Evidence Report

Total Page:16

File Type:pdf, Size:1020Kb

Evidence Report Evidence Report: Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders Human Research Program Behavioral Health and Performance Approved for Public Release: Month DD, YYYY National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas CURRENT CONTRIBUTING AUTHORS: 1 Kelley J. Slack Wyle/LZ Technology Jason S. Schneiderman Wyle Lauren B. Leveton NASA Johnson Space Center Alexandra M. Whitmire Wyle James J. Picano Wyle PREVIOUS CONTRIBUTING AUTHORS: Camille Shea Houston Police Department Lacey L. Schmidt Minerva Work Solutions 2 TABLE OF CONTENTS I. PRD RISK TITLE: RISK OF ADVERSE COGNITIVE OR BEHAVIORAL CONDITIONS AND PSYCHIATRIC DISORDERS ............................................................................................. 6 II. EXECUTIVE SUMMARY .................................................................................................... 9 III. INTRODUCTION ................................................................................................................ 11 IV. EVIDENCE........................................................................................................................... 14 A. Space Flight Evidence .................................................................................................... 15 1. Sources of evidence .................................................................................................... 15 2. Occurrences of behavioral signs and symptoms ......................................................... 16 a. Occurrences of behavioral signs and symptoms in general ................................... 16 b. Psychosocial adaptation ..........................................................................................17 c. Behavioral and psychiatric emergencies ................................................................ 19 d. Mood and mood disorders ...................................................................................... 22 e. Neurasthenia ........................................................................................................... 26 f. Psychosomatic reactions ......................................................................................... 27 g. Salutogenesis .......................................................................................................... 27 h. Cognitive Functioning ............................................................................................ 29 i. Post-expedition cognitive and behavioral health .................................................... 30 3. Predictors and contributing factors ............................................................................. 31 a. Personality .............................................................................................................. 31 b. Resiliency and hardiness ........................................................................................ 33 c. Emotional Reactions ............................................................................................... 34 d. Sleep and the Circadian Rhythm ............................................................................ 35 e. Habitability and environmental design ................................................................... 36 f. Job design—Autonomy and meaningful work ....................................................... 37 g. Monotony and boredom ......................................................................................... 38 h. Daily hassles and major life events ........................................................................ 39 i. Cultural factors ....................................................................................................... 40 j. Ground support / Mission support .......................................................................... 40 k. Family and Social Support ..................................................................................... 41 l. World Events .......................................................................................................... 42 4. Prevention and monitoring countermeasures ............................................................. 42 a. Selection ................................................................................................................. 43 b. Pre-flight ................................................................................................................. 44 3 c. In flight ................................................................................................................... 48 d. Post-flight ............................................................................................................... 52 5. Monitoring and treatment countermeasures ............................................................... 53 a. Pre-flight ................................................................................................................. 53 b. In flight ................................................................................................................... 53 c. Post-flight ............................................................................................................... 54 6. Evolution of countermeasures.......................................................................................... 55 B. Ground-based Evidence ................................................................................................. 55 1. Sources of evidence .................................................................................................... 55 2. Occurrences of behavioral signs and symptoms ......................................................... 56 a. Behavioral and psychiatric emergencies ................................................................ 56 b. Mood and mood disorders ...................................................................................... 57 c. Winter-over syndrome ............................................................................................ 59 d. Salutogenesis .......................................................................................................... 60 e. Cognitive functioning ............................................................................................. 60 f. Analog Mission Duration of 2 or More Years ....................................................... 61 g. Post-expedition cognitive and behavioral health .................................................... 61 2. Predictors and contributing factors to behavioral health ............................................ 62 a. Personality .............................................................................................................. 