Incidence of Emerging Pathogens in the Legal and Illegal Amphibian Trade in Spain

Total Page:16

File Type:pdf, Size:1020Kb

Incidence of Emerging Pathogens in the Legal and Illegal Amphibian Trade in Spain Herpetology Notes, volume 14: 777-784 (2021) (published online on 16 May 2021) Incidence of emerging pathogens in the legal and illegal amphibian trade in Spain Barbora Thumsová1,2, Jaime Bosch3,2,*, and Albert Martinez-Silvestre4 Abstract. Amphibians are threatened globally and emerging diseases are some of the most important drivers of their catastrophic situation. There is increasing evidence that the international trade in live amphibians is one of the most important mechanisms driving pathogen pollution. Here, we report the presence of Batrachochytrium dendrobatidis (Bd) and Ranavirus in 11% of tested individuals in legal amphibian trade fairs in Spain. Although none of the Bd infected animals in trade fairs presented disease symptoms, symptoms of ranavirosis were observed in some specimens, which were nonetheless still offered for sale. None of the traders who were selling infected animals showed interest in engaging in collaboration to control infections when offered for free. In addition, a large private urodele collection confiscated by the police in Barcelona comprised a number of illegally wild-caught species. Many confiscated individuals presented signs of poor welfare and several were positive for Bd. Our results indicate the urgent need for implementation of real sanitary regulations or effective legislation governing the practice of trade in living amphibians to prevent pathogen spread in Europe. Keywords. Batrachochytridium dendrobatidis, chytridiomycosis, Ranavirus, ranavirosis, pet keeping Introduction al., 2005; Collins and Crump, 2009; Rowley et al., 2010; Pasmans et al., 2017). In fact, of the 5,579 vertebrate Wildlife continues to be threatened by a number of species affected by the global wildlife trade, 9.4% are anthropogenic activities that have compromised the amphibians (Scheffers et al., 2019). Although some integrity and persistence of natural ecosystems over traded amphibian species are monitored by international time (Ceballos et al., 2015; Wilson et al., 2019). In conventions such as the Convention on International recent decades, amphibians have become an iconic Trade in Endangered Species of Wild Fauna and Flora example of species extinction and population extirpation (CITES), regulations for 98% of all amphibian species due to increased human pressure (Skerratt et al., 2007; are not still established (Auliya et al., 2016a). As a Blaustein et al., 2011). As a result, forty-one percent of result, the great majority of traded amphibians are wild- known amphibian species are now listed as threatened, caught, which are mostly harvested in an unsustainable and many are experiencing global population declines manner despite posing risks for population persistence (IUCN, 2020). (Schlaepfer et al., 2005; Auliya et al., 2016b). Among Commercial trade in amphibians for food, pets or other things, the increasing demand from keepers traditional medicine is one of the most prominent to include rare or newly described species in their drivers of species extinction risk globally (Schlaepfer et collections stimulates illegal trade in amphibians (Courchamp et al., 2006; Natusch and Lyons, 2012; Cooney et al., 2015; Auliya et al., 2016b). In fact, the 1 Asociación Herpetológica Española, José Gutiérrez Abascal 2, black market in animal trade is one of the most lucrative 28006 Madrid, Spain. illicit activities in the world (TRAFFIC, 2008; Esmail 2 Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez et al., 2020), generating a turnover of around 20 billion Abascal 2, 28006 Madrid, Spain. dollars annually (Nellemann et al., 2016). 3 Research Unit of Biodiversity, Gonzalo Gutiérrez Quirós s/n, Both legal and illegal exotic pet trades are widely Oviedo University - Campus Mieres, Edificio de Investigación, considered as important mechanisms of intercontinental 33600 Mieres, Spain. and international pathogen pollution (e.g., Fisher 4 Catalonian Reptiles and Amphibians Rescue Centre, 08783 Barcelona, Spain. and Garner, 2007; O’Hanlon et al., 2018), including * Corresponding author. E-mail address: [email protected] the chytrids Batrachochytrium dendrobatidis (Bd; O’Hanlon et al., 2018), B. salamandrivorans (Bsal; © 2021 by Herpetology Notes. Open Access by CC BY-NC-ND 4.0. Martel et al., 2014) and ranaviruses (RV; Schloegel et 778 Barbora Thumsová et al. al., 2009). Both chytrid fungi and ranaviruses are listed thoroughly inspected by the police and the CITES by the World Organisation for Animal Health (Schloegel national department. Illegally acquired individuals et al., 2010; OIE, 2019) and therefore, in theory, control were confiscated and transported to the Catalonian measures by all countries importing amphibians must Reptiles and Amphibians Rescue Centre (CRARC). All be implemented to ensure that animals are free of these individuals were housed separately in tanks, and were pathogens (OIE, 2019). immediately checked visually for disease symptoms, The European Union (EU) has been documented as and sampled as described above. For the specimens a top importer of legally and illegally collected wild found dead, a toe-clip and a small piece of liver were animals (Engler and Parry-Jones, 2007). Within the also taken and stored in 70% ethanol. EU, Spain houses a sizable community of keepers, with DNA was extracted from swab samples using PrepMan extensive amphibian collections containing specimens Ultra reagent, and was extracted from tissue samples imported from all around the world (e.g., Fitzpatrick with the DNeasy Blood and Tissue Kit (Qiagen, Hilden, et al., 2018; Lastra-González et al., 2020). The largest Germany) following the manufacturer’s instructions. amphibian and reptile trade fairs of Southern Europe Real-time Taqman PCR assays were conducted take place in some of Spain’s main cities. Local traders, following the protocols suggested by Boyle et al. (2004) as well as traders from all over Europe, gather four for Bd, Blooi et al. (2013) for Bsal, and Leung et al. times a year at these events to sell a great variety of (2017) for RV. Samples were amplified on a MyGo exotic species. Despite the fact that imported exotic mini PCR machine in duplicate and against negative individuals may serve as vectors of both fungal and and positive controls with known concentrations of viral infections, sanitary regulations and legislation genomic equivalents of zoospores/virions. A sample was governing the practice to prevent pathogen spread in assigned as positive when the infection load was equal Spain are still not officially established. to or higher than 0.1 zoospores for Bd/Bsal or 3 virions Here we report the results of Bd, Bsal and RV testing for RV, and when the amplification curve presented a in four trade fairs that took place in Spain between 2017 robust sigmoidal shape. Where just one replicate of a and 2019, and also within a large illegal private collection sample was amplified, the sample was analysed a third recently confiscated in the centre of Barcelona city. time and considered positive only if the curve of the third amplification yielded a positive result. Materials and Methods Results Sampling at Spanish trade fairs took place between 2017–2019, three times in Madrid, and once in Over the four sampling events in trade fairs, a total of Barcelona. All pet traders and all amphibian species 82 individuals comprising 18 families and 34 species were sampled as described below. At least one sample from 20 traders were sampled (Table 1). Seventy-seven was collected per container when multiple animals were samples were tested for Bd, fifty-five for Bsal and housed together. Additionally, five imported terrapins forty-six for RV presence. While around 10% of the (two individuals of Graptemys pseudogeographica specimens tested positive for Bd and 2.2% of specimens (Gray, 1831), one individual of Cuora amboinensis tested positive for RV, no individuals tested positive for (Daudin, 1802), and two individuals of Kinosternon Bsal. Infected individuals were detected at all sampling baurii (Garman, 1891)) were sampled and tested for events. Bd infection was detected in individuals RV presence. The whole body of each individual was belonging to the families of Ambystomatidae (1/6 swabbed with a sterile cotton-tipped dry swab (MWE individuals), Arthroleptidae (1/2), Ceratophryidae medical wire, UK), and a new pair of disposable nitrile (2/9), Hylidae (1/1), Pipidae (2/3), and Pyxicephalidae gloves was used for each animal. Samples were stored (1/4). No Bd infected individuals presented disease dry and refrigerated until laboratory analyses within 1-2 symptoms. Ranavirosis symptoms were observed in weeks. three specimens of Litoria caerulea (White, 1790) In the spring of 2020, a police intervention was carried (Pelodryadidae), of which