Effects of Environmental Contaminants on Gene Expression, DNA Methylation and Gut Microbiota in Buff-Tailed Bumble Bee - Bombus Terrestris

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Environmental Contaminants on Gene Expression, DNA Methylation and Gut Microbiota in Buff-Tailed Bumble Bee - Bombus Terrestris UNIVERSITYOF LEICESTER DOCTORAL THESIS Effects of environmental contaminants on gene expression, DNA methylation and gut microbiota in Buff-tailed Bumble bee - Bombus terrestris Author: Supervisor: Pshtiwan BEBANE Eamonn MALLON A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Genetics and Genome Biology March 2019 Abstract Bee populations are increasingly at risk. In this thesis, I explore various mechanisms through which environmental contaminants, namely imidacloprid and black carbon, can affect bumble bee epigenetics, behaviour and gut microbiota. I found imidacloprid has numerous epigenetic effects on Bombus terrestris non reproductive workers. I analysed three whole methylome (BS-seq) libraries and seven RNA-seq libraries of the brains of imidacloprid exposed workers and three BS-seq libraries and nine RNA-seq li- braries from unexposed, control workers. I found 79, 86 and 16 genes differentially methylated at CpGs, CHHs and CHGs sites respectively between groups. I found CpG methylation much more focused in exon regions compared with methylation at CHH or CHG sites. I found 378 genes that were differentially expressed between imidacloprid treated and control bees. In ad- dition, I found 25 genes differentially alternatively spliced between control and imidacloprid samples. I used Drosophila melanogaster as a model for the behavioural effects of imidacloprid on in- sects. Imidacloprid did not affect flies’ periodicity. Low doses (2.5 ppb) of imidacloprid in- creased flies’ activity while high doses (20 ppb) decreased activity. Canton-S strain was more sensitive to imidacloprid during geotaxis assay than M1217. I proposed that a possible modulator of imidacloprid’s effects on insects is its effects on insects’ gut microbiota. I produced and analysed thirty libraries of 16S rRNA metagenomic data from bee guts dividing by control and imidacloprid. There were no differences in alpha and beta bacterial diversity between groups while the ratio of one species of latobacillus increased in bees exposed to imidacloprid. As an extension of this microbiota work, I researched the effect of black carbon on gut micro- biota in the bumble bee. Bacterial cultivation methods showed significant increases of species (CFU) in bees exposed to black carbon and this was also detected by a qPCR approach. How- ever, in a metagenomic analysis, I did not find significant differences in alpha and beta diversity richness between black carbon and control groups. Declaration of Authorship I, Pshtiwan BEBANE, declare that this thesis titled, ’Effects of environmental contami- nants on gene expression, DNA methylation and gut microbiota in buff-tailed bumble bee Bombus terrestris’ and the work presented in it are my own. I confirm that: ■ This work was done wholly or mainly while in candidature for a research degree at this University. ■ Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. ■ Where I have consulted the published work of others, this is always clearly at- tributed. ■ Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. ■ I have acknowledged all main sources of help. ■ Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: ii DEDICATION This thesis is dedicated to: • My beloved, dearest and brilliant wife “Jwan” who never got tired of encourag- ing me and who leads me through the valley of darkness with light of hope and support. • My lovely little guys, my sons “Yousif” and “Laween”, whom I can’t force myself to stop loving. • My great parents, who never stop giving of themselves in countless ways. • My beloved brothers (shaxawan, Baxwan, Sherwan, Nahrow) and sisters (Amena and Shermen). • My great Parents-in-law. • My beloved brothers-in-law (Aso, Karzan, Karwan) and sisters-in-law (Hero, Shena and Shema). • My friends who encourage and support me. • All of the people in my life who have touched