The Ocean Genome: Conservation and the Fair, Equitable and Sustainable Use of Marine Genetic Resources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings. -
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis -
No. 8. September 2014
No 8, September 2014 News from the NOBANIS secretariat The secretary at NOBANIS Christina Fevejle Nielsen, started on her new job in the Nature Agency, Danish Ministry of Environment in December 2013, and Maya Helene Quaade Caspersen has since January 2014 been the new secretary at NOBANIS, with a current contract until February 2015. Maya has a master degree in biology from the University of Copenhagen, and has experience with IAS from working with regulation in Denmark. As the new secretary of NOBANIS, I would like to take this opportunity to thank all partners for welcoming me, and for the good collaboration the last couple of months. This year I will continue the work with revising the database that Helene started and finish the update of the remaining fact sheets. Another project that will have my attention in 2014 is the ATAN project “Achieving the Aichi Target 9, IAS in the Nordic and Baltic region”. Read more about the project further down. 10 years with NOBANIS (2004-2014) This year NOBANIS can celebrate its 10th anniversary. Here is a short summary with background information and achievements of the network (2004-2014) The Nordic-Baltic Network on Invasive Alien Species (NOBANIS) was initiated as a project funded by the Nordic Council of Ministers in 2004 to fulfilled parts of the CBD Decision VI/23, Guiding Principles for the prevention, introduction and mitigation of impacts of alien species that threaten ecosystems, habitats or species. The aim of the project was to develop a regional, distributed and interoperable network on the critical issue of invasive alien species (IAS) in the marine, freshwater and terrestrial environments and their consequences for biological diversity, the cultural landscape and outdoor life. -
The State of the World's Aquatic Genetic Resources for Food and Agriculture 1
2019 ISSN 2412-5474 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 FAO COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ASSESSMENTS • 2019 THE STATE OF THE WORLD’S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME 2019 Required citation: FAO. 2019. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131608-5 © FAO, 2019 Some rights reserved. This work is available under a CC BY-NC-SA 3.0 IGO licence 2018 © FAO, XXXXXEN/1/05.18 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode). -
Ecological Principles and Function of Natural Ecosystems by Professor Michel RICARD
Intensive Programme on Education for sustainable development in Protected Areas Amfissa, Greece, July 2014 ------------------------------------------------------------------------ Ecological principles and function of natural ecosystems By Professor Michel RICARD Summary 1. Hierarchy of living world 2. What is Ecology 3. The Biosphere - Lithosphere - Hydrosphere - Atmosphere 4. What is an ecosystem - Ecozone - Biome - Ecosystem - Ecological community - Habitat/biotope - Ecotone - Niche 5. Biological classification 6. Ecosystem processes - Radiation: heat, temperature and light - Primary production - Secondary production - Food web and trophic levels - Trophic cascade and ecology flow 7. Population ecology and population dynamics 8. Disturbance and resilience - Human impacts on resilience 9. Nutrient cycle, decomposition and mineralization - Nutrient cycle - Decomposition 10. Ecological amplitude 11. Ecology, environmental influences, biological interactions 12. Biodiversity 13. Environmental degradation - Water resources degradation - Climate change - Nutrient pollution - Eutrophication - Other examples of environmental degradation M. Ricard: Summer courses, Amfissa July 2014 1 1. Hierarchy of living world The larger objective of ecology is to understand the nature of environmental influences on individual organisms, populations, communities and ultimately at the level of the biosphere. If ecologists can achieve an understanding of these relationships, they will be well placed to contribute to the development of systems by which humans -
An Introduction to Coastal and Marine Biodiversity and Ecosystem Services
Ministry of Environment, Forest and Climate Change, Government of India Curriculum on Coastal and Marine Biodiversity and Protected Area Management Module 1 An Introduction to Coastal and Marine Biodiversity and Ecosystem Services For Field-Level MPA Managers Imprint Training Resource Material: Coastal and Marine Biodiversity and Protected Area Management for Field-Level MPA Managers Module 1: An Introduction to Coastal and Marine Biodiversity and Ecosystem Services Module 2: Coastal and Marine Biodiversity and Ecosystems Services in the Overall Environment and Development Context Module 3: Mainstreaming Coastal and Marine Biodiversity into Overall Development and Environmental Planning Module 4: Coastal and Marine Protected Areas and Sustainable Fisheries Management Module 5: Governance, Law and Policies for Managing Coastal and Marine Ecosystems, Biodiversity and Protected Areas Module 6: Assessment and Monitoring of Coastal and Marine Biodiversity and Relevant Issues Module 7: Effective Management Planning of Coastal and Marine Protected Areas Module 8: Communicating Coastal and Marine Biodiversity Conservation and Management Issues ISBN 978-81-933282-1-7 October 2015 Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Wildlife Institute of India (WII) Indo-German Biodiversity Programme P.O. Box 18, Chandrabani A-2/18, Safdarjung Enclave Dehradun 248001 New Delhi 110029, India Uttarakhand, India T +91-11-4949 5353 T +91-135-2640 910 E [email protected] E [email protected] W http://www.indo-germanbiodiversity.com W www.wii.gov.in GIZ is a German government-owned not-for-profit enterprise supporting sustainable development. This training resource material has been developed under the Human Capacity Development component of the project ‘Conservation and Sustainable Management of Existing and Potential Coastal and Marine Protected Areas (CMPA)’, under the Indo-German Biodiversity Programme, in partnership with the Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India. -
