ACD Fotocanvas Print
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Complete Mitochondrial Genome of the Fall Webworm, Hyphantria
Int. J. Biol. Sci. 2010, 6 172 International Journal of Biological Sciences 2010; 6(2):172-186 © Ivyspring International Publisher. All rights reserved Research Paper The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) Fang Liao1,2, Lin Wang3, Song Wu4, Yu-Ping Li4, Lei Zhao1, Guo-Ming Huang2, Chun-Jing Niu2, Yan-Qun Liu4, , Ming-Gang Li1, 1. College of Life Sciences, Nankai University, Tianjin 300071, China 2. Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300457, China 3. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 101113, China 4. College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China Corresponding author: Y. Q. Liu, College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China; Tel: 86-24-88487163; E-mail: [email protected]. Or to: M. G. Li, College of Life Sciences, Nankai University, Tianjin 300071, China; Tel: 86-22-23508237; E-mail: [email protected]. Received: 2010.02.03; Accepted: 2010.03.26; Published: 2010.03.29 Abstract The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other le- pidopterans. -
Healthy Planet, Healthy People Guide
HEALTHY PLANET, HEALTHY PEOPLE A Guide to Human Health and Biodiversity UNEP, 2011-2012 declared “Year of the Bat” Bats provide a range of biodiversity benefits to humans … New drug synthesized from vampire bat saliva in development … Could help stroke victims … SAN FRANCISCO, Sep. 6, 2012 … Yosemite National Park … hantavirus warning … 22,000 visitors may have been exposed to deadly mouse-borne disease … confirmed cases growing “Healthy people are better able to learn, be productive and contribute to their communities. At the same time, a healthy environment is a prerequisite for good health.” Dr. Margaret Chan, Director-General of the World Health Organization, 22 June 2012 Healthy Planet Healthy People: A Guide to Human Health and Biodiversity (This page is intentionally left blank) Citation: It is suggested this Guide be cited as: Bridgewater, Peter; Régnier, Mathieu; and Wang Zhen. (2012). HEALTHY PLANET, HEALTHY PEOPLE ‐ A Guide to Human Health and Biodiversity. Secretariat of the Convention on Biological Diversity, Montreal. ACKOWLEDGEMENTS: Alice Barbe, Kathryn Campbell, David Cooper and a number of reviewers who all provided helpful comments and examples. Photo credits (alphabetical order of photographer): P39 bushmeat picture © E.Bennett/WCS, 2009 P47 © Boréalis, 2009 P29, 56, 60, 61 © Peter Bridgewater P39 H5N1 virus © Centre for Disease Control and Prevention, United States of America Government P9, 48, 52 © Christine Estrada P13, 15, 30, 52,58 (marine fresco) © Mathieu Régnier P58 © Urbainculteurs, 2012 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
1994 IUCN Red List of Threatened Animals
The lUCN Species Survival Commission 1994 lUCN Red List of Threatened Animals Compiled by the World Conservation Monitoring Centre PADU - MGs COPY DO NOT REMOVE lUCN The World Conservation Union lo-^2^ 1994 lUCN Red List of Threatened Animals lUCN WORLD CONSERVATION Tile World Conservation Union species susvival commission monitoring centre WWF i Suftanate of Oman 1NYZ5 TTieWlLDUFE CONSERVATION SOCIET'' PEOPLE'S TRISr BirdLife 9h: KX ENIUNGMEDSPEaES INTERNATIONAL fdreningen Chicago Zoulog k.J SnuicTy lUCN - The World Conservation Union lUCN - The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organisations in a unique world partnership: some 770 members in all, spread across 123 countries. - As a union, I UCN exists to serve its members to represent their views on the world stage and to provide them with the concepts, strategies and technical support they need to achieve their goals. Through its six Commissions, lUCN draws together over 5000 expert volunteers in project teams and action groups. A central secretariat coordinates the lUCN Programme and leads initiatives on the conservation and sustainable use of the world's biological diversity and the management of habitats and natural resources, as well as providing a range of services. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the field projects it supervises. Operations are increasingly decentralised and are carried forward by an expanding network of regional and country offices, located principally in developing countries. I UCN - The World Conservation Union seeks above all to work with its members to achieve development that is sustainable and that provides a lasting Improvement in the quality of life for people all over the world. -