my heart. Acknowledgements Alhamdulillah, thank you Allah for all the blessing, You had given me. Thank You again for giving me the opportunity, knowledge and courage to overcome challenges and fin- ish this PhD project. I would like to thank and express my sincere gratitude to my supervisor Prof Eamonn Mallon. Thank you for all your support and guidance throughout my PhD, for your pa- tience, motivation, and immense knowledge. I would like to thank my second supervi- sor Prof Ezio Rosato who kindly continuous encouragement and has a nice suggestion during my study. Besides my supervisors, I would like to thank my PRP members Dr Sinéad Drea and Dr Iain Barber for their intuitive comments, guidance, questions and also suggestion. I would like to express my deepest thanks to every member of our lab past and present, with particular nods to Dr Mirko Pegoraro, Dr.Benjamin Hunt, Alun Jones, Hollie Mar- shall, Boris Berkhout, Christian Thomas, Zoe Lonsdale, all of whom were generous with time, assistance and opinions. Special thanks to the lab technicians, particularly Lisa Bedder and all staff, students in lab 104 and 121. Also, I want to thank all people in Genetics and Genome Biology, lab mates and admin- istrative staff for their continuous support. Very special thanks also to the University of Leicester for giving me an opportunity to complete this study. I would like to thank my parents, father-in-law, brothers, relatives, Ministry of Higher Education in Kurdistan/HCDP and Koya University for sponsoring and financially sup- porting me throughout my PhD study. I would especially like to thank my family. My dearest wife, Jwan has been extremely supportive of me throughout this entire process and has made countless sacrifices to help me get to this point. My mum, dad, sisters and brothers deserve special thanks for their continued support and encouragement. Without such a team behind me, I doubt that I would be in this place today. i Contents Abstract i Declaration of Authorship ii Acknowledgementsi List of Figures vi List of Tables xiii Abbreviations xv 1 General introduction1 1.1 Interactions between plants-pollinators-pests-ecotoxicology........1 1.2 Bumble bees and their importance in nature..................3 1.3 Evidence for the decline in bee populations..................5 1.4 Factors affecting insects communities......................6 1.4.1 Black carbon.................................6 1.4.2 What are neonicotinoids?.........................7 1.4.2.1 Imidacloprid and environmental residues..........9 1.4.2.2 Lethal effect of neonicotinoids................. 10 1.4.2.3 Sub-lethal effects of neonicotinoids.............. 11 Non neural effects.......................... 12 Gut bacteria effect......................... 13 1.4.3 Epigenetic effects.............................. 14 1.5 Aim and justification................................ 15 2 The neonicotinoid, imidicloprid affects gene expression, alternative splicing and DNA methylation in Bombus terrestris 17 2.1 Introduction..................................... 18 2.2 Materials and methods............................... 21 2.2.1 Bee husbandry............................... 21 ii Contents iii 2.2.2 Neonicotinoid feeding and brain sampling............... 21 2.2.3 BS-seq.................................... 21 2.2.3.1 Genomic DNA extraction, sequencing and mapping.... 21 2.2.3.2 Methylation differences between treatments........ 22 2.2.3.3 Methylation differences in exon level............. 23 2.2.4 RNA-seq................................... 23 2.2.4.1 RNA extraction and Illumina sequencing.......... 23 2.2.4.2 Alignment and assemble transcripts............. 24 2.2.4.3 Differential gene expression analysis............. 24 2.2.4.4 Alternative splicing events................... 24 2.2.5 GO term enrichment and Kegg analysis................. 25 2.3 Results........................................ 26 2.3.1 Methylation................................. 26 2.3.1.1 Sequencing, alignment and Methylation analysis...... 26 2.3.1.2 Methylation differences between treatments........ 28 2.3.2 Methylation differences in exon level.................. 