco 1 , Marco Gerdol 1,* , Paolo Edomi 1 and Alberto Pallavicini 1,2,3 1 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (S.G.); [email protected] (P.E.); [email protected] (A.P.) 2 National Institute of Oceanography and Applied Geophysics, 34151 Trieste, Italy 3 Anton Dohrn Zoological Station, 80121 Naples, Italy * Correspondence: [email protected]; Tel.: +39-040-558-8676 Received: 31 December 2019; Accepted: 15 January 2020; Published: 19 January 2020 Abstract: The CS-αβ architecture is a structural scaffold shared by a high number of small, cationic, cysteine-rich defense peptides, found in nearly all the major branches of the tree of life. Although several CS-αβ peptides involved in innate immune response have been described so far in bivalve mollusks, a clear-cut definition of their molecular diversity is still lacking, leaving the evolutionary relationship among defensins, mytilins, myticins and other structurally similar antimicrobial peptides still unclear. In this study, we performed a comprehensive bioinformatic screening of the genomes and transcriptomes available for marine mussels (Mytilida), redefining the distribution of mytilin-like CS-αβ peptides, which in spite of limited primary sequence similarity maintain in all cases a well-conserved backbone, stabilized by four disulfide bonds. Variations in the size of the alpha-helix and the two antiparallel beta strand region, as well as the positioning of the cysteine residues involved in the formation of the C1–C5 disulfide bond might allow a certain degree of structural flexibility, whose functional implications remain to be investigated.
    [Show full text]
  • 2020Demmerjphd
    Bangor University DOCTOR OF PHILOSOPHY Simulating the temporal and spatial variability of North Wales mussel populations Demmer, Jonathan Award date: 2020 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 Simulating the temporal and spatial variability of North Wales mussel populations by Jonathan Demmer School of Oceans Sciences, Bangor University, Menai Bridge, Anglesey, UK, LL59 5AB Submitted in accordance with the requirements for the degree of Doctor of Philosophy February, 2020 Declaration and Consent Details of the Work I hereby agree to deposit the following item in the digital repository maintained by Bangor University and/or in any other repository authorized for use by Bangor University. Author Name: ………………………………………………………………………………………………….
    [Show full text]
  • Phuket Mar. Biol. Cent. Res. Bull.78: 77–115 (2021) DOI: 10.14456/Pmbcrb.2021.7 TAXONOMIC RE-DESCRIPTION and RELATIONSHIPS OF
    Phuket mar. biol. Cent. Res. Bull.78: 77–115 (2021) DOI: 10.14456/pmbcrb.2021.7 TAXONOMIC RE-DESCRIPTION AND RELATIONSHIPS OF TWO MAT-FORMING MUSSELS FROM THE INDO-PACIFIC REGION, WITH A PROPOSED NEW GENUS Koh-Siang Tan1*, Samuel Hui-Min Tan1, Kitithorn Sanpanich2, Teerapong Duangdee3 and Reni Ambarwati4 1St John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119227 2Institute of Marine Science, Burapha University, Muang District, Chon Buri 20131, Thailand 3Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand 4Faculty of Mathematics and Natural Sciences, Surabaya State University, East Java, Indonesia *Corresponding author: [email protected] ABSTRACT: Two common Indo-Pacific mat-forming mussels with subterminal umbones, widely known in the literature as Brachidontes setiger (Dunker, 1857) and B. striatulus (Hanley, 1843), are re-described and distinguished on morphological and molecular grounds. Overlapping intraspecific variation in the shells of both species has resulted in several synonyms that in turn have led to confusion over their identities, even though representative shell forms of the two congeners appear distinct. Typical B. setiger of authors has a somewhat inflated shell that is dorso-ventrally wide with a uniformly yellowish orange to brown periostracum usually covered partially by byssal hairs over the posterior half of the shell. This is in contrast to the narrowly elongate, dorso-ventrally compressed shell of a typical B. striatulus, which usually has up to six black or dark brown stripes of differing widths radiating from near the umbones towards the posterior region over an otherwise yellow to dark brown periostracum devoid of byssal hairs.
    [Show full text]
  • Investigating the Bivalve Tree of Life – an Exemplar-Based Approach Combining Molecular and Novel Morphological Characters
    CSIRO PUBLISHING Invertebrate Systematics, 2014, 28,32–115 http://dx.doi.org/10.1071/IS13010 Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters Rüdiger Bieler A,N, Paula M. Mikkelsen B, Timothy M. Collins C, Emily A. Glover D, Vanessa L. González E, Daniel L. GrafG, Elizabeth M. HarperH, John Healy A,I, Gisele Y. Kawauchi E, Prashant P. SharmaF, Sid Staubach A, Ellen E. StrongJ, John D. Taylor D, Ilya TëmkinJ,K, John D. ZardusL, Stephanie Clark A, Alejandra Guzmán E,M, Erin McIntyre E, Paul Sharp C and Gonzalo Giribet E AInvertebrates, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA. BPaleontological Research Institution, 1259 Trumansburg Road, and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA. CDepartment of Biological Sciences, AHC 1 Bldg, Rm 319C, Florida International University, Miami, FL 33199, USA. DDepartment of Life Sciences, The Natural History Museum, London SW7 5BD, UK. EMuseum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. FAmerican Museum of Natural History, Division of Invertebrate Zoology, 200 Central Park West, New York City, NY 10024, USA. GUniversity of Wisconsin-Stevens Point, Biology Department, 800 Reserve Street, Stevens Point, WI 54481, USA. HDepartment of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK. IQueensland Museum, PO Box 3300, South Brisbane, Qld 4101, Australia. JDepartment of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC 20013, USA. KBiology Department, Northern Virginia Community College, 4001 Wakefield Chapel Road, Annandale, VA 22003, USA.
    [Show full text]