SPACE HABITABILITY Integrating Human Factors Into the Design Process to Enhance Habitability in Long Duration Missions

Total Page:16

File Type:pdf, Size:1020Kb

SPACE HABITABILITY Integrating Human Factors Into the Design Process to Enhance Habitability in Long Duration Missions SPACE HABITABILITY Integrating Human Factors into the Design Process to Enhance Habitability in Long Duration Missions vorgelegt von Master of Science (Dottore in Disegno Industriale) Irene Lia Schlacht aus Mailand Von der Fakultät V - Verkehrs- und Maschinensysteme. der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften Dr. -Ing. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Klaus Brieß Berichter: Prof. Dr.-Ing. Matthias Rötting Berichter: Prof. Melchiorre Masali (Unito) Berichter: Prof. Dr. Bernard H. Foing (VU Amsterdam & ESA ESTEC) Tag der wissenschaftlichen Aussprache: 17.10.2011 Berlin 2012 D 83 NOTE: the PDF version contains hyperlinks SPACE HABITABILITY Integrating Human Factors into the Design Process to Enhance Habitability in Long Duration Missions German Title: SPACE HABITABILITY Integration von Human Factors in den Entwicklungsprozess zur Verbesserung der Bewohnbarkeit für langandauernde Weltraummissionen Candidate Master of Science (Dottore in Disegno Industriale) Irene Lia Schlacht from Milan Dissertation approved from the Chair of Human-Machine Systems Department of Psychology and Ergonomics, Faculty V Technische Universität Berlin for the degree of Doctor of Engineering Science: Dr. Ing. Supervisors: Prof. Matthias Rötting (TU-Berlin) Prof. Melchiorre Masali (Unito) Prof. Bernard H. Foing (VU Amsterdam & ESA ESTEC) Prof. Takashi Toriizuka (Nihon University) Arch. Dr. Barbara Imhof (LIQUIFERS Systems Group) Day of the scientific debate: 17.10.2011 Published from the Technische Universität Berlin Berlin 2012 ii SPACE HABITABILITY Author contact information Irene Lia Schlacht Italy: +39 320 3168723 Deutschland: +49 0176 3588 2695 E-mail: irene.schlacht mail.polimi.it ( irene.schlacht gmail.com ) This thesis is available in electronic format (PDF file) from the Technische Universität Berlin Electronic Library System at: http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-34070 Quotation: Schlacht, I.L. (2012) SPACE HABITABILITY: Integrating Human Factors into the Design Pro- cess to Enhance Habitability in Long Duration Missions. (Doctoral Dissertation). Technische Universitaet Berlin. Retrieved from http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-34070 iii To the ones who think that the beauty of life is part of human progress. iv SPACE HABITABILITY Abstract v Abstract Astronauts work in the most extreme environments and under life-threatening conditions in order to expand human knowledge in outer space. Radiation, adaptation to microgravity, isola- tion, and user-system interaction are some of the many challenges that strongly affect the level of habitability in space and, as a consequence, human performance, safety, and well-being. Knowing how these elements impact on humans is of paramount importance when it comes to ensuring user performance, safety, and mission success. Until now, human factors – the disci- pline that is concerned with the interactions between humans and other elements of a system – have not been taken into account appropriately, which is why the level of habitability on space stations, from the Mir to the current International Space Station, is reportedly low. As under- lined by the European Cooperation for Space Standardization, the integration of sound human factors into all project phases, starting from the very beginning, has become a primary necessity, in particular considering the approaching scenario of long duration/range missions. As a means for dealing with this need, this thesis proposes a new conceptual model, which focuses on in- corporating human factors principles right from the preliminary design phase into all aspects of long-duration/range