31 2.3.3 GO term and KEGG pathway analysis.................. 34 2.3.4 Differential expression analysis...................... 43 2.3.4.1 Differential gene expression.................. 45 2.3.4.2 Go terms and KEGG pathway................. 49 2.3.5 Differential splicing of isoforms..................... 51 2.3.5.1 GO analysis............................ 57 2.3.6 DNA methylation - Expression correlation............... 58 2.4 Discussion...................................... 61 2.5 Collaborative work statement........................... 63 3 The neonicotinoid, Imidacloprid affects gut bacterial community in Bombus terrestris workers. 64 3.1 Introduction..................................... 65 3.2 Methods....................................... 71 3.2.1 Neonicotinoid toxicity test........................ 71 3.2.2 Bee husbandry, imdicloprid exposure and gut sampling....... 71 3.2.3 DNA extraction and library preparation................. 72 3.2.4 Bioinformatic analysis........................... 73 3.2.5 Taxonomy analysis............................. 75 3.2.6 Differential abundance analysis..................... 75 3.3 Results........................................ 77 3.3.1 Neonicotinoid anti bacterial
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Coupled Nucleoside Phosphorylase Reactions in Escherichia Coli John Lewis Ott Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1956 Coupled nucleoside phosphorylase reactions in Escherichia coli John Lewis Ott Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Microbiology Commons Recommended Citation Ott, John Lewis, "Coupled nucleoside phosphorylase reactions in Escherichia coli " (1956). Retrospective Theses and Dissertations. 13758. https://lib.dr.iastate.edu/rtd/13758 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI COUPLED NUCLEOSIDE PHOSPHORYLASE REACTIONS IN ESCHERICHIA COLI / by John Lewis Ott A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physlolgglcal Bacteriology Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean of Graduate College Iowa State College 1956 UMI Number: DP12892 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur Et Al
    USOO89628OOB2 (12) United States Patent (10) Patent No.: US 8,962,800 B2 Mathur et al. (45) Date of Patent: Feb. 24, 2015 (54) NUCLEICACIDS AND PROTEINS AND USPC .......................................................... 530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Naperville, IL (US) PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Nolling etal (J. Bacteriol. 183: 4823 (2001).* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 0 days. Isolates of Pseudomonas aeruginosa J. Bacteriol. (2003) 185: 1316-1325. (21) Appl. No.: 13/400,365 2002.Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (22) Filed: Feb. 20, 2012 bor New York, 2001, pp. 382-393. O O Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (65) Prior Publication Data toxicology” Toxicol. Lett. (2000) 1.12: 365-370. US 2012/O266329 A1 Oct. 18, 2012 * cited by examiner Related U.S. Application Data - - - Primary Examiner — James Martinell (62) Division of application No. 1 1/817,403, filed as (74) Attorney, Agent, or Firm — DLA Piper LLP (US) application No. PCT/US2006/007642 on Mar. 3, 2006, now Pat. No. 8,119,385. (57) ABSTRACT (60) Provisional application No. 60/658,984, filed on Mar. The invention provides polypeptides, including enzymes, 4, 2005.
    [Show full text]
  • [Frontiers in Bioscience 7, D1762-1781, August 1, 2002] 1762 the NECESSITY of COMBINING GENOMIC and ENZYMATIC DATA to INFER META
    [Frontiers in Bioscience 7, d1762-1781, August 1, 2002] THE NECESSITY OF COMBINING GENOMIC AND ENZYMATIC DATA TO INFER METABOLIC FUNCTION AND PATHWAYS IN THE SMALLEST BACTERIA: AMINO ACID, PURINE AND PYRIMIDINE METABOLISM IN MOLLICUTES J. Dennis Pollack Department of Molecular Virology, Immunology and Medical Genetics, The College of Medicine and Public Health, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Metabolic Linkages to Amino Acids and Proteins 4. Amino Acids: Transport 5. Amino Acids: Biosynthesis and Metabolism 6. Amino Acids: Aromatic amino acid synthesis in Acholeplasma-Anaeroplasma 7. Purine Metabolism: Transport 8. Purine