62 b. Personality as a predictor of adjustment ................................................................. 63 c. Monotony, boredom, and meaningful work ........................................................... 63 3. Prevention and treatment countermeasures` ............................................................... 63 a. Selection ................................................................................................................. 63 b. Prevention ............................................................................................................... 64 c. Treatment ................................................................................................................ 67 C. Summary ........................................................................................................................ 68 V. COMPUTER-BASED MODELING AND SIMULATION ................................................ 70 VI. Risk in Context of Exploration Mission Operational Scenarios ........................................... 71 A. Constraints for exploration missions .............................................................................. 71 B. Additional stressors for exploration missions ................................................................ 71 C. Likelihood of a behavioral emergency or psychiatric condition .................................... 72 VII. Gaps ...................................................................................................................................... 75 VIII. Conclusion ............................................................................................................................ 76 IX. References ............................................................................................................................. 78 X. Team ................................................................................................................................... 102 4 A. Current Contributing Authors ...................................................................................... 102 B. Previous Contributing Authors..................................................................................... 102 C. Acknowledgements ...................................................................................................... 102 XI. List of Acronyms ................................................................................................................ 105 5 I. PRD RISK TITLE: RISK OF ADVERSE COGNITIVE OR BEHAVIORAL CONDITIONS AND PSYCHIATRIC DISORDERS A. Risk statement Taken verbatim from the Human Research Program Roadmap, the risk statement for Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders (“Risk”, 2015) states: Given
Recommended publications
  • A Quantitative Human Spacecraft Design Evaluation Model For
    A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps.
    [Show full text]
  • Asen 5016 Space Life Sciences
    January 15, 2019 ASEN 5016 SPACE LIFE SCIENCES Spring 2019 Tues/Thurs 2:0-3:15 pm ECCS 1B28 Instructor: Dr. David Klaus telephone: (303) 492-3525 email: [email protected] This course is intended to familiarize engineering students with factors affecting living organisms (ranging from single cells to humans) in the reduced-gravity and increased radiation environment of space flight, including orbital, lunar and Martian surface conditions. Unique insight will be gained regarding engineering design requirements for spacecraft habitats, life support systems and spacesuits, as well as space biology payloads. Life support needs, as they relate to basic human survival requirements, are covered initially. Next, the lectures turn to more detailed descriptions of the physiological adaptations that occur to people in space, with pertinent background information presented for each topic. Corresponding biomedical countermeasures used to maintain crew health for long duration missions will also be discussed. Finally, the underlying biophysical mechanisms affected by gravity, along with experiment design criteria, will be addressed. Current events within NASA’s research and exploration mission programs and the emerging commercial human space flight sector are reflected throughout the lecture topics. To further elaborate on the lecture material discussed in class, a series of integrated homework tasks provides a practical introduction to the process of journal article publishing and research proposal writing, including the anonymous peer review process used for each. The assignment involves writing a short journal article on an approved topic of your choice, your participation as a peer reviewer for the editor, revising your draft per the review comments you receive back, and resubmitting a final manuscript with a corresponding summary of changes made.
    [Show full text]
  • Quarterly Newsletter
    National Space Biomedical Research Institute Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nulla lectus mi, sodales ac, consectetuer sed, luctus sit amet, risus. Mauris tempusSociety quam sit amet mi. Mauris of sagittis Fellows augue nec augue. Fusce ipsum. Quarterly Newsletter Information for First Award Fellows Winter 2015 Cool Research Corner Measuring Intracranial Pressure aboard the Weightless Wonder VI Justin Lawley, Ph.D. 2013 NSBRI First Award Fellow In August of 2014, NSBRI investigators took to the sky in order to help identify the reason for visual impairments in astronauts. The current working hypothesis is that microgravity causes pressure inside the brain to increase, which causes deformation of the optic globe and thus changes in vision. To answer this question, Dr. Benjamin Levine of the Institute for Exercise and Environmental Medicine at UTSouthwestern Medical Center and his First Award Fellow, Dr. Justin Lawley, performed experiments onboard NASA’s C-9 aircraft (Weightless Wonder VI). Continued on Page 4 Thoughts from the Top: Interview with Dr. Jeffrey Sutton ……………… 2 2014 Summer Bioastronautics Institute Recap …………………………… 5 In This Issue: Fellow Spotlights: Allison Anderson and Julia Raykin ………………….. 7 Space Fun: Orion EFT-1 Quiz ……………………………………………. 10 Thoughts from the Top Interview of Dr. Jeffrey Sutton by 2013 NSBRI First Award Fellow Torin Clark, Ph.D. QN: Students and postdocs always wonder what the CEO does. Describe your “average day” at work. Dr. Sutton: The CEO is responsible for leading the development and execution of NSBRI’s strategy, in accord with our NASA cooperative agreement and to the benefit of all stakeholders. As CEO, I have daily management decisions, oversee the implementation of our plans, and am authorized to move funds, including those from the lead consortium institution (Baylor College of Medicine) to >60 recipient institutions in support of our science, technology, career development, and outreach programs.