one individual also tested out in a private collection of urodele amphibians in positive for RV (Fig. 1A). All sampled terrapins were the centre of Barcelona city. The collection comprised negative for RV. Bd or RV infection was detected in a great number of exotic and Iberian-native urodele a total of five traders. One trader sold Bd-infected species. For the administrative and court proceedings, animals repeatedly across different trade fairs (3 out 4), the origin and legal status of all individuals were all of which were imported. Despite traders being very Incidence of emerging pathogens in the legal and illegal amphibian trade in Spain 779 Table 1. For each pathogen the number of positive animals and sample size are shown. The proportion of infected animals appears in
Recommended publications
  • Amazing Amphibians Celebrating a Decade of Amphibian Conservation
    QUARTERLY PUBLICATION OF THE EUROPEAN ASSOCIATION OF ZOOS AND AQUARIA AUTUMNZ 2018OO QUARIAISSUE 102 AMAZING AMPHIBIANS CELEBRATING A DECADE OF AMPHIBIAN CONSERVATION A giant challenge BUILDING A FUTURE FOR THE CHINESE GIANT SALAMANDER 1 Taking a Leap PROTECTING DARWIN’S FROG IN CHILE Give your visitors a digital experience Add a new dimension to your visitor experience with the Aratag app – for museums, parks and tourist www.aratag.com attractions of all kinds. Aratag is a fully-integrated information system featuring a CMS and universal app that visitors download to their smart devices. The app runs automatically when it detects a nearby facility using the Aratag system. With the power of Aratag’s underlying client CMS system, zoos, aquariums, museums and other tourist attractions can craft customized, site-specifi c app content for their visitors. Aratag’s CMS software makes it easy for you to create and update customized app content, including menus, text, videos, AR, and active links. Aratag gives you the power to intelligently monitor visitors, including demographics and visitor fl ows, visit durations, preferred attractions, and more. You can also send push messages through the app, giving your visitors valuable information such as feeding times, closing time notices, transport information, fi re alarms, evacuation routes, lost and found, etc. Contact Pangea Rocks for an on-site demonstration of how Aratag gives you the power to deliver enhanced visitor experiences. Contact us for more information: Address: Aratag is designed and Email: [email protected] Aratag / Pangea Rocks A/S developed by Pangea Rocks A/S Phone: +45 60 94 34 32 Navervej 13 in collaboration with Aalborg Mobile : +45 53 80 34 32 6800 Varde, Denmark University.
    [Show full text]
  • July to December 2019 (Pdf)
    2019 Journal Publications July Adelizzi, R. Portmann, J. van Meter, R. (2019). Effect of Individual and Combined Treatments of Pesticide, Fertilizer, and Salt on Growth and Corticosterone Levels of Larval Southern Leopard Frogs (Lithobates sphenocephala). Archives of Environmental Contamination and Toxicology, 77(1), pp.29-39. https://www.ncbi.nlm.nih.gov/pubmed/31020372 Albecker, M. A. McCoy, M. W. (2019). Local adaptation for enhanced salt tolerance reduces non‐ adaptive plasticity caused by osmotic stress. Evolution, Early View. https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.13798 Alvarez, M. D. V. Fernandez, C. Cove, M. V. (2019). Assessing the role of habitat and species interactions in the population decline and detection bias of Neotropical leaf litter frogs in and around La Selva Biological Station, Costa Rica. Neotropical Biology and Conservation 14(2), pp.143– 156, e37526. https://neotropical.pensoft.net/article/37526/list/11/ Amat, F. Rivera, X. Romano, A. Sotgiu, G. (2019). Sexual dimorphism in the endemic Sardinian cave salamander (Atylodes genei). Folia Zoologica, 68(2), p.61-65. https://bioone.org/journals/Folia-Zoologica/volume-68/issue-2/fozo.047.2019/Sexual-dimorphism- in-the-endemic-Sardinian-cave-salamander-Atylodes-genei/10.25225/fozo.047.2019.short Amézquita, A, Suárez, G. Palacios-Rodríguez, P. Beltrán, I. Rodríguez, C. Barrientos, L. S. Daza, J. M. Mazariegos, L. (2019). A new species of Pristimantis (Anura: Craugastoridae) from the cloud forests of Colombian western Andes. Zootaxa, 4648(3). https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4648.3.8 Arrivillaga, C. Oakley, J. Ebiner, S. (2019). Predation of Scinax ruber (Anura: Hylidae) tadpoles by a fishing spider of the genus Thaumisia (Araneae: Pisauridae) in south-east Peru.