Inventory of Environmental Work in China
INVENTORY OF ENVIRONMENTAL WORK IN CHINA In this fifth issue of the China Environment Series, the Inventory of Environmental Work in China has been updated and we made extra effort to add many new groups, especially in the Chinese organization section. To better highlight the growing number of U.S. universities and professional associations active in China we have created a separate section. In the past inventories we have gathered information from U.S. government agencies; from this year forward we will be inventorying the work done by other governments as well. This inventory aims to paint a clearer picture of the patterns of aid and investment in environmental protection and energy-efficiency projects in the People’s Republic of China. We highlight a total of 118 organizations and agencies in this inventory and provide information on 359 projects. The five categories of the inventory are listed below: Part I (p. 138): United States Government Activities (15 agencies/organizations, 103 projects) Part II (p. 163): U.S. and International NGO Activities (33 organizations, 91 projects) Part III (p. 190): U.S. Universities and Professional Association Activities (9 institutions, 27 projects) Part IV (p. 196): Chinese and Hong Kong NGO and GONGO Activities (50 organizations, 61 projects) Part V (p. 212): Bilateral Government Activities (11 agencies/organizations, 77 projects) Since we have expanded the inventory, even more people than last year contributed to the creation of this inventory. We are grateful to all of those in U.S. government agencies, international and Chinese nongovernmental organizations, universities, as well as representatives in foreign embassies who generously gave their time to compile and summarize the information their organizations and agencies undertake in China. -
African Butterfly News Is Being Circulated a Bit Earlier Than Usual, As I Will Be Away from 25 April to 15 May
MAY 2019 EDITION: ABN 2019 - 3 AFRICAN (MARCH AND APRIL 2019) BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to May’s newsletter! May’s edition of African Butterfly News is being circulated a bit earlier than usual, as I will be away from 25 April to 15 May. If anyone has any photographs or trip reports from late April, please send them to me ([email protected]) and they will be included in July’s newsletter. While butterfly numbers do seem a little better than last year (refer to BUTTERFLY INDEX), it’s been another tough season with no sightings whatsoever of two of our Critically Endangered species, the Waterberg Copper (Erikssonia edgei) and Brenton Blue (Orachrysops niobe). I have a sense that our night-flying lepidoptera are faring even worse, possibly a result of light pollution, in addition to the other damaging influences. On a more positive note, there have been some good records from KwaZulu-Natal in recent months, such as the Deceptive Diadem (Hypolimnas deceptor deceptor) and Bicoloured Paradise Skipper (Abantis bicolor) from Krantzkloof, Millar’s Buff (Deloneura millari millari) from Fawn Leas and Zulu Buff (Teriomima zuluana) from Manguzi. In addition, a new locality for Atlantic Yellow Skolly (Thestor dicksoni malagas) was found at Jacob’s Bay (refer to REGIONAL ROUNDUP). Caterpillar Rearing Group meeting and workshop The Caterpillar Rearing Group (CRG) and LepSoc Africa held a workshop at Krantzkloof Nature Reserve on Saturday 6 April. Hermann Staude has undertaken a series of talks around South Africa, to promote the CRG and to inform the public about what has been achieved and what it hopes to accomplish in future. -