human mission projects in order to improve habitability. The new conceptual model, referred to herein as the ‘Integrated Design Process (IDP)’, incorpo- rates three key design principles: habitability factors, a user-centered approach, and a holistic methodology. The conceptual model was tested against existing models in four separate studies. Specifically, study one involved students from various disciplines employing the model to assist in the design of a Moon Base. Study two involved the Extreme-Design research group employ- ing the model to investigate habitability debriefing procedures and sensor stimuli during a simu- lation mission at the Mars Desert Research Station. Study three involved students from the Hu- man-Machine System Chair at TU-Berlin designing space equipment for human-machine- environment system operations. The fourth study involved a multidisciplinary team at the Ger- man Space Agency (DLR) employing the model to design a closed-loop habitat facility for long duration space missions. The results of these studies revealed that employing the IDP model during the design phase improved self-rated habitability when compared to the current methods. These results suggest that employing such a model during the design phase of a space mission will improve habitability of the item under development, thus improving user performance, safety, and ultimately mission success. The implications of such a model extend beyond appli- cation in space and include other environments where individuals are expected to live and work in confined areas for extended periods of time, such as in research laboratories in Antartica. It can also be applied in megacities as well as in retirement homes. vi SPACE HABITABILITY Abstract auf Deutsch Astronauten arbeiten in den extremsten Umgebungen und unter lebensgefährlichen Bedingungen, um das Wissen der Menschheit über den Weltraum zu erweitern. Radioaktive Strahlung, Anpassung an die Schwerelosigkeit, Isolation und Mensch-Technik-Interaktion sind nur einige der vielen Herausforderungen, welche sich gravierend auf die Bewohnbarkeit des Weltalls auswirken und damit auch auf die Leistungsfähigkeit, die Sicherheit und das Wohlbefinden eines Menschen. Kenntnisse über den Einfluss dieser Faktoren auf den Menschen sind von größter Bedeutung wenn es darum geht, Leistungsfähigkeit, Sicherheit und den Erfolg der Mission zu gewährleisten. Human Factors, eine Fachrichtung welche die Interaktion zwischen Menschen und anderen Elementen des Systems behandelt, wurde bis heute nicht angemessen berücksichtigt, welches Berichten zufolge die Ursache für das geringe Niveau der Bewohnbarkeit von Raumstationen, von der Mir bis hin zur derzeitigen Internationalen Raumstation, ist. Wie die European Cooperation for Space Standardization betonte ist die Integration von fundiertem Human Factors-Wissen in allen Projektphasen von Anfang an eine primäre Notwendigkeit, insbesondere in Anbetracht des immer warscheinlicher werdenden Szenarios einer Langzeitmission. In dieser Arbeit wird ein neues konzeptionelles Modell als Lösungsweg für den Umgang mit diesen Bedürfnissen vorgeschlagen, welches den Schwerpunkt auf die Einbeziehung von Human-Factors-Prinzipien in alle Aspekte einer bemannten Langzeitmission setzt, um die Bewohnbarkeit im All zu verbessern. Das neue konzeptionelle Modell, nachstehend als "Integrated Design Process (IDP)" bezeichnet, umfasst drei wichtige Designprinzipien: Faktoren der Bewohnbarkeit, einen benutzerzentrierten Ansatz und eine ganzheitliche Methodik. Das konzeptionelle Modell wurde in vier Studien im Vergleich zu existierenden Modellen untersucht. An der ersten Studie waren Studenten aus verschiedenen Fachrichtungen beteiligt, welche das Modell einsetzten, um die Gestaltung einer Mondbasis zu unterstützen. An der zweiten Studie war der Arbeitskreis Extreme-Design beteiligt, welcher das Modell einsetzte, um Verfahren zum Bewohnbarkeits-Debriefing sowie