    [Show full text]
  • Calotriton Arnoldi Carranza and Amat, 2005 Class: Amphibia Order: Caudata Family: Salamandridae Genus: Calotriton
    Daniel Hernández Alonso Introduction: Taxonomy Description Distribution Habitat Ecology Value Status review: Conservation status, Populations trend Photo: Felix Amat during Threat analysis species monitoring Conservation strategies: Conservation actions in place, conservation actions needed and research needed Life Tritó Montseny Objectives Actions Problems References Introduction Taxonomy: Calotriton arnoldi Carranza and Amat, 2005 Class: Amphibia Order: Caudata Family: Salamandridae Genus: Calotriton Description: Medium size (< 12 cm) – Average: 9,61cm males / 10 cm females (Carranza and Amat, 2005) Flattened head, elongated body, and tail compressed laterally (shorter and wider in males) Rough skin (Less than Calotriton asper (Dugès, 1852)) Color: Brown in dorsal side, cream color translucent in the ventral area Distribution Montseny massif, Montseny Natural Park – 10km2 2 separated “populations” without genetical flow between them IUCN (International Union for Conservation of Nature), Conservation International & NatureServe. Calotriton arnoldi. The IUCN Red List of Threatened Species. IUCN 2009 Habitat Habitat: Water streams [none individual has been seen in land yet (Montori and Campeny, 1991; Carranza and Amat, 2005)] . Strong flow of water (oxygenated) and low temperature (below 15 oC). Altitude range: 600 – 1200m Vegetation: Preference Beech forest (Fagus sylvatica L.), also in oak forest (Quercus ilex L.), or shores with salows (Salix atrocinerea Brot.) or alders (Alnus glutinosa (L.)Gaertn.), moss and ferns. Photo: Felix Amat during species monitoring Ecology Ecology: not much information about it due to its recent separation as a species Elusive species: Nocturnal and fissuring habits No data of predators Diet: Almost unknown. Predation on salamander larvae and it has seen looking for invertebrates between the rocks. Anti-predatory strategies: segregates a sticky and smelly mucous substance in the dorsal area Reproductive behaviour: still to be studied, amplexus similar to C.asper.
    [Show full text]
  • Froglog Promoting Conservation, Research and Education for the World’S Amphibians
    Issue number 111(July 2014) ISSN: 1026-0269 eISSN: 1817-3934 Volume 22, number 3 www.amphibians.orgFrogLog Promoting Conservation, Research and Education for the World’s Amphibians A New Meeting for Amphibian Conservation in Madagascar: ACSAM2 New ASA Seed Grants Citizen Science in the City Amphibian Conservation Efforts in Ghana Recent Publications And Much More! A cryptic mossy treefrog (Spinomantis aglavei) is encountered in Andasibe during a survey for amphibian chytrid fungus and ranavirus in Madagascar. Photo by J. Jacobs. The Challenges of Amphibian Saving the Montseny Conservation in Brook Newt Tanzania FrogLog 22 (3), Number 111 (July 2014) | 1 FrogLog CONTENTS 3 Editorial NEWS FROM THE AMPHIBIAN COMMUNITY 4 A New Meeting for Amphibian Conservation in 15 The Planet Needs More Superheroes! Madagascar: ACSAM2 16 Anima Mundi—Adventures in Wildlife Photography Issue 6 Aichi Biodiversity Target 12: A Progress Report from the 15, July 2014 is now Out! Amphibian Survival Alliance 16 Recent Record of an Uncommon Endemic Frog 7 ASG Updates: New ASG Secretariat! Nanorana vicina (Stolickza, 1872) from Murree, Pakistan 8 ASG Working Groups Update 17 Global Bd Mapping Project: 2014 Update 9 New ASA Seed Grants—APPLY NOW! 22 Constructing an Amphibian Paradise in your Garden 9 Report on Amphibian Red List Authority Activities April- 24 Giants in the Anthropocene Part One of Two: Godzilla vs. July 2014 the Human Condition 10 Working Together to Make a Difference: ASA and Liquid 26 The Threatened, Exploding Frogs of the Paraguayan Dry Spark Partner