Metabolism: Interconversions 9. Purine Metabolism: Intervention of the pentose phosphate pathway and glycolysis 10. Purine Metabolism: Metabolic consensus 11. Pyrimidine Metabolism: Interconversions and metabolic consensus 12. Predicting Metabolism 13. Acknowledgements 14. References 1. ABSTRACT Bacteria of the class Mollicutes have no cell wall. represent these simple microbes. Mycoplasma genitalium, a One species, Mycoplasma genitalium is the personification Mollicutes with a genome of 580 kbp and 475 ORFs, has of the simplest form of independent cell-free life. Its small the smallest genome in any free-living cell and is an genome (580 kbp) is the smallest of any cell. Mollicutes obvious example of the simplest organism. It is the minimal have unique metabolic properties, perhaps because of their cell and defines-characterizes, personifies independent limited coding space and high mutability. Based on 16S cellular life. rRNA analyses the Mollicutes Mycoplasma gallisepticum is thought to be the most mutable Bacteria. Enzyme activities All Mollicutes, like M.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Study of Nucleoside Degrading Enzyme Activities in Bean, Organic Bean, Okra, Organic Okra, Squash and Organic Squash
    STUDY OF NUCLEOSIDE DEGRADING ENZYME ACTIVITIES IN BEAN, ORGANIC BEAN, OKRA, ORGANIC OKRA, SQUASH AND ORGANIC SQUASH by Shafiqa A. Alshaiban A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Middle Tennessee State University August 2016 Thesis Committee: Dr. Paul C. Kline, Chair Dr. Andrew Burden Dr. Anthony Farone I dedicate this research to my parents, my sisters, and my brothers. I love you all. ii ACKNOWLEDGEMENTS I would like to sincerely thank Dr. Paul Kline for the support and guidance he has offered throughout the entirety of the research and thesis writing process. I also wish to thank my committee members, Dr. Donald A. Burden and Dr. Anthony Farone for their advice and willingness to read my work. I would like to thank all the staff and faculty members for their valuable support. Finally, I would like to express my thanks to my family and my friends for their support and love. Special thanks to my loving parents, my brothers and my sisters for their prayer, concern and kind words over the years. iii ABSTRACT Pyrimidine and purine nucleotide metabolism are essential for development and growth of all organisms. Nucleoside degradation reactions have been found in virtually all organisms. Many enzymes are involved in the degradation and salvage of nucleotides, nucleobases and nucleosides. Deaminases contribute in interconversion of one nucleoside into another by removing amino groups from the base. Nucleoside hydrolase is a glycosidase that catalyzes the cleavage of the N-glycosidic bond in nucleosides to facilitate recycling of nucleobases.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • Tese Camila Pegoraro.Pdf
    i UNIVERSIDADE FEDERAL DE PELOTAS Programa de Pós-Graduação em Agronomia Faculdade de Agronomia Eliseu Maciel Tese Bases moleculares da resposta a estresses ambientais em vegetais: arroz, tomate e pêssego Camila Pegoraro Pelotas, 2012 ii Camila Pegoraro Bases moleculares da resposta a estresses ambientais em vegetais: arroz, tomate e pêssego Tese apresentada ao Programa de Pós- Graduação em Agronomia da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Doutora em Ciências (área do conhecimento: Fitomelhoramento). Orientador: Dr. Antonio Costa de Oliveira – FAEM/UFPel Co-orientadores: Dr. Cesar Valmor Rombaldi – FAEM/UFPel Dr. Luciano Carlos da Maia – FAEM/UFPel Dr. Livio Trainotti – UNIPD Pelotas, 2012. iii Dados de catalogação na fonte: (Marlene Cravo Castillo – CRB-10/744) P376b Pegoraro, Camila Bases moleculares da resposta a estresses ambientais em vêgetais: arroz, tomate e pêssego / Camila Pegoraro; orientador Antonio Costa de Oliveira; co-orientadores Cesar Valmor Rombaldi, Luciano Carlos da Maia e Livio Trainotti - Pelotas, 2012. 229f.: il.- Tese (Doutorado) –Programa de Pós-Graduação em Agron omia. Faculdade de Agronomia Eliseu Maciel. Universidade Federal de Pelotas. Pelotas, 2012. 