Rangia Cuneata) Ecological Risk Screening Summary
U.S. Fish and Wildlife Service Atlantic Rangia (Rangia cuneata) Ecological Risk Screening Summary Web Version – 10/1/2012 Photo: USGS 1 Native Range and Nonindigenous Occurrences Native Range Gulf of Mexico (Benson 2012) From GISD (2011): “Rangia cuneata is considered to be native to the Gulf of Mexico and introduced to the NW Atlantic, where it is predominantly found in estuaries. “ Nonindigenous Occurrences From Benson (2012): “East coast of Florida to the Chesapeake Bay; James River and Potomac River in Virginia, lower portion of the Hudson River in New York.” From GISD (2011): Rangia cuneata Ecological Risk Screening Summary U.S. Fish and Wildlife Service – Web Version – 10/01/2012 “Known introduced range: lower portion of the Hudson River, New York …” Means of Introductions From Benson (2012): “Not seen on the Atlantic coast before 1956. Could have been an accidental release with oyster mariculture or perhaps with intracoastal ballast water.” Corroborated by Carlton (1992): “Ballast water or the movement of commercial oysters may have transported the clam Rangia cuneata from the Gulf of Mexico to Chesapeake Bay, from where it may have spread down the coast to Florida, and from where it may have been carried in ballast water to the Hudson River.” Remarks There has been some confusion over whether or not R. cuneata is a native species on the east coast of the United States. The current thinking by Fofonoff et al. (2003) is described on the National Exotic Marine and Estuarine Species Information System (NEMESIS) web site managed by the Smithsonian Environmental Research Center (SERC): “Conrad (1840) described Rangia cuneata (Gulf Wedge Clam) as 'an inhabitant of the estuaries of the Gulf of Mexico and occurring in the upper Tertiary formation in the bank of the Potomac River in Maryland and on the Neuse River, North Carolina '. -
Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture
Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture 著者 西村 祐貴 内容記述 この博士論文は内容の要約のみの公開(または一部 非公開)になっています year 2016 その他のタイトル プロティストミトコンドリアの多様性と進化:イン トロン、遺伝子組成、ゲノム構造 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7737号 URL http://hdl.handle.net/2241/00144261 Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns -
Barthelonids Represent a Deep-Branching Metamonad Clade with Mitochondrion-Related Organelles Generating No
bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 Barthelonids represent a deep-branching Metamonad clade with mitochondrion-related 4 organelles generating no ATP. 5 6 Euki Yazaki1*, Keitaro Kume2, Takashi Shiratori3, Yana Eglit 4,5,, Goro Tanifuji6, Ryo 7 Harada7, Alastair G.B. Simpson4,5, Ken-ichiro Ishida7,8, Tetsuo Hashimoto7,8 and Yuji 8 Inagaki7,9* 9 10 1Department of Biochemistry and Molecular Biology, Graduate School and Faculty of 11 Medicine, The University of Tokyo, Tokyo, Japan 12 2Faculty of Medicine, University of Tsukuba, Ibaraki, Japan 13 3Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, 14 Yokosuka, Japan 15 4Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 16 5Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 17 Halifax, Nova Scotia, Canada 18 6Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan 19 7Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 20 Ibaraki, Japan 21 8Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan 22 9Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 23 24 Running head: Phylogeny and putative MRO functions in a new metamonad clade. 25 26 *Correspondence addressed to Euki Yazaki, [email protected] and Yuji Inagaki, 27 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Art. Marcinkevicius
Revista de Biología Marina y Oceanografía Vol. 48, Nº2: 285-292, agosto 2013 DOI 10.4067/S0718-19572013000200008 Article Early life history of three Patagonian zoarcids Desarrollo de los estadios tempranos de tres zoarcidos Patagónicos Mauro S. Marcinkevicius1 and Atila E. Gosztonyi2 1Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Comodoro Rivadavia, Km 4, Chubut, Argentina, CP (9005). [email protected] 2Centro Nacional Patagónico, CONICET, Puerto Madryn Bvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina Resumen.- Los zoárcidos están bien representados en la zona intermareal de la costa Patagónica. Se conoce que son ovíparos con cuidado parental, pero hay poca información del desarrollo ontogenético. El objetivo de este trabajo fue describir los estadios de desarrollo temprano de 3 especies de zoárcidos patagónicos: Iluocoetes elongatus, Phucocoetes latitans y Dadyanos insignis. Se muestrearon masas de huevos de estas 3 especies, en la zona intermareal de la Ría Deseado (Santa Cruz, Argentina). Los huevos fueron depositados en acuarios y condiciones controladas para obtener las postlarvas y los estadios siguientes. Los huevos más grandes obtenidos fueron de I. elongatus con 4,94 mm de diámetro, 4,93 mm en D. insignis y 4,20 mm en P. latitans. Las postlarvas eclosionaron con un alto grado de desarrollo (tamaño de eclosión 17,5 mm de longitud estándar (LS) en I. elongatus, 18 mm LS en P. latitans y 22 mm LS en D. insignis), difiriendo de los juveniles por la presencia del saco vitelino. El patrón de pigmentación corresponde al de los adultos y durante el desarrollo se intensifica.