Sensorenreize während einer simulierten Mission auf der Mars Desert Research Station zu untersuchen. An der dritten Studie waren Studenten des Lehrstuhls Mensch-Maschine-Systeme der TU Berlin beteiligt, welche Raumausrüstung für Systemabläufe in einer Mensch-Maschine- Umgebung entwarfen. An der vierten Studie war ein interdisziplinäres Team im Deutschen Zentrum für Luft- und Raumfahrt (DLR) beteiligt, welches das Modell beim Entwurf eines closed-loop Habitat-Systems für Langstreckenmissionen anwendete. Die Ergebnisse dieser Studien zeigten, dass im Vergleich zu den aktuellen Methoden die Verwendung des IDP- Modells während der Entwurfsphase die Bewohnbarkeit verbessert. Die Vermutung liegt daher nahe, dass die Verwendung eines solchen Modells in der Planungsphase einer Weltraummission die Bewohnbarkeit und als Folge die Leistungsfähigkeit des Menschen und dessen Sicherheit verbessern und letztendlich zum Erfolg der Mission beitragen kann. Die Auswirkungen eines solchen Modells gehen über die Anwendung im Weltraum hinaus und schließen auch andere Umgebungen mit ein, in welchen Menschen in geschlossenen Räumen für längere Zeit leben und arbeiten müssen, wie beispielsweise in Forschungslaboren in der Antarktis, aber auch in Megastädten und Altenheimen. Acknowledgments vii Acknowledgments First and foremost, I would like to acknowledge my supervisors: Prof. Matthias Rötting (from the Chair of Human-Machine Systems at Technische Universität Berlin – MMS TU-Berlin –, Germany), Prof. Melchiorre Masali (from the Chair of Anthropology at Università di Torino – Unito – in Italy), Prof. Bernard H. Foing (from the International Lunar Exploration Working Group – ILEWG – at the European Space Agency (ESA) and Vrije Universiteit Amsterdam (VU Amsterdam), Holland), Prof. Takashi Toriizuka (from the Department of Conceptual De- sign at Nihon University College of Industrial Technology – Nichidai
Recommended publications
  • The Surrender Software
    Scientific image rendering for space scenes with the SurRender software Scientific image rendering for space scenes with the SurRender software R. Brochard, J. Lebreton*, C. Robin, K. Kanani, G. Jonniaux, A. Masson, N. Despré, A. Berjaoui Airbus Defence and Space, 31 rue des Cosmonautes, 31402 Toulouse Cedex, France [email protected] *Corresponding Author Abstract The autonomy of spacecrafts can advantageously be enhanced by vision-based navigation (VBN) techniques. Applications range from manoeuvers around Solar System objects and landing on planetary surfaces, to in -orbit servicing or space debris removal, and even ground imaging. The development and validation of VBN algorithms for space exploration missions relies on the availability of physically accurate relevant images. Yet archival data from past missions can rarely serve this purpose and acquiring new data is often costly. Airbus has developed the image rendering software SurRender, which addresses the specific challenges of realistic image simulation with high level of representativeness for space scenes. In this paper we introduce the software SurRender and how its unique capabilities have proved successful for a variety of applications. Images are rendered by raytracing, which implements the physical principles of geometrical light propagation. Images are rendered in physical units using a macroscopic instrument model and scene objects reflectance functions. It is specially optimized for space scenes, with huge distances between objects and scenes up to Solar System size. Raytracing conveniently tackles some important effects for VBN algorithms: image quality, eclipses, secondary illumination, subpixel limb imaging, etc. From a user standpoint, a simulation is easily setup using the available interfaces (MATLAB/Simulink, Python, and more) by specifying the position of the bodies (Sun, planets, satellites, …) over time, complex 3D shapes and material surface properties, before positioning the camera.