    [Show full text]
  • Contents & Distribution Data
    3 Contents & distribution data Introduction/Einführung ^ 7 Howtousethisbook/Benutzerhinweise 17 References/Literaturverzeichnis 18 Acknowledgments/Danksagung 20 CAUDATA FISCHER VON WALDHEIM, 1813 - Tailed amphibians (newts & salamanders)/Schwanzlurche (Molche & Salamander) HYNOBIIDAE COPE, 1859 - Asiatic salamanders/Asiatische Salamander Salamandrella DYBOWSKI, 1870 - Siberian salamanders/Sibirische Salamander Salamandrella keyserlingii DYBOWSKI, 1870 - Siberian Salamander/Sibirischer Salamander 21 Eastern European Russia (east across Siberia, northern Mongolia, northeaslern China, northern and northwestern North Korea and Hokkaido Island, Japan) PLETHODONTIDAE GRAY, 1850 - Lungless salamanders/Lungenlose Salamander Atylod.es GISTEL, 1868 - Web-toed salamander/Höhlensalamander Atylodes genei (TEMMINCK & SCHLEGEL, 1838) - Sardinian cave Salamander/Sardischer Höhlensalamander 22 Italy (southwestern Sardinia) Speleomantes DUBOIS, 1984 - Web-toed salamanders/Höhlensalamander Speleomantes ambrosii (LANZA, 1954) - Ambrosi's cave Salamander/Ambrosis Höhlensalamander Speleomantes ambrosii ambrosii (LANZA, 1954) - French cave salamander/Französischer Höhlensalamander 24 Extreme southeastern France and extreme northwestern Italy Speleomantes ambrosii bianchii LANZA, CIMMARUTA, FORTI, BULLINI & NASCETTI, 2005 - Apuan Alps cave Salamander/Apuanischer Höhlensalamander 25 Northwestern Italy (Apuan Alps, Tuscany) Speleomantes flavus (STEFANI, 1969) - Monte Albo cave salamander/Monte Albo-Höhlensalamander 26 Italy (northeastern Sardinia) Speleomantes
    [Show full text]
  • Sexual Dimorphism and Age Structure of the Montseny Newt (Calotriton Arnoldi)
    Amphibia-Reptilia 36 (2015): 245-252 Sexual dimorphism and age structure of the Montseny newt (Calotriton arnoldi) Fèlix Amat1,∗, Neus Oromí2,3, Delfí Sanuy2, Salvador Carranza4 Abstract. Patterns of sexual dimorphism and age structure were investigated in two populations of the newt Calotriton arnoldi, endemic of the Montseny Massif (NE of the Iberian Peninsula). In contrast to the Pyrenean newt (Calotriton asper) sexual dimorphism in the Montseny brook newt is characterized by slightly larger females (60.3 ± 0.3 mm; maximum: 68 mm) than males (59.5 ± 0.2 mm; maximum: 64 mm) and more similar body shape between sexes. Both populations and sexes mature at the same age (3 years), show the same age structure and achieve similar longevity (8-9 years). Comparing our results with the framework of the variation of life-history traits in Calotriton, the Montseny newts exhibit fast sexual maturity and short longevity. Curiously, we have found a lack of covariation between age at sexual maturity, longevity and total body size in the populations of Calotriton species. Only in males, age at sexual maturity seems to be affected by altitude, but in an unexpected way: sexual maturation is delayed in populations at low altitudes. Moreover, the age at sexual maturity does not differs between the populations where immatures are terrestrial vs. those where they remain aquatic. Our results suggest that life-history traits in Calotriton newts could be determined by selective factors that play their role at small geographic scale. Keywords: age structure, Calotriton arnoldi, skeletochronology, morphology. Introduction (Özeti and Wake, 1969). Another example of the degree of salamandrid diversification is the The salamanders and newts of the family Sala- evolution of different modalities of reproduc- mandridae have diversified in an array of eco- tive behaviour (Salthe, 1967; Arntzen and Spar- logical forms, ranging from fully terrestrial, to reboom, 1989) probably linked to the habitats aquatic and semiaquatic species that live in used during the courtship.
