Biogeography and Speciation in the Dacini (Diptera: Tephritidae: Dacinae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overwintering Strategies of Insects in Northern Climates
Overwintering Strategies of Insects in Northern Climates Joe Nelsen Challenges in winter ● Small ectotherms ● Lack of insulation ● Food shortages (for both herbivores and predators) General strategies - energetic benefits/tradeoffs ● Diapause/dormancy ● Spatial avoidance (migration) Diapause ● Pause in development ○ various life stages ● Strategy for handling all kinds of environmental stressors ● Similar to hibernation in other animals ● Very beneficial for insects who employ this strategy - maximizes fitness ○ Conserving during the “off season” more energy for productive season Diapause - Goldenrod Gall Fly ● Egg laid in stalk of Goldenrod plant ○ Larvae hatch and stimulate gall formation ○ Larvae diapause over winter ○ Larvae pupates and adult emerges in spring ● Gall provides food and protection, but little insulation… ● Larvae produce cryoprotectants to depress freezing point, and nucleators to nucleate ice away from cells… ● Larvae can survive down to -35℃ Ice Nucleation in Gall Flies ● Employs two types of ice nucleators: ○ Fat body cells and calcium phosphate spherules - heterogeneous ice nucleation ● Calcium phosphate spherules ○ Small spheres of crystalline compound that line malpighian tubules of larvae, and nucleate ice in extracellular fluid of tubules ● Fat body cells = rare case of intracellular ice nucleation Calcium phosphate spherules (Mugnano, 1996) Supercooling in Gall Flies ● Gall Fly larvae supercool their tissues using - polyols (sugar alcohols) ○ Sorbitol and Glycerol - primary cryoprotectants ● Lower freezing point -
Fruit Flies (Diptera: Tephritidae) on Vegetable Crops in Reunion Island (Indian Ocean): State of Knowledge, Control Methods and Prospects for Management
Review Fruit flies (Diptera: Tephritidae) on vegetable crops in Reunion Island (Indian Ocean): state of knowledge, control methods and prospects for management 1 2 3 4 Philippe RYCKEWAERT *, Jean-Philippe DEGUINE , Thierry BRÉVAULT , Jean-François VAYSSIÈRES 1 Cirad, UPR HortSys, Fruit flies (Diptera: Tephritidae) on vegetable crops in Reunion Island (Indian TA B-103/L, CSIRO, Ocean): state of knowledge, control methods and prospects for management. Campus Int. Baillarguet, Abstract –– Significance of fruit flies in vegetable crops. Vegetable crops hold a key position in agri- F-34398 Montpellier, France cultural production in Reunion (Indian Ocean); however, many pests and diseases threaten the profitability [email protected] of this agricultural sector. Fruit flies (Diptera: Tephritidae) figure among the main pests for solanaceous crops and cucurbits (cucumber, zucchini, melon, etc.). Losses of as much as 80% of tomato and 100% of 2 Cirad, UMR PVBMT, Stn. cucurbit crop harvests have been frequently observed. Inventory and distribution. Four fruit fly species Ligne-Paradis, Pôle 3P, belonging to the Tephritidae family cause major damage to vegetable crops in Reunion: Bactrocera cucur- bitae (Coquillet), Dacus ciliatus Loew and D. demmerezi (Bezzi) on Cucurbitaceae, and Neoceratitis cya- 7 chemin de l'IRAT, nescens (Bezzi) on Solanaceae (primarily the tomato). Distribution of each of them is presented. Biology F-97410 Saint-Pierre, La and behavior. A few studies on the biology and behavior of the four fruit flies were conducted in Reunion Réunion, France in the late 1990s. Their main biological characteristics are summarized. Population control methods used in Reunion. Various methods such as chemical control, preventive measures (sanitation), physical 3 Cirad, UR SCA, Univ. -
Parasitoids of Queensland Fruit Fly Bactrocera Tryoni in Australia and Prospects for Improved Biological Control
Insects 2012, 3, 1056-1083; doi:10.3390/insects3041056 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control Ashley L. Zamek 1,, Jennifer E. Spinner 2 Jessica L. Micallef 1, Geoff M. Gurr 3 and Olivia L. Reynolds 4,* 1 Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia; E-Mails: [email protected] (A.L.Z.); [email protected] (J.L.M) 2 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; E-Mail: [email protected] 3 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Charles Sturt University, P.O. Box 883, Orange, NSW 2800, Australia; E-Mail: [email protected] 4 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia Present address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Australia. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-0-2-4640-6426; Fax: +61-0-2-4640-6300. Received: 3 September 2012; in revised form: 4 October 2012 / Accepted: 10 October 2012 / Published: 22 October 2012 Abstract: This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. -
The Sterile Insect Technique for Control of the Oriental Fruit Fly, Bactrocera Dorsalis (Hendel), in Mango Orchards in Ratchaburi Province, Thailand
Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 223–232 The sterile insect technique for control of the oriental fruit fly, Bactrocera dorsalis (Hendel), in mango orchards in Ratchaburi Province, Thailand M. Sutantawong1, W. Orankanok2, W.R. Enkerlin3*, V. Wornoayporn4 & C. Caceres4 1Office of Atomic Energy for Peace, Thailand 2Institute of Irradiation for Agricultural Development, Department of Agricultural Extension, Thailand 3Insect Pest Control Section, Joint FAO/IAEA Division in Food and Agriculture, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria 4Entomology Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf, Austria Fruit flies are the main constraint to improving production and trade of fruits and vegetables in Thailand. Therefore, since 1987, the Department of Agricultural Extension (DOAE) in cooperation with the Office of Atomic Energy for Peace has run a pilot project for control of the oriental fruit fly (OFF),Bactrocera dorsalis (Hendel),by integrating the sterile insect technique (SIT) with other moni- toring and control methods in the mango-production areas in the Paktor District in the Ratchaburi province. The project includes mass-rearing and sterilization of OFF at the mass-rearing and steril- ization facility of the Irradiation for Agricultural Development Institute, DOAE, located in the Pathumthani Province and field releases of sterile flies complemented by bait sprays and a monitor- ing network of methyl eugenol baited traps. The International Atomic Energy Agency has pro- vided technical assistance since 1991 through a Technical Cooperation Project. The assistance has resulted in improved rearing and field operation activities. In the years 1999 and 2000, weekly ground shipments of 5–10 million sterile pupae were transported from the production facility in Pathumthani to Paktor District for ground release in 1120 ha of small commercial mango orchards. -
(Diptera: Tephritidae) Control in Mango
OPTIMIZATION OF AN INTEGRATED PEST MANAGEMENT PROGRAM FOR FRUIT FLIES (DIPTERA: TEPHRITIDAE) CONTROL IN MANGO: A CASE OF MANICA PROVINCE, MOZAMBIQUE LAURA DA GRAҪA JOSÉ CANHANGA A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA. 2018 ii EXTENDED ABSTRACT This study was undertaken to reduce the losses caused by Bactrocera dorsalis (Hendel) in Manica province, Mozambique, through an optimized integrated pest management (IPM) package. It involved interviews with farmers to collect baseline information on awareness of fruit producers regarding fruit fly pests and their management so that an IPM package can be developed based on the farmers’ needs. Additionally, systematic trapping data of B. dorsalis seasonality and damage were collected and economic injury level (EIL) for B. dorsalis was estimated. Based on EIL, the IPM for B. dorsalis control developed in Tanzania by the Sokoine University of Agriculture (SUA IPM) was optimized. The SUA IPM included calendar GF 120 NF bait sprays and orchard sanitation while for the optimized IPM the GF 120 NF was only sprayed in the subplots inside the orchard when the threshold of 30 flies/trap/week was reached. The effectiveness of SUA IPM and its optimized version were also tested. Results showed that fruit flies were the main pest problem in mango and citrus orchards. More than 70% the respondents indicated low fruit quality and increasing volumes of uncommercial zed fruits as consequences of fruit flies infestation. The monetary value of losses reached a value of USD 135,784.8 during 2014/15 mango season. -
Multigene Phylogeography of Bactrocera Caudata (Insecta: Tephritidae): Distinct Genetic Lineages in Northern and Southern Hemispheres
RESEARCH ARTICLE Multigene Phylogeography of Bactrocera caudata (Insecta: Tephritidae): Distinct Genetic Lineages in Northern and Southern Hemispheres Hoi-Sen Yong1,2*, Phaik-Eem Lim1,3*, Ji Tan3,4, Sze-Looi Song2, I Wayan Suana5, Praphathip Eamsobhana6 1 Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia, 2 Chancellory High a11111 Impact Research, University of Malaya, 50603 Kuala Lumpur, Malaysia, 3 Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia, 4 Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti Bandar Barat, 31900, Kampar, 31900 Perak, Malaysia, 5 Faculty of Science and Mathematics, Mataram University, Mataram, Indonesia, 6 Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand * [email protected] (HSY); [email protected] (PEL) OPEN ACCESS Citation: Yong H-S, Lim P-E, Tan J, Song S-L, Suana IW, Eamsobhana P (2015) Multigene Abstract Phylogeography of Bactrocera caudata (Insecta: Tephritidae): Distinct Genetic Lineages in Northern Bactrocera caudata is a pest of pumpkin flower. Specimens of B. caudata from the northern and Southern Hemispheres. PLoS ONE 10(6): hemisphere (mainland Asia) and southern hemisphere (Indonesia) were analysed using the e0129455. doi:10.1371/journal.pone.0129455 partial DNA sequences of the nuclear 28S rRNA and internal transcribed spacer region 2 Academic Editor: Bi-Song Yue, Sichuan University, (ITS-2) genes, and the mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c CHINA oxidase subunit II (COII) and 16S rRNA genes. The COI, COII, 16S rDNA and concatenated Received: March 5, 2015 COI+COII+16S and COI+COII+16S+28S+ITS-2 nucleotide sequences revealed that B. -
54 Cucumeropsis Mannii Reverses High-Fat Diet Induced Metabolic