    [Show full text]
  • Report Resumes
    REPORT RESUMES ED 019 218 88 SE 004 494 A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6. LINCOLN PUBLIC SCHOOLS, NEBR. PUB DATE 67 EDRS PRICEMF.41.00 HC-S10.48 260P. DESCRIPTORS- *ELEMENTARY SCHOOL SCIENCE, *PHYSICAL SCIENCES, *TEACHING GUIDES, *SECONDARY SCHOOL SCIENCE, *SCIENCE ACTIVITIES, ASTRONOMY, BIOGRAPHIES, BIBLIOGRAPHIES, FILMS, FILMSTRIPS, FIELD TRIPS, SCIENCE HISTORY, VOCABULARY, THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT CATEGORIES ARE (1) DEVELOPMENT OF FLIGHT, (2) PIONEERS OF THE AIR (BIOGRAPHY),(3) ARTIFICIAL SATELLITES AND SPACE PROBES,(4) MANNED SPACE FLIGHT,(5) THE VASTNESS OF SPACE, AND (6) FUTURE SPACE VENTURES. SUGGESTIONS ARE MADE THROUGHOUT FOR USING THE MATERIAL AND THEMES FOR DEVELOPING INTEREST IN THE REGULAR LEARNING EXPERIENCES BY INVOLVING STUDENTS IN AEROSPACE ACTIVITIES. INCLUDED ARE LISTS OF SOURCES OF INFORMATION SUCH AS (1) BOOKS,(2) PAMPHLETS, (3) FILMS,(4) FILMSTRIPS,(5) MAGAZINE ARTICLES,(6) CHARTS, AND (7) MODELS. GRADE LEVEL APPROPRIATENESS OF THESE MATERIALSIS INDICATED. (DH) 4:14.1,-) 1783 1490 ,r- 6e tt*.___.Vhf 1842 1869 LINCOLN PUBLICSCHOOLS A RESOURCEBOOK OF AEROSPACEACTIVITIES U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION K-6) THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. 1919 O O Vj A PROJECT FUNDED UNDER TITLE HIELEMENTARY AND SECONDARY EDUCATION ACT A RESOURCE BOOK OF AEROSPACE ACTIVITIES (K-6) The work presentedor reported herein was performed pursuant to a Grant from the U.
    [Show full text]
  • Space Colonies & Lunar Bases
    Space Colonies & Why Build Colonies? Lunar Bases ! It isn’t so expensive – US military is many 100’s of billions $ a year ! Fewer casualties than war – 17 astronauts in 45 years of space Karen J. Meech, flight were lost Astronomer ! Humans have an “expansionist” spirit – Much more real estate! ! Valuable resources could be brought to Earth. Institute for Astronomy ! Enough solar energy to rid the world of oil dependency could be brought to Earth for less than the cost of the Iraq war ! Profitable: e.g. 1 Metallic NEO $20 trillion, 3He as a fuel . ! Maybe the time has not yet come, but someday we will need what space can provide Space Habitat Design Shielding – Radiation Protection Considerations ! Shielding characterization ! Aereal density, d [gm/cm2] ! Physiological Needs ! Total amount of material matters ! Shielding ! Type of material: secondary ! Ionizing radiation & particles 3 2 ! Meteoritic impact ! 1 Earth Atmosphere: 10 gm/cm ! Atmospheric containment ! ! = mass / volume ! What pressure needed? ! ! = mass / (area ! thickness) ! Psychological Needs ! What mix of gasses? ! ! = m/(ax) = d / x ! Environment stress ! Gravitational acceleration ! x = thickness = d / ! ! Isolation ! Why it is needed 3 ! Personal space ! How to do it Substance ! [gm/cm ] d / !" x [cm] x [m] ! Illumination / Energy 3 ! Entertainment Lead 8 10 /8 125 1.25 ! ! Aesthetics Food / Water Styrofoam 0.01 103/10-2 105 103 ! Space Requirements Water 1 103/1 103 10 Shielding Types – Active Shielding Types – Passive ! Enough matter between us & radiation ! Examples
    [Show full text]
  • 1 Practical Rendezvous Scenario For
    PRACTICAL RENDEZVOUS SCENARIO FOR TRANSPORTATION MISSIONS TO CIS-LUNAR STATION IN EARTH–MOON L2 HALO ORBIT Naomi Murakami(1), Satoshi Ueda(1), Toshinori Ikenaga(1), Maki Maeda(1), Toru Yamamoto(1), and Hitoshi Ikeda(1) (1)Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan (1)+81-50-3362-3725, [email protected] Abstract: Plans to establish a new international space station in the vicinity of the Moon have drawn attention as a potential gateway for future missions. Assuming that such a station will be constructed, various rendezvous missions will be performed, including logistics flight and crew transportation missions. In the low Earth orbit (LEO), many logistics flight missions have been performed, such as the H-II Transfer Vehicle (HTV) and the Automated Transfer Vehicle (ATV) missions for the International Space Station (ISS), and rendezvous operation technology has been well established. However, in cis-lunar orbits, the dynamics of relative motion are different from those in LEOs, and the GPS- based navigation scheme, which is the key navigation method in LEO rendezvous missions, cannot be applied. Hence, a different type of rendezvous scheme is necessary for application to rendezvous missions in cis-lunar orbits. In this study, we suggest a practical rendezvous scenario for logistics flight missions to the future cis-lunar space station in the Earth–Moon L2 halo orbit and clarify the problems and requirements regarding guidance, navigation, and control (GN&C) for cis-lunar rendezvous. Keywords: Rendezvous, Cis-lunar station, Earth–Moon L2 halo, GN&C. 1. Introduction The updated Global Exploration Roadmap delivered by the International Space Exploration Coordination Group (ISECG) outlines strategies for human and robotic exploration to the Moon, asteroids, and Mars [1].