    [Show full text]
  • Mitigation of Chytridiomycosis in Amphibians
    Mitigation of chytridiomycosis in amphibians Mark Blooi Dissertation submitted in fulfilment of the requirements for the degree of Doctor in Veterinary Sciences (PhD) 2015 Promoters: Prof. Dr. F. Pasmans Prof. Dr. A. Martel Dr. F. Vercammen Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases Royal Zoological Society of Antwerp, Centre for Research and Conservation This study was funded with a doctoral scholarship grant provided by the Centre for Research and Conservation of the Royal Zoological Society of Antwerp Cover design: Ferry Grünewald – www.turtle-arts.nl Blooi, Mark Mitigation of chytridiomycosis in amphibians 2015 Faculty of Veterinary Medicine, Ghent University TABLE OF CONTENTS LIST OF ABBREVIATIONS GENERAL INTRODUCTION 1. Chytridiomycosis 1 1.1 History and origin 1 1.2 Impact on amphibian diversity 2 1.3 Clinical signs, pathology and pathogenesis 3 1.4 Diagnosis 5 2. Susceptibility to chytridiomycosis 6 2.1 Host 6 2.1.1 Innate immune system and chytridiomycosis 7 2.1.2 Adaptive immune system and chytridiomycosis 7 2.2 Environment 8 2.2.1 Abiotic factors 8 2.2.2 Biotic factors 9 2.3 Pathogen 10 3. Mitigation of chytridiomycosis 10 3.1 Ex situ 10 3.1.1 Treatment of chytridiomycosis with 10 antimicrobial compounds 3.1.2 Treatment of chytridiomycosis with 12 physical therapy 3.1.3 Treatment of chytridiomycosis with biotherapy 12 4.2 In situ 13 4. References 15 SCIENTIFIC AIMS 29 EXPERIMENTAL STUDIES STUDY 1 33 Batrachochytrium salamandrivorans sp. nov causes lethal chytridiomycosis
    [Show full text]
  • Batrachochytrium Salamandrivorans Action Plan for European Urodeles
    Bsal Action Plan Mitigating Batrachochytrium salamandrivorans in Europe Batrachochytrium salamandrivorans Action Plan for European urodeles i Bsal Action Plan Colophon Title: Mitigating Batrachochytrium salamandrivorans in Europe Subtitle: Batrachochytrium salamandrivorans Action Plan for European urodeles Citation: Gilbert M. J., A. M. Spitzen-van der Sluijs, S. Canessa, J. Bosch, A. A. Cun- ningham, E. Grasselli, A. Laudelout, S. Lötters, C. Miaud, S. Salvidio, M. Veith, A. Martel and F. Pasmans. 2020. Mitigating Batrachochytrium sala­ mandrivorans in Europe. Batrachochytrium salamandrivorans Action Plan for European urodeles. Nijmegen, the Netherlands. Authors: Maarten Gilbert, Annemarieke Spitzen-van der Sluijs, Stefano Canessa, Jaime Bosch, Andrew A. Cunningham, Elena Grasselli, Arnaud Laudelout, Stefan Lötters, Claude Miaud, Sebastiano Salvidio, Michael Veith, An Mar- tel and Frank Pasmans Contributors: Wouter Beukema, Sergé Bogaerts, Lieze Rouffaer and Benedikt Schmidt Layout: Anton van Woerkom Photo cover: Fire salamander (Salamandra salamandra), Jelger Helder Commissioned by: European Commission, Directorate-General Environment, Directorate B – Natural Capital Unit B.3 - Nature Reference: ENV.B.3/SER/2016/0028 Website: www.bsaleurope.com Project partners: Ghent University, RAVON, Natagora, ZSL Institute of Zoology, Trier Univer- sity, University of Genoa, University of Zürich, CEFE, CSIC ii Bsal Action Plan Contents Reading guide ..........................................................................................................................................1
    [Show full text]
  • Amphibian Ark No