[Frontiers in Bioscience, Elite, 13, 54-76, Jan 1, 2021] Cucumeropsis mannii reverses high-fat diet induced metabolic derangement and oxidative stress Anthony T Olofinnade1, Adejoke Y Onaolapo2, Azurra Stefanucci3, Adriano Mollica3, Olugbenga A Olowe4, Olakunle J Onaolapo5 1Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria, 2Behavioral Neuroscience and Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria, 3Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy, 4Molecular Bacteriology Unit, Department of Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria, 5Behavioral Neuroscience and Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Materials and methods 3.1. Chemicals 3.2. Cucumeropsis mannii 3.3. Phytochemical screening 3.3.1. Determination of total phenol contents 3.3.2. Determination of total flavonoid content 3.3.3. Determination of ascorbic acid content 3.3.4. Antioxidant activity 3.4. Animals 3.5. Diet 3.6. Experimental method 3.7. Behavioural tests 3.7.1. Open field 3.7.2. Memory tests 3.7.3. Anxiety-related behaviour in the elevated plus maze 3.8. Blood collection 3.9. Tissue homogenisation 3.10. Biochemical tests 3.10.1. Liver and renal function tests 3.10.2. Lipid profile 3.10.3. Superoxide dismutase 3.10.4. Lipid peroxidation (Malondialdehyde) 3.10.5 Acetylcholinesterase activity 3.10.6. γ-amino-butyric acid (GABA) levels 3.11. -
Flies) Benjamin Kongyeli Badii
Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3]. -
Molecular Phylogenetics of the Genus Ceratitis (Diptera: Tephritidae)
Molecular Phylogenetics and Evolution 38 (2006) 216–230 www.elsevier.com/locate/ympev Molecular phylogenetics of the genus Ceratitis (Diptera: Tephritidae) Norman B. Barr ¤, Bruce A. McPheron Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA Received 29 March 2005; revised 3 October 2005; accepted 5 October 2005 Abstract The Afrotropical fruit Xy genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees pro- duced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimoda- ira–Hasegawa test, they do not reject monophyly of Ceratitis. 2005 Elsevier Inc. All rights reserved. Keywords: Ceratitis; Trirhithrum; Tephritidae; ND6; COI; period 1. Introduction cies, C. capitata (Wiedemann) (commonly known as the Mediterranean fruit Xy), is already an invasive species The genus Ceratitis MacLeay (Diptera: Tephritidae) with established populations throughout tropical, sub- comprises over 89 Afrotropical species of fruit Xy (De tropical, and mild temperate habitats worldwide (Vera Meyer, 2000a). -
Diptera: Tephritidae: Dacini) of Nepal
DProceedingsacine fruit offlies the of h nawaiianepal entomological society (2019) 51(2):39–46 39 New Country Records and Annotated Checklist of the Dacine Fruit Flies (Diptera: Tephritidae: Dacini) of Nepal Luc Leblanc1, Bishnu P. Bhandari2, Lok Nath Aryal3, and Sanjaya Bista4 1University of Idaho, Dept. of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive MS 2329, Moscow, Idaho 83844-2329; corresponding author: [email protected] 2University of Hawaii at Manoa. Department of Plant and Environmental Protection Sciences. 3050 Maile Way, Gilmore 310. Honolulu, Hawaii 96822, U.S.A. 3Nepal Agricultural Research Council (NARC), Horticulture Research Station, Malepatan, Pokhara, P.O. Box 01, Kaski, Nepal 4Nepal Agricultural Research Council (NARC), Entomology Division, Khumaltar, Lalitpur. P.O. Box 976, Kathmandu, Nepal Abstract. Preliminary surveys for Dacine fruit flies were carried out in May 2015 and June 2017, with male lure (cue-lure, methyl eugenol, zingerone) traps maintained at 55 sites, (110–1,780 m elevation range), comprised mostly of Nepal Agricultural Research Council research stations. Twenty species were collected, including 11 new country occurrence and 2 new male lure association records. The most common species were fruit pests Bactrocera dorsalis (60.4% of all captures) and B. zonata (15.2%), and cucurbit pests Zeugodacus tau (9.5%) and Z. cucurbitae (8.7%). We present an annotated checklist of the 26 species now known to occur in Nepal, including 5 fruit and 6 cucurbit pests. Introduction Materials and Methods The tribe Dacini is a large and diverse We maintained, for a period of 6–14 group of tropical fruit flies with frugivo- days in June 2017, 50 sets of three traps rous and florivorous larvae, many of which baited with the fruit fly male lures cue- are severe invasive pests that limit com- lure, methyl eugenol, and zingerone. -
Diptera): a Life History, Molecular, Morphological
The evolutionary biotogy of Conopidae (Diptera): A life history, molecular, morphological, systematic, and taxonomic approach Joel Francis Gibson B.ScHon., University of Guelph, 1999 M.Sc, Iowa State University, 2002 B.Ed., Ontario Institute for Studies in Education/University of Toronto, 2003 A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2011 Joel Francis Gibson Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de Pedition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your Tile Votre r&ference ISBN: 978-0-494-83217-2 Our file Notre reference ISBN: 978-0-494-83217-2 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. -
Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.