Flügel Hinter Glas
Flügel hinter Glas Der Insektenhandel in Deutschland unter besonderer Berücksichtigung der Schmetterlinge (Lepidoptera) von Peter Schütz Europe - Deutschland WWF Deutschland Herausgegeben von TRAFFIC-Europe/Umweltstiftung WWF-Deutschland, Frankfurt am Main © Copyright: TRAFFIC-Europe/ Umweltstiftung WWF-Deutschland, Frankfurt am Main, 2000 TRAFFIC © Copyright bei WWF-International, Gland Alle Rechte vorbehalten. Nachdruck, auch auszugsweise, nur mit Genehmigung des Herausgebers und unter Nen- nung von TRAFFIC-Europe. Die in dieser Arbeit dargestellten Meinungen und Aussa- gen sind jeweils mit Quellenangaben versehen oder Be- obachtungen des Autors. Sie stellen nicht notwendiger- weise die Meinung von TRAFFIC, WWF oder IUCN dar. Die innerhalb dieser Arbeit verwendeten Bezeichnungen von geographischen Gebieten, Staaten, Ländern und Ter- ritorien stellen nicht die Haltung von TRAFFIC, noch die einer TRAFFIC unterstützendenOrganisation zum rechtli- chen Status eines Gebietes, Staates, Landes oder Territo- rium dar. TRAFFIC ist ein gemeinsames Programm von WWF und IUCN. Viele Projekte des TRAFFIC Programms benötigen finanzielle Unterstützung. Um aktuelle Informationen über den Bedarf für das TRAFFIC Programm zu erhalten, und für weitere Informationen wenden Sie sich bitte an unsere Adresse auf der Rückseite. Empfohlenes Zitat: Schütz, P. (2000). Flügel hinter Glas – Der Insektenhan- del in Deutschland unter besonderer Berücksichtigung der Schmetterlinge (Lepidoptera). TRAFFIC-Europe/Um- weltstiftung WWF-Deutschland. ISBN 3-00-006097-9 Impressum -
And Libythea Celtis (Nymphalidae: Libytheinae) and Their Phylogenetic Implications
Hindawi Publishing Corporation ISRN Genomics Volume 2013, Article ID 491636, 14 pages http://dx.doi.org/10.1155/2013/491636 Research Article Complete Mitogenomes of Euploea mulciber (Nymphalidae: Danainae) and Libythea celtis (Nymphalidae: Libytheinae) and Their Phylogenetic Implications Jiasheng Hao,1,2 Minge´ Sun,1 Qinghui Shi,1 Xiaoyan Sun,2 Lili Shao,1 and Qun Yang2 1 Laboratory of Molecular Evolution and Biodiversity, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China Correspondence should be addressed to Jiasheng Hao; [email protected] and Qun Yang; [email protected] Received 27 November 2012; Accepted 13 December 2012 Academic Editors: B. Antonio and S. N. Shchelkunov Copyright © 2013 Jiasheng Hao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The complete mitochondrial genome sequences of the two butterfly species Euploea mulciber (Lepidoptera: Nymphalidae: Danainae) and Libythea celtis (Lepidoptera: Nymphalidae: Libytheinae) were determined in this study, comprising 15,166 bp and 15,164 bp, respectively. The orientation and the gene order of the two mitogenomes are identical to those of most of the other lepidopteran species. All protein-coding genes of Euploea mulciber and Libythea celtis mitogenomes start with a typical ATN codon with the exception of COI gene which uses CGA as its initial codon. All tRNA genes possess the typical cloverleaf secondary structure except for tRNASer (AGN), which has a simple loop with the absence of the DHU stem. -
Butterfly Conservation in China: from Science to Action
insects Review Butterfly Conservation in China: From Science to Action 1,2, 3, 4 4 Wen-Ling Wang y, Daniel O. Suman y , Hui-Hong Zhang , Zhen-Bang Xu , 5 1,2, , Fang-Zhou Ma and Shao-Ji Hu * y 1 Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China; [email protected] 2 Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China 3 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; [email protected] 4 School of Agriculture, Yunnan University, Kunming 650500, China; [email protected] (H.-H.Z.); [email protected] (Z.