    AArk Newsletter NewsletterNumber 49, March 2020 amphibian ark No. 49, March 2020 Keeping threatened amphibian species afloat ISSN 2640-4141 In this issue... Using radio-telemetry to track survival and disease outcomes in the Mountain Yellow- legged Frog to inform ex situ management ..... 2 ® Ex situ conservation for the Critically Endangered tree-frog Aparasphenodon pomba............................................................... 4 Amphibian Ark Conservation Grants – We’re calling for proposals!......................................... 7 Captive reproduction of the Titicaca Water Frog at the Huachipa Zoo, Lima, Peru ............. 8 Implementation of behavioural enrichment for the Pickersgill’s Reed Frog ........................ 10 First steps towards the conservation of the Darwin’s Blackish Toad ................................... 13 News from the Patagonia Frog rescue center and conservation project in Laguna Blanca National Park, Argentina ................................. 15 An update on the head-starting program for Critically Endangered White-bellied Frogs at Perth Zoo ....................................................... 18 Good news for the ex situ Titicaca Water Frog program in Bolivia .................................. 19 Advancing with the ex situ conservation strategy of the Lake Patzcuaro Salamander at the Zacango Ecological Park ...................... 21 Progress update from the amphibian program at the Amaru Amphibian Conservation Center, Ecuador.............................................. 23 Establishment of a
    [Show full text]
  • Why Are the Prevalence and Diversity of Helminths in the Endemic Pyrenean Brook Newt Calotriton Asper (Amphibia, Salamandridae) So Low?
    Journal of Helminthology (2015) 89, 175–181 doi:10.1017/S0022149X13000710 q Cambridge University Press 2013 Why are the prevalence and diversity of helminths in the endemic Pyrenean brook newt Calotriton asper (Amphibia, Salamandridae) so low? M. Comas1* and A. Ribas1,2 1Laboratory of Parasitology, Faculty of Pharmacy, University of Barcelona, Avda Diagonal s/n, 08028 Barcelona, Spain: 2Museu de Granollers- Cie`ncies Naturals, Francesc Macia` 51, 08402 Granollers, Spain (Received 15 May 2013; Accepted 23 September 2013; First Published Online 25 October 2013) Abstract A cornerstone in parasitology is why some species or populations are more parasitized than others. Here we examine the influence of host characteristics and habitat on parasite prevalence. We studied the helminths parasitizing the Pyrenean brook newt Calotriton asper (n ¼ 167), paying special attention to the relationship between parasites and ecological factors such as habitat, sex, ontogeny, body size and age of the host. We detected two species of parasites, Megalobatrachonema terdentatum (Nematoda: Kathlaniidae) and Brachycoelium salamandrae (Trematoda: Brachycoeliidae), with a prevalence of 5.99% and 1.2%, respectively. Marginally significant differences were found in the prevalence between sexes, with females being more parasitized than males. The present results show significant differences in the body length of paedomorphic and metamorphic individuals, the former being smaller. Nevertheless, no significant correlations between parasite prevalence and either newt body length, ontogenetic stage or age were found. In comparison with other Salamandridae living in ponds, prevalence and diversity values were low. This may be due to a long hibernation period, the species’ lotic habitat and its reophilous lifestyle, which probably do not allow for a high parasite load.
