Study of Nucleoside Degrading Enzyme Activities in Bean, Organic Bean, Okra, Organic Okra, Squash and Organic Squash

Total Page:16

File Type:pdf, Size:1020Kb

Study of Nucleoside Degrading Enzyme Activities in Bean, Organic Bean, Okra, Organic Okra, Squash and Organic Squash STUDY OF NUCLEOSIDE DEGRADING ENZYME ACTIVITIES IN BEAN, ORGANIC BEAN, OKRA, ORGANIC OKRA, SQUASH AND ORGANIC SQUASH by Shafiqa A. Alshaiban A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Middle Tennessee State University August 2016 Thesis Committee: Dr. Paul C. Kline, Chair Dr. Andrew Burden Dr. Anthony Farone I dedicate this research to my parents, my sisters, and my brothers. I love you all. ii ACKNOWLEDGEMENTS I would like to sincerely thank Dr. Paul Kline for the support and guidance he has offered throughout the entirety of the research and thesis writing process. I also wish to thank my committee members, Dr. Donald A. Burden and Dr. Anthony Farone for their advice and willingness to read my work. I would like to thank all the staff and faculty members for their valuable support. Finally, I would like to express my thanks to my family and my friends for their support and love. Special thanks to my loving parents, my brothers and my sisters for their prayer, concern and kind words over the years. iii ABSTRACT Pyrimidine and purine nucleotide metabolism are essential for development and growth of all organisms. Nucleoside degradation reactions have been found in virtually all organisms. Many enzymes are involved in the degradation and salvage of nucleotides, nucleobases and nucleosides. Deaminases contribute in interconversion of one nucleoside into another by removing amino groups from the base. Nucleoside hydrolase is a glycosidase that catalyzes the cleavage of the N-glycosidic bond in nucleosides to facilitate recycling of nucleobases. The nucleoside degrading enzyme activity was tested by adding a crude protein extract from 5-9 day old bean, organic bean, okra, organic okra, squash and organic squash seedlings to reaction mixtures containing either inosine, uridine, cytidine, adenosine, or 2'-deoxyadenosine. The activities of the enzyme were determined on a Dionex Ultimate 3000 High Performance Liquid chromatography system (HPLC). Nucleosidases were found to be active in all six plants and specific activities are reported. There are variations in the level of activities observed between bean, organic bean, okra, organic okra, squash and organic squash. Based on the specific activities the highest activity was recorded for uridine, cytidine and adenosine in different types of seeds while inosine and 2'deoxyadenosine had the lowest activity. Bean was the lowest in activity with all five nucleosidases compared to nucleosidase metabolizing activities in organic bean, okra, organic okra, squash and organic squash. iv TABLE OF CONTENTS PAGE LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii CHAPTER I: INTRODUCTION……………..............................................................................1 Purines and Pyrimidines.................................................................................................................. 2 Purine and Pyrimidine Metabolism ................................................................................................ 4 Nucleoside Hydrolases.................................................................................................................. 11 Uridine Nucleosidase..................................................................................................................... 17 Inosine Nucleosidase…................................................................................................................. 17 Adenosine Nucleosidase ............................................................................................................... 18 Cytidine Nucleosidase .................................................................................................................. 20 Nucleoside Deaminases ................................................................................................................ 20 Current Research ........................................................................................................................... 22 CHAPTER II: MATERIALS AND METHODS ........................................................................ 23 Equipment and Instrumentation .................................................................................................... 23 Materials and Reagents.................................................................................................................. 23 Methods......................................................................................................................................... 23 Measurement of Enzyme Activity. ............................................................................................... 24 Determination of Protein Concentration ....................................................................................... 25 CHAPTER III: RESULTS AND DISCUSSION…………………...………………..…………26 Enzyme Activities in Okra and Organic Okra. ............................................................................. 30 Enzyme Activities in Bean and Organic Bean ..............................................................................44 Enzyme Activities in Squash and Organic squash…………………….…………………………58 CHAPTER IV: CONCLUSIONS………………………………………………………..……...71 REFERENCES ..............................................................................................................................73 v LIST OF TABLES TABLE PAGE 1. Summary of retention times of nucleosides and nucleobase…………….…………................29 2. Nucleosidase and deaminase activities in okra………………………………….………….....43 3. Nucleosidase and deaminase activities in organic okra…………………………….……........43 4. Nucleosidase and deaminase activities in bean……………………………………………… 57 5. Nucleosidase and deaminase activities in organic bean………………………….…………...57 6. Nucleosidase and deaminase activities in squash………………………………………......…70 7. Nucleosidase and deaminase activities in organic squash…………...