    [Show full text]
  • Human Adaptation to Space
    Human Adaptation to Space From Wikipedia, the free encyclopedia Human physiological adaptation to the conditions of space is a challenge faced in the development of human spaceflight. The fundamental engineering problems of escaping Earth's gravity well and developing systems for in space propulsion have been examined for well over a century, and millions of man-hours of research have been spent on them. In recent years there has been an increase in research into the issue of how humans can actually stay in space and will actually survive and work in space for long periods of time. This question requires input from the whole gamut of physical and biological sciences and has now become the greatest challenge, other than funding, to human space exploration. A fundamental step in overcoming this challenge is trying to understand the effects and the impact long space travel has on the human body. Contents [hide] 1 Importance 2 Public perception 3 Effects on humans o 3.1 Unprotected effects 4 Protected effects o 4.1 Gravity receptors o 4.2 Fluids o 4.3 Weight bearing structures o 4.4 Effects of radiation o 4.5 Sense of taste o 4.6 Other physical effects 5 Psychological effects 6 Future prospects 7 See also 8 References 9 Sources Importance Space colonization efforts must take into account the effects of space on the body The sum of mankind's experience has resulted in the accumulation of 58 solar years in space and a much better understanding of how the human body adapts. However, in the future, industrialization of space and exploration of inner and outer planets will require humans to endure longer and longer periods in space.
    [Show full text]
  • Space Medicine Association 2011 Executive Committee Ballot
    Space Medicine Association 2011 Executive Committee Ballot Candidates President Elect (1 vote): 1. Kaz Shimada 2. Vernon McDonald Treasurer (1 vote): 1. Serena Aunon 2. Shannan Moynihan 3. Yael Barr Members at Large (2 votes): 1. Michelle Christgen 2. Steve Vanderark 3. Tara Castleberry 4. Frederick Bonato 5. Azhar Rafiq Please see the short biographies on the next pages To cast your vote, please reply to this email or send an email to: [email protected] with the names of your selected candidates. President Elect Position Kazuhito Shimada, M.D., Ph.D. Dr. Shimada is currently the chief of medical operations at Japanese space agency (JAXA). He has supported Japanese spaceflight crewmembers for STS-72, 87, 95, 92, 114, 123, 124, 119, 127, 131, and for ISS-19/20/21 and 22/23(21S). He supervised hypobaric and hyperbaric chamber operations, as well as weightlessness simulation diving at Tsukuba Space Cener. He served as Japanese and FAA AME, and is a vice president of FAI Medicophysiological Commission. He logged 700 hours on gliders and airplanes as a private pilot. 2010 Chief, JAXA Medical Operations 2008 AsMA Fellow 1997 ABPM board certification in Aerospace Medicine 1996 State of Ohio physician license 1993-1996 RAM at Wright State Univ.; 1995 MSci. in Aerospace Medicine 1993-present Flight Surgeon, JAXA (ex. NASDA, Japanese space agency) 1983-1992 Otolaryngology residence at Univ. of Tsukuba and Saku Central Hospital, then ENT practice at Ibaraki Kenritsu Chuo Hospital 1987 Ph.D.; Univ. of Tsukuba (auditory evoked response) 1983 M.D.; Univ. of Tsukuba, Japan President Elect Position Dr.