1.Expressão gênica 2.Oryza sativa 3.Solanum lycopersicum 4.Prunus persica 5.Estresses abióticos I.Oliveira, Antonio Costa de(orientador) I.Título. CDD 574.87 iv Banca Examinadora: Dr. Antonio Costa de Oliveira – FAEM/UFPel (presidente) Dr. Cesar Valmor Rombaldi – FAEM/UFPel Dra. Roberta Manica Berto – FAEM/UFPel Dr. Sandro Bonow – EMBRAPA Clima Temperado Dra. Vera Maria Quecini – EMBRAPA Uva e Vinho v Agradecimentos A Deus pela vida, força e proteção em todas os momentos. A toda minha família, principalmente meus pais Isaias e Iraci e meu irmão Cassiano pelo amor, incentivo e apoio.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • By Lendsey Breanna Thicklin a Thesis Submitt
    Adenosine Deaminating/ Hydrolyzing Enzymes from Alaska pea seeds (Pisum sativum) by Lendsey Breanna Thicklin A Thesis Submitted to the Faculty of the College of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Middle Tennessee State University August 2017 Thesis Committee: Dr. Paul C. Kline, Chair Dr. Donald A. Burden Dr. Justin M. Miller I dedicate this thesis research to my ancestors, parents, siblings, mentors, line sisters, and college friends. You all fuel my drive to reach for all of my dreams; no matter how big or small. “Thicklin’s make a difference, we don’t give up” - Dad !ii ACKNOWLEDGEMENTS I am thankful for the financial and academic resources the College of Graduate Studies, College of Basic and Applied Science, and the Department of Chemistry have bestowed to me as a graduate student. Moreover I am grateful for my thesis advisor, Dr. Paul Kline investing in the success and development of this work. I also extend many thanks to my committee members, Dr. Miller and Dr. Burden for their insightful comments, scientific input, and lending reagents and supplies to further develop this work. I am honored and humbled by Dr. Leah Martin’s support as my GTA advisor and mentor. For every pitfall and accomplishment, she has been there to feed me, pray for me, and remind me that there is more greatness to come. Moreover, I thankful for my Crossfit Rampage coach, Korey Akers, and my RamFam community for the physical and mental motivation to push through those “last reps” of grad school! Lastly, I extend my gratitude, hope, and love to my fellow Black female chemists I met at NOBCChE and world-wide.
    [Show full text]
  • Salt Stress Vs. Salt Shock
    RESEARCHARTICLE Open Access Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor Monika Skorupa1†, Marcin Gołębiewski1,2†, Katarzyna Kurnik2, Janusz Niedojadło3, Jacek Kęsy2, Krzysztof Klamkowski4, Katarzyna Wójcik4, Waldemar Treder4, Andrzej Tretyn1,2 and Jarosław Tyburski1,2*† Abstract Background: Sugar beet is a highly salt-tolerant crop. However, its ability to withstand high salinity is reduced compared to sea beet, a wild ancestor of all beet crops. The aim of this study was to investigate transcriptional patterns associated with physiological, cytological and biochemical mechanisms involved in salt response in these closely related subspecies. Salt acclimation strategies were assessed in plants subjected to either gradually increasing salt levels (salt-stress) or in excised leaves, exposed instantly to salinity (salt-shock). Result: The majority of DEGs was down-regulated under stress, which may lead to certain aspects of metabolism being reduced in this treatment, as exemplified by lowered transpiration and photosynthesis. This effect was more pronounced in sugar beet. Additionally, sugar beet, but not sea beet, growth was restricted. Silencing of genes encoding numerous transcription factors and signaling proteins was observed, concomitantly with the up-regulation of lipid transfer protein-encoding genes and those coding for NRTs. Bark storage protein genes were up-regulated in sugar beet to the level observed in unstressed sea beet. Osmotic adjustment, manifested by increased water and proline content, occurred in salt-shocked leaves of both genotypes, due to the concerted activation of genes encoding aquaporins, ion channels and osmoprotectants synthesizing enzymes. bHLH137 was the only TF-encoding gene induced by salt in a dose-dependent manner irrespective of the mode of salt treatment.
    [Show full text]