………………………..70 vi LIST OF FIGURES FIGURE PAGE 1. Structural elements of nucleosides and nucleotides…………………………….......................1 2. The structures of ribose in RNA and 2-deoxyribose in DNA………...……………………….2 3. Common purine and pyrimidine bases with their numbering schemes……………...……..….3 4. A general diagram of plant pyrimidine metabolism……………………………………...........5 5. A general diagram of plant purine metabolism………………...……………………………...8 6. Chemical structures of the mentioned unusual bases…...……………………........................11 7. Different quaternary nucleoside hydrolase structures are built from a common fold…....…..15 8. Comparison between the active sites...……...…………………………………………....…..16 9. Hydrolysis of uridine to uracil and ribose by uridine nucleosidase………………………......17 10. Hydrolysis of inosine to hypoxanthine and ribose by inosine nucleosidase………………....18 11. Hydrolysis of adenosine to adenine and ribose by adenosine nucleosidase.............................19 12. Hydrolysis of cytidine to cytosine and ribose by cytidine nucleosidase..................................20 13. Adenosine deaminase converts adenosine to inosine and releases NH 3.............. ………........21 14. Cytidine deaminase converts cytidine to uridine and releases NH 3.........................................22 15. Protein concentrations calibration curve..................................................................................25 16. Hydrolysis of deoxyadenosine to adenine and deoxyribose by deoxyadenosine nucleosidase…………………………………………………………..……………………....27 17. Structures of additional nucleosides and bases........................................................................28 18. Uridine to uracil conversion catalyzed by uridine nucleosidase in okra..................................32 19. Uridine to uracil conversion catalyzed by uridine nucleosidase in organic okra.....................33 20. Inosine to hypoxanthine conversion catalyzed by inosine nucleosidase in okra.....................34 21. Inosine to hypoxanthine conversion catalyzed by inosine nucleosidase in organic okra........35 22. Cytidine degradation reaction in okra......................................................................................36 23. Cytidine degradation reaction in organic okra.........................................................................37 24. Adenosine breakdown reaction in okra...................................................................................39 25. Adenosine breakdown reaction in organic okra......................................................................40 vii 26. 2'-Deoxyadenosine degrading reaction in okra.......................................................................41 27. 2'-Deoxyadenosine degradation reaction in organic okra ......................................................42 28. Uridine to uracil conversion catalyzed by uridine nucleosidase in bean ...............................45 29. Uridine to uracil conversion catalyzed by uridine nucleosidase in organic bean ..................46 30. Adenosine degradation reaction in bean.................................................................................48 31. Adenosine degradation reaction in organic bean....................................................................49 32. 2'-Deoxyadenosine breakdown reaction in bean.....................................................................50
Recommended publications
  • Thesis Final
    CHARACTERIZATION OF ADENOSINE NUCLEOSIDASE FROM ALASKA PEA SEEDS by Abdullah K. Shamsuddin A Thesis Submitted to the Faculty of the College of Graduate Studies at Middle Tennessee State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Middle Tennessee State University August 2015 Thesis Committee: Dr. Paul C. Kline, Chair Dr. Donald A. Burden Dr. Kevin L. Bicker I dedicate this research to my parents, my sisters, and my brother. I love you all. ii" " ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor, Dr. Paul C. Kline, for his guidance, support, and ongoing encouragement throughout this project. I also wish to thank my committee members, Dr. Donald A. Burden and Dr. Kevin L. Bicker, for their advice and insightful comments. In addition, I would like to thank all the staff and faculty of the Department of Chemistry for their contribution to the success of this study. Lastly, I wish to thank my family and my friends, without whom none of my accomplishments would have been possible. Thank you for you endless support, concern, love, and prayer. iii" " ABSTRACT Adenosine nucleosidase was purified from Alaska pea seeds five days after germination. A 4-fold purification has been reached with a 1.3 % recovery. The subunit molecular weight of adenosine nucleosidase was determined by mass spectrometry to be 26,103 daltons. The number of subunits was 1. The Michaelis constant, Km, and the maximum velocity, V max, for adenosine were determined to be 137 ± 48 µM, and 0.34 ± 0.02 µM/min respectively.
    [Show full text]
  • METABOLIC EVOLUTION in GALDIERIA SULPHURARIA By
    METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA By CHAD M. TERNES Bachelor of Science in Botany Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2015 METABOLIC EVOLUTION IN GALDIERIA SUPHURARIA Dissertation Approved: Dr. Gerald Schoenknecht Dissertation Adviser Dr. David Meinke Dr. Andrew Doust Dr. Patricia Canaan ii Name: CHAD M. TERNES Date of Degree: MAY, 2015 Title of Study: METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA Major Field: PLANT SCIENCE Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. Additionally, it can also grow solely as a heterotroph, which results in the cessation of photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely correlated with G. sulphuraria ’s broad capacity for carbon metabolism, which rivals that of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria revealed several pathways that are uncharacteristic for plants and algae, even red algae. Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer and conservation through ancestry. Although some metabolic pathways as a whole appear to be retained through ancestry, genes encoding individual enzymes