    [Show full text]
  • Battling Homesickness on Mars the Relationship Between Relatedness, Well-Being, Performance, and Displacement in a Mars Simulation Study
    BATTLING HOMESICKNESS ON MARS THE RELATIONSHIP BETWEEN RELATEDNESS, WELL-BEING, PERFORMANCE, AND DISPLACEMENT IN A MARS SIMULATION STUDY Word count: 19,040 Thomas J. N. Van Caelenberg Student number: 00907011 Supervisors: Prof. Wim Beyers, Dr. Sophie Goemaere A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Clinical Psychology Academic year: 2016 - 2017 Abstract During a Mars mission, crew will simultaneously be confined to small shared living quarters, and will experience extreme geographical and temporal isolation from all other people. Under these circumstances, group tensions have been known to cause communication issues with mission support; a phenomenon called displacement. To gain further insight in these challenges, this study investigated the effects of the psychological need for relatedness as described by the Self-Determination theory, a macro theory on human motivation. During a yearlong Mars simulation, HI-SEAS IV, six crewmembers filled out weekly self-report questionnaires measuring their level of relatedness with friends and family at home as well as fellow crewmembers living inside the Mars simulation. Crew further filled out questionnaires measuring their well-being, performance, and displacement with mission support staff outside the station. Using hierarchical modelling, the results indicated that relatedness was a predictor of crewmembers’ well-being, performance and displacement. Relatedness with fellow crewmembers was a positive predictor of crewmembers’ well-being and performance, and was a negative predictor of displacement. Relatedness with friends and family at home was a positive predictor of well- being and a negative predictor of displacement. Overall, the results provide evidence for the presence of the psychological need for relatedness as affecting crewmembers’ well-being, work performance, and displacement toward mission support, successfully applying the Self-Determination theory to a spaceflight setting.
    [Show full text]
  • Issues of Information Exchange Efficiency in Long-Term Space Flights
    11 Issues of Information Exchange Efficiency in Long-Term Space Flights V. Gushin and A. Yusupova Institute for Biomedical Problems, Moscow, Russia 1. Introduction A human being can live in outer space only in the artificially created environment of a spacecraft. Space vacuum, galactic space radiation, meteorite currents, super-low temperatures outboard give rise in space crew members to a natural feeling of threat to their health and survival. In this connection a high level of psychic tension persists even in a trouble-free space flight due to a natural worry about one’s safety which is not relieved even during sleep. As the time of a space flight increases, a cosmonaut’s emotional sphere comes to be affected predominantly by uniformity (monotony) of the closed environment and by limitation of social contacts. The impact of these factors enhanced by zero gravity leads on to the appearance of dysfunctional changes. Their incrementing intensity manifests itself in cumulative weariness and central nervous system asthenisation due to an inadequate reaction of the nervous system to stimuli. Asthenisation, a condition experienced following space flights (as well as after serious illnesses, traumas, and mental overstrain), manifests itself after 1-2 months of long-term space flights due to sensory deprivation existing in space flight condition (Myasnikov, Zamaletdinov, 1997). In asthenisation, strong extrinsic stimuli may evoke a poor response, while on the other hand slight stimuli may produce a positive reaction (Myasnikov, Stepanova et al., 2000). A sign of deterioration in cosmonauts’ psychic condition is a frequent appearance of frankly negative emotional responses especially if they leave a lasting negative track behind themselves in the form of low mood.