    [Show full text]
  • Christa Mcauliffe, Teacher Astronaut
    0106C Christa McAuliffe 10/26/05 10:43 PM Page 40 Christa McAuliffe, Teacher Astronaut S ONE OF her training exercises in becoming the first teacher astronaut, A Christa McAuliffe had to curl up inside a 36-inch-diameter nylon ball. When she was zipped up, she found herself in total darkness. She didn’t know when she’d be let out. Christa wore electrodes and transmitters to see how she would react to being closed in, since on the space shuttle she’d have to share a living space that measured only 10 by 13 feet (the size of her kitchen) with six people, and she and the other astronauts would eat, sleep, go to the bathroom, work, and relax there; it was no place for someone with claustrophobia. Christa thought she would start yelling and try to claw her way out, but she lay back, folded her arms across her stomach, and imagined herself floating in space. As Christa McAuliffe a result, the 15 minutes she spent inside the nylon ball were very peaceful. At the end of the exercise, she asked if she could take the ball home. “When things start to get crazy, I can just set the timer and tell the kids, ‘O.K., Mom’s going into the sphere now.’” Christa, a high-school social studies teacher from New Hampshire, first heard about the teacher astronaut program on the radio while driving with her husband, Steve. The smile that lit Christa’s face told Steve she was interested. “Go for it,” he said. When she put off filling out the Women astronauts stand with the Personal Rescue Enclosure (the rescue ball).
    [Show full text]
  • Project Selene: AIAA Lunar Base Camp
    Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location .
    [Show full text]
  • January 6, 1997 KSC Contact: Joel Wells KSC Release No
    January 6, 1997 KSC Contact: Joel Wells KSC Release No. 1-97 Note to Editors/News Directors: KSC TO CELEBRATE GRAND OPENING OF APOLLO/SATURN V CENTER JAN. 8 On Wednesday, Jan. 8, news media representatives will have several opportunities to interview former Apollo astronauts, NASA and KSC officials, and Space Shuttle astronauts at the new Apollo/Saturn V Center. From 11 a.m. to 3 p.m. members of the media will be able to interview several former Apollo astronauts at the Apollo/Saturn V Center. Media interested in conducting interviews during this time block must contact Melissa Tomasso, KSC Visitor Center, at (407) 449-4254 by close of business on Jan. 7. She will schedule all interview appointments. Media members should arrive at the KSC Press Site 30 minutes before their scheduled interview time for transport to the Apollo/Saturn V Center. In addition, a formal grand opening gala is planned for Wednesday evening. Several Apollo astronauts will also be available for interview at 6 p.m. at the Apollo/Saturn V Center. Media interested in this opportunity must be at the KSC Press Site by 5:30 p.m. for transport to the new facility. Invited guests and media wishing to attend the gala at the regular time will meet at the KSC Visitor Center (KSCVC) between 6:30 p.m. and 7:30 p.m. for transport to the Apollo/Saturn V Center. A tour of the new facility’s shows and exhibits is included. A ceremony featuring presentations from NASA Administrator Dan Goldin, KSC Director Jay Honeycutt, and former astronauts John Young and Eugene Cernan will begin at 8 p.m.