-B.X.) 5 Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the P.R.C., Nanjing 210042, China; [email protected] * Correspondence: [email protected] These authors contributed equally. y Received: 23 August 2020; Accepted: 22 September 2020; Published: 25 September 2020 Simple Summary: Butterflies provide numerous ecological and socio-economic services and are important indicator species. China is home to over 2000 species of butterflies and in recent years has elevated biodiversity conservation on the national agenda. This manuscript reviews China’s butterfly conservation efforts and its legal and policy frameworks. We note some of the current limitations in butterfly conservation (inappropriate listing of protected species; over-reliance on inventories, rather than holistic research) and offer numerous recommendations to improve conservation efforts. Our recommendations include those related to integration of scientific data into policy (designation of scientifically-based protected areas; development of appropriate criteria for classifying protected species; use of umbrella species for conservation purposes), adoption of butterfly-friendly land use policies in rural and urban areas, butterfly ranching and farming, use of citizen science to improve data collection, and enhanced public outreach and environmental education campaigns. -
Life History, Life Table, Habitat, and Conservation of Byasa Impediens (Lepidoptera: Papilionidae)
ACTA ECOLOGICA SINICA Volume 26, Issue 10, October 2006 Online English edition of the Chinese language journal Cite this article as: Acta Ecologica Sinica, 2006, 26(10), 3184−3197. RESEARCH PAPER Life history, life table, habitat, and conservation of Byasa impediens (Lepidoptera: Papilionidae) 1,2,3 1, 2 4 Li Xiushan , Zhang Yalin *, Luo Youqing , SETTELE Josef 1 Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education of China, Entomological Museum of Northwest Sci-Tech University of Agriculture and Forestry, Yangling 712100, China 2 Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Resources and Environment of Beijing Forestry University, Beijing 100083, China 3 Station of Forest Pests and Diseases Control and Quarantine of Gansu Province, Lanzhou, 730050, China 4 Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle, Germany Abstract: This article investigates the biology of Byasa impediens, presenting its life-table data and analyzing its habitat require- ments and the key factors threatening the survival of this species. This study also aims to detect specific protection methods to guarantee the long-term survival of Byasa impediens in Baishuijiang Reserve. Byasa impediens is bivoltine in Baishuijiang Reserve. The pupae overwinter on shrubs or on branches of trees. The eclosion of the first generation starts in mid-April. The adults of the first generation emerge in large numbers in mid-late May, and the second generation emerges from late June to mid-July. The two generations overlap. The adult males emerge 7–10 days earlier than the adult females. -
Complete Mitogenomes of Euploea Mulciber (Nymphalidae: Danainae) and Libythea Celtis (Nymphalidae: Libytheinae) and Their Phylogenetic Implications
Hindawi Publishing Corporation ISRN Genomics Volume 2013, Article ID 491636, 14 pages http://dx.doi.org/10.1155/2013/491636 Research Article Complete Mitogenomes of Euploea mulciber (Nymphalidae: Danainae) and Libythea celtis (Nymphalidae: Libytheinae) and Their Phylogenetic Implications Jiasheng Hao,1,2 Minge´ Sun,1 Qinghui Shi,1 Xiaoyan Sun,2 Lili Shao,1 and Qun Yang2 1 Laboratory of Molecular Evolution and Biodiversity, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China Correspondence should be addressed to Jiasheng Hao; [email protected] and Qun Yang; [email protected] Received 27 November 2012; Accepted 13 December 2012 Academic Editors: B. Antonio and S. N. Shchelkunov Copyright © 2013 Jiasheng Hao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The complete mitochondrial genome sequences of the two butterfly species Euploea mulciber (Lepidoptera: Nymphalidae: Danainae) and Libythea celtis (Lepidoptera: Nymphalidae: Libytheinae) were determined in this study, comprising 15,166 bp and 15,164 bp, respectively. The orientation and the gene order of the two mitogenomes are identical to those of most of the other lepidopteran species. All protein-coding genes of Euploea mulciber and Libythea celtis mitogenomes start with a typical ATN codon with the exception of COI gene which uses CGA as its initial codon. All tRNA genes possess the typical cloverleaf secondary structure except for tRNASer (AGN), which has a simple loop with the absence of the DHU stem. -