    [Show full text]
  • Evidence Report: Risk of Adverse Cognitive Or Behavioral Conditions
    Evidence Report: Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders Human Research Program Behavioral Health and Performance Approved for Public Release: April 11, 2016 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 1 CURRENT CONTRIBUTING AUTHORS: Kelley J. Slack, Ph.D. Wyle Science Technology & Engineering Thomas J. Williams, Ph.D. Wyle Science Technology & Engineering Jason S. Schneiderman, Ph.D. Wyle Science Technology & Engineering Alexandra M. Whitmire, Ph.D. Wyle Science Technology & Engineering James J. Picano, Ph.D. Universities Space Research Association PREVIOUS CONTRIBUTING AUTHORS: Lauren B. Leveton, Ph.D. NASA Johnson Space Center Lacey L. Schmidt, Ph.D. Minerva Work Solutions Camille Shea, Ph.D. Houston Police Department 2 TABLE OF CONTENTS I. PRD RISK TITLE: RISK OF ADVERSE COGNITIVE OR BEHAVIORAL CONDITIONS AND PSYCHIATRIC DISORDERS ............................................................................................. 6 II. EXECUTIVE SUMMARY .................................................................................................... 9 III. INTRODUCTION ................................................................................................................ 11 IV. EVIDENCE ........................................................................................................................... 14 A. Space Flight Evidence .................................................................................................... 17 1. Sources
    [Show full text]
  • Behavioral Health and Performance Element, Human Research Program, Space Medicine Division, NASA Johnson Space Center; Houston, , Texas
    https://ntrs.nasa.gov/search.jsp?R=20150016966 2019-08-31T06:15:41+00:00Z Evidence Report: Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders Human Research Program Behavioral Health and Performance Approved for Public Release: Month DD, YYYY National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas CURRENT CONTRIBUTING AUTHORS: 1 Kelley J. Slack Wyle/LZ Technology Jason S. Schneiderman Wyle Lauren B. Leveton NASA Johnson Space Center Alexandra M. Whitmire Wyle James J. Picano Wyle PREVIOUS CONTRIBUTING AUTHORS: Camille Shea Houston Police Department Lacey L. Schmidt Minerva Work Solutions 2 TABLE OF CONTENTS I. PRD RISK TITLE: RISK OF ADVERSE COGNITIVE OR BEHAVIORAL CONDITIONS AND PSYCHIATRIC DISORDERS ............................................................................................. 6 II. EXECUTIVE SUMMARY .................................................................................................... 9 III. INTRODUCTION ................................................................................................................ 11 IV. EVIDENCE........................................................................................................................... 14 A. Space Flight Evidence .................................................................................................... 15 1. Sources of evidence .................................................................................................... 15 2. Occurrences of behavioral signs and
    [Show full text]
  • SPACE HABITABILITY Integrating Human Factors Into the Design Process to Enhance Habitability in Long Duration Missions
    SPACE HABITABILITY Integrating Human Factors into the Design Process to Enhance Habitability in Long Duration Missions vorgelegt von Master of Science (Dottore in Disegno Industriale) Irene Lia Schlacht aus Mailand Von der Fakultät V - Verkehrs- und Maschinensysteme. der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften Dr. -Ing. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Klaus Brieß Berichter: Prof. Dr.-Ing. Matthias Rötting Berichter: Prof. Melchiorre Masali (Unito) Berichter: Prof. Dr. Bernard H. Foing (VU Amsterdam & ESA ESTEC) Tag der wissenschaftlichen Aussprache: 17.10.2011 Berlin 2012 D 83 NOTE: the PDF version contains hyperlinks SPACE HABITABILITY Integrating Human Factors into the Design Process to Enhance Habitability in Long Duration Missions German Title: SPACE HABITABILITY Integration von Human Factors in den Entwicklungsprozess zur Verbesserung der Bewohnbarkeit für langandauernde Weltraummissionen Candidate Master of Science (Dottore in Disegno Industriale) Irene Lia Schlacht from Milan Dissertation approved from the Chair of Human-Machine Systems Department of Psychology and Ergonomics, Faculty V Technische Universität Berlin for the degree of Doctor of Engineering Science: Dr. Ing. Supervisors: Prof. Matthias Rötting (TU-Berlin) Prof. Melchiorre Masali (Unito) Prof. Bernard H. Foing (VU Amsterdam & ESA ESTEC) Prof. Takashi Toriizuka (Nihon University) Arch. Dr. Barbara Imhof (LIQUIFERS Systems Group) Day of the scientific debate: 17.10.2011 Published from the Technische Universität Berlin Berlin 2012 ii SPACE HABITABILITY Author contact information Irene Lia Schlacht Italy: +39 320 3168723 Deutschland: +49 0176 3588 2695 E-mail: irene.schlacht mail.polimi.it ( irene.schlacht gmail.com ) This thesis is available in electronic format (PDF file) from the Technische Universität Berlin Electronic Library System at: http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-34070 Quotation: Schlacht, I.L.