    [Show full text]
  • European Astronaut Selection ESA Prepares for the Missions of the 21 St Century
    European Astronaut Selection ESA prepares for the missions of the 21 st century With the selection of its first astronauts ESA’s human spaceflight activities in 1978 and the first Spacelab mission are now entering a new era, with ESA in 1983, the European Space Agency astronauts working aboard the (ESA) took its first steps into human International Space Station (ISS), spaceflight. The advent of the Columbus Columbus starting operations, and orbital laboratory project required a the new ‘ATV’ cargo ship delivering second selection of astronauts in 1992. fresh supplies to the Station. The exploration of the Solar System will be one of humanity’s most exciting adventures in the near future. All of the world’s spacefaring nations are preparing for this huge enterprise, and an astronaut corps is essential for Europe, thanks to ESA, to take part in this endeavour. Now is the time for ESA to seek new talents to reinforce its astronaut team, to prepare for missions to the ISS, the Moon and beyond. T The Selection | How? When? Where? h e S e l e c t i o n How can I apply? You can apply online via the ESA web portal (www.esa.int/ astronautselection). Registration is in two steps: • pre-registration: provide identity information and a JAR-FCL 3, Class 2 medi- cal examination certificate, from an Aviation Medical Examiner who has been certified by his/her national Aviation Medical Authority; • a password then allows you to access the application form. T The Selection | How? When? Where? h e S e l e • initial selection according to basic criteria; c t i What are the o • psychological tests for selected candidates; n • second round of psychological tests and interviews; steps in the • medical tests; selection • job interview.
    [Show full text]
  • EAC: the European Astronaut Centre
    EAC: The European Astronaut Centre Activities within the Single European Astronaut Corps G. Thiele participated as Mission Specialist in the Shuttle Radar Topography Mission (STS-99), which carried out the three- dimensional mapping of most of the Earth’s land surface. Mission- preparation support for STS-100/ MPLM, with ESA Astronaut U. Guidoni, is being provided at Johnson Space Centre (JSC). An agreement with ASI on the co- operation related to this first mission by a European astronaut to the ISS is being prepared. Thomas Reiter received the ‘Space Award 2000’ from the Discovery Channel and the ‘Verein zur Förderung der Raumfahrt’ during the year. Claudie André-Deshays and Jean Pierre Haigneré received the ‘Ordre du Courage’ from the President of the Russian Federation. The foyer of the European Astronaut Centre (EAC) Preparations for Astronaut Activities during the ISS Era In September, the Multilateral Crew Operations Panel (MCOP) finalised the Charter and Disciplinary Policy for ISS Crew. The MCOP is the primary forum for the co-ordination and resolution of top-level ISS crew matters, including the certification, assignment and All 16 current members of the European Astronaut Corps, together at the 10th Anniversary of EAC, on 17 May 87 Dr. Ernst Messerschmid, Head of EAC, evaluation of ISS astronauts, as well as opening the Celebrations the policies for training and operations. The MCOP Charter, the Disciplinary Policy and the Crew Code of Conduct were subsequently approved by the ISS Multilateral Control Board (MCB) at its first meeting. As a result of the arrangements reached with DLR, CNES and ASI, 23 staff have been integrated into the European Astronaut Centre (EAC) to provide astronaut training, medical operations and astronaut support.