    [Show full text]
  • Presence of the Fungus Batrachochytrium Dendrobatidis, but Not Batrachochytrium Salamandrivorans, in Wild Pyrenean Brook Newts (Calotriton Asper) in Spain and France
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347173765 Presence of the Fungus Batrachochytrium dendrobatidis, but not Batrachochytrium salamandrivorans, in Wild Pyrenean Brook Newts (Calotriton asper) in Spain and France Article in Herpetological Review · December 2020 CITATIONS READS 0 82 20 authors, including: Albert Martinez Silvestre Audrey Trochet Autonomous University of Barcelona Station d’Ecologie Expérimentale à Moulis 457 PUBLICATIONS 961 CITATIONS 45 PUBLICATIONS 816 CITATIONS SEE PROFILE SEE PROFILE Olivier Calvez Manon Poignet Station d’Ecologie Expérimentale à Moulis Charles University in Prague 31 PUBLICATIONS 294 CITATIONS 4 PUBLICATIONS 3 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Accounting for adaptive evolution in plant range shifts predictions (FR AIB grant) View project Symmetries View project All content following this page was uploaded by Albert Martinez Silvestre on 15 December 2020. The user has requested enhancement of the downloaded file. 738 AMPHIBIAN AND REPTILE DISEASES Herpetological Review, 2020, 51(4), 738–743. © 2020 by Society for the Study of Amphibians and Reptiles Presence of the Fungus Batrachochytrium dendrobatidis, but not Batrachochytrium salamandrivorans, in Wild Pyrenean Brook Newts (Calotriton asper) in Spain and France In the last 20 years, the emergence of chytridiomycosis due to the et al. 2019). This has generated an increase in scientific interest to chytrid fungi Batrachochytrium dendrobatidis (Bd), and the more decipher the complex interaction between the environment, the recently described Batrachochytrium salamandrivorans (Bsal), fungus and amphibian hosts, and increased surveillance efforts has caused severe amphibian population regressions across the in many localities (Canessa et al.
    [Show full text]
  • Genetic Structure of Lake and Stream Populations in a Pyrenean Amphibian (Calotriton Asper) Reveals Evolutionary Significant Units Associated with Paedomorphosis
    Received: 15 February 2018 | Revised: 2 August 2018 | Accepted: 7 August 2018 DOI: 10.1111/jzs.12250 ORIGINAL ARTICLE Genetic structure of lake and stream populations in a Pyrenean amphibian (Calotriton asper) reveals evolutionary significant units associated with paedomorphosis Neus Oromi1,2 | Emilio Valbuena-Ureña3,4 | Anna Soler-Membrives3 | Felix Amat5 | Sebastià Camarasa1 | Salvador Carranza6 | Delfi Sanuy1 | Mathieu Denoël2 1Departament de Ciència Animal (Fauna Silvestre), Universitat de Lleida, Lleida, Catalonia, Spain 2Laboratory of Fish and Amphibian Ethology, Behavioural Biology Group, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium 3Unitat de Zoologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain 4Centre de Fauna Salvatge de Torreferrussa (Catalan Wildlife Service – Forestal Catalana), Finca de Torreferrusa, Barcelona, Catalonia, Spain 5Àrea d'Herpetologia, Museu de Granollers, Ciències Naturals, Granollers, Catalonia, Spain 6Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain Correspondence Mathieu Denoël, Laboratory of Fish and Abstract Amphibian Ethology, Behavioural Biology Differences in environmental conditions such as those between lakes and streams can Group, Freshwater and OCeanic science Unit of research (FOCUS), University of produce phenotypic variation and ultimately promote evolutionary diversification. Liège, Liège, Belgium. Some species of newts and salamanders can occupy these habitats and express alterna- Email: [email protected] tive phenotypes: metamorphs that lose gills at metamorphosis and paedomorphs that Funding information retain them at the adult stage. Whereas this process is facultative in some species, it is ENDESA, S.A. (ENEL Group); Fonds de la Recherche Scientifique—FNRS, Grant/Award obligatory in others, thus suggesting that isolation and environmental pressures may Number: J.008.13, J.0112.16; Fonds have canalized developmental pathways.
    [Show full text]