    [Show full text]
  • Space Medicine in Project Mercury
    NASA SP-4u03 RECE~VED SEP 29 1965 AED LIBRARY NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA SP-4003 SPACE MEDICINE IN PROJECT MERCURY By Mae Mills Link OFFICE OF MANNED SPACE FLIGHT Scientific anJ Technical Information Division 1 9 6 5 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C.. 20402 - Price $1.00 Foreword OR CENTURIES MAN HAS DREAMED of exploring .the universe. FFinally an expanding rocket technology brought with it a rea­ sonable expectation of achieving this dream, and man was quick to accept the challenge. Project Mercury was an organized expres­ sion of man's willingness to face the risks invol ved in exploring the new frontier of space, and of his confidence in our Nation's ability to support him technically and professionally in this ex­ citing adventure. Project Mercury is now legend. The story of its many activi­ ties is an important chapter in the history of our times. Its spot­ less record of successes is a tribute to all those who made up the Mercury team. Not the least of the groups composing the Mercury team was that charged with responsibility for the health of the astronauts. This select biomedical group discharged ,dtll near perfection a variety of tasks involved in choosing and training our Nation's first space voyagers, monitoring their medical status during each flight, and finally assessing their condition after the flight. In this volume the author sets forth a chronological account of a unique medical support program.
    [Show full text]
  • Human System Laboratory Publications
    HUMAN SYSTEM LABORATORY PUBLICATIONS January 2020 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics Human Systems Laboratory 70 Vassar Street, Room 37-219 Cambridge, Massachusetts 02139 NOTES Publications are listed in reverse chronological order, and include journal articles, abstracts, and technical reports. MVL student theses are indexed in a separate list, "Man-Vehicle Laboratory Theses," which is available upon request. Copies of all publications are available in limited numbers upon request. When requesting publications, give the MVL publication number listed with each citation. Numbers are assigned when author makes publication available for distribution, usually when it is accepted for publication or is in press. Some publication numbers are missing from sequence because the manuscripts originally assigned to them were reassigned to the year of actual publication in the open literature. Page 1 2020 Clark, Torin, Young, Laurence R., “A gravity-dose response: Human spatial orientation perception in hypo-gravity” Abstract, 2020 Next-generation Suborbital Researchers Conference (NSRC), Broomfield, Colorado, March 2-4, 2020. 2019 Dixon, Philippe, Leia Stirling, Xu Xu, Chien-Chi Chang, Jack Dennerlein, and Jeff Schiffman. "Aging may negatively impact movement smoothness during stair negotiation." Human Movement Science (In Press). Stirling, Leia, Ho Chit Siu, Eric Jones, and Kevin Duda. "Human Factors Considerations for Enabling Functional Use of Exosystems in Operational Environments." IEEE Systems Journal (In Press). Gibson, Alison, Andrea Webb, and Leia Stirling. "Evaluation of a Visual-Tactile Multimodal Display for Surface Obstacle Avoidance During Walking." IEEE Transactions on Human-Machine Systems (In Press). Diaz, Ana, Heldt, Thomas, Young, Laurence R., “Computational Model of Cardiovascular Response to Centrifugation and Lower- body Cycling Exercise”, J Appl Physiol (1985).
    [Show full text]