    [Show full text]
  • Human Mars Mission Architecture Plan to Settle the Red Planet with 1000 People
    Human Mars Mission Architecture Plan to Settle the Red Planet with 1000 People Malaya Kumar Biswal M1, Vishnu S2, Devika S Kumar3, Sairam M4 Pondicherry University, Kalapet, Puducherry, India - 605 014 Abstract Exploration is one of the attentive endeavor to mankind and a strategy for evolution. We have been incessantly reconnoitering our planet and universe from Mesopotamian era to modern era. The progression of rocketry and planetary science in past century engendered a futuristic window to explore Mars which have been a source of inspiration to hundreds of astronomers and scientists. Globally, it invigorated space exploration agencies to make expedition for planetary exploration to Mars and Human Mars Missions. Scientists and engineers have portrayed numerous Human Mars Mission proposals and plans but currently the design reference mission 5.0 of NASA is the only mission under study. Here we propose a mission architecture for permanent Human Mars Settlement with 1000 peoples with multiple launch of sufficient cargoes and scientific instruments. Introduction: This paper focuses on design of Human Mars Mission with reference to the instructions by Mars Society. We proposed mission architecture for carrying 1000 peoples onboard spaceship (Marship). Overall mission architecture outline map and Human Mars Settlement Map is provided next to this page. We divided the whole mission architecture into three phases starting from orbital launch of launch vehicles and Mars colony establishment. We proposed novel habitat for protection during robust dust storms, various method to make the colony economically successful, minerals and their applications, administrative methods, water extraction, plantation, landing patterns, estimation of masses of food to be carried out and customizable system for re-use and recycling.
    [Show full text]
  • Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter
    Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter Pierre J. Bertrand,1 Savannah L. Niles,2 and Dava J. Newman1,3 turn back now would be to deny our history, our capabilities,’’ said James Michener.1 The aerospace industry has successfully 1 Man-Vehicle Laboratory, Department of Aeronautics and Astro- commercialized Earth applications for space technologies, but nautics; 2Media Lab, Department of Media Arts and Sciences; and 3 human space exploration seems to lack support from both fi- Department of Engineering Systems, Massachusetts Institute of nancial and human public interest perspectives. Space agencies Technology, Cambridge, Massachusetts. no longer enjoy the political support and public enthusiasm that historically drove the human spaceflight programs. If one uses ABSTRACT constant year dollars, the $16B National Aeronautics and While space-based technologies for Earth applications are flourish- Space Administration (NASA) budget dedicated for human ing, space exploration activities suffer from a lack of public aware- spaceflight in the Apollo era has fallen to $7.9B in 2014, of ness as well as decreasing budgets. However, space exploration which 41% is dedicated to operations covering the Internati- benefits are numerous and include significant science, technological onal Space Station (ISS), the Space Launch System (SLS) and development, socioeconomic benefits, education, and leadership Orion, and commercial crew programs.2 The European Space contributions. Recent robotic exploration missions have
    [Show full text]
  • Battling Homesickness on Mars the Relationship Between Relatedness, Well-Being, Performance, and Displacement in a Mars Simulation Study
    BATTLING HOMESICKNESS ON MARS THE RELATIONSHIP BETWEEN RELATEDNESS, WELL-BEING, PERFORMANCE, AND DISPLACEMENT IN A MARS SIMULATION STUDY Word count: 19,040 Thomas J. N. Van Caelenberg Student number: 00907011 Supervisors: Prof. Wim Beyers, Dr. Sophie Goemaere A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Clinical Psychology Academic year: 2016 - 2017 Abstract During a Mars mission, crew will simultaneously be confined to small shared living quarters, and will experience extreme geographical and temporal isolation from all other people. Under these circumstances, group tensions have been known to cause communication issues with mission support; a phenomenon called displacement. To gain further insight in these challenges, this study investigated the effects of the psychological need for relatedness as described by the Self-Determination theory, a macro theory on human motivation. During a yearlong Mars simulation, HI-SEAS IV, six crewmembers filled out weekly self-report questionnaires measuring their level of relatedness with friends and family at home as well as fellow crewmembers living inside the Mars simulation. Crew further filled out questionnaires measuring their well-being, performance, and displacement with mission support staff outside the station. Using hierarchical modelling, the results indicated that relatedness was a predictor of crewmembers’ well-being, performance and displacement. Relatedness with fellow crewmembers was a positive predictor of crewmembers’ well-being and performance, and was a negative predictor of displacement. Relatedness with friends and family at home was a positive predictor of well- being and a negative predictor of displacement. Overall, the results provide evidence for the presence of the psychological need for relatedness as affecting crewmembers’ well-being, work performance, and displacement toward mission support, successfully applying the Self-Determination theory to a spaceflight setting.
    [Show full text]