A Review of the Occurrence and Diversity of the Sphragis in Butterflies
A peer-reviewed open-access journal ZooKeys 694: 41–70 (2017)A review of the occurrence and diversity of the sphragis in butterflies... 41 doi: 10.3897/zookeys.694.13097 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A review of the occurrence and diversity of the sphragis in butterflies (Lepidoptera, Papilionoidea) Ana Paula S. Carvalho1,2, Albert G. Orr3, Akito Y. Kawahara1,2 1 Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL 32608, United States 2 McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611 United States 3 Environmental Futures Rese- arch Institute, Griffith University, Nathan, QLD 4111, Australia Corresponding author: Ana Paula S. Carvalho ([email protected]) Academic editor: T. Simonsen | Received 6 April 2017 | Accepted 7 August 2017 | Published 29 August 2017 http://zoobank.org/6C1FA2F3-C274-4652-A1FA-D5C8570C4ABA Citation: Carvalho APS, Orr AG, Kawahara AY (2017) A review of the occurrence and diversity of the sphragis in butterflies (Lepidoptera, Papilionoidea). ZooKeys 694: 41–70.https://doi.org/10.3897/zookeys.694.13097 Abstract Males of many butterfly species secrete long-lasting mating plugs to prevent their mates from copulating with other males, thus ensuring their sperm will fertilize all future eggs laid. Certain species have fur- ther developed a greatly enlarged, often spectacular, externalized plug, termed a sphragis. This distinctive structure results from complex adaptations in both male and female genitalia and is qualitatively distinct from the amorphous, internal mating plugs of other species. Intermediate conditions between internal plug and external sphragis are rare. -
Mitogenomic Sequences Effectively Recover Relationships Within Brush-Footed Butterflies (Lepidoptera: Nymphalidae)
Wu et al. BMC Genomics 2014, 15:468 http://www.biomedcentral.com/1471-2164/15/468 RESEARCH ARTICLE Open Access Mitogenomic sequences effectively recover relationships within brush-footed butterflies (Lepidoptera: Nymphalidae) Li-Wei Wu1*, Li-Hung Lin1, David C Lees2 and Yu-Feng Hsu3 Abstract Background: Mitogenomic phylogenies have revealed well-supported relationships for many eukaryote groups. In the order Lepidoptera, 113 species mitogenomes had been sequenced (May 14, 2014). However, these data are restricted to ten of the forty-three recognised superfamilies, while it has been challenging to recover large numbers of mitogenomes due to the time and cost required for primer design and sequencing. Nuclear rather than mitochondrial genes have been preferred to reconstruct deep-level lepidopteran phylogenies, without seriously evaluating the potential of entire mitogenomes. Next-generation sequencing methods remove these limitations by providing efficiently massive amounts of sequence data. In the present study, we simultaneously obtained a large number of nymphalid butterfly mitogenomes to evaluate the utility of mitogenomic phylogenies by comparing reconstructions to the now quite well established phylogeny of Nymphalidae. Results: We newly obtained 30 nymphalid mitogenomes via pyrosequencing on the Roche 454 GS Junior system, and combined these sequences with publicly accessible data to provide a 70-taxa dataset covering 37 genes for a 15,495 bp alignment. Polymorphic sites were not homogeneously distributed across the gene. Two gene regions, nad6 and 3’ end of nad5, were most variable, whereas the cox1 and 5’ ends of rrnL were most conserved. Phylogenetic relationships inferred by two likelihood methods were congruent and strongly supported (>0.95 posterior probability; ML bootstrap >85%), across the majority of nodes for multiple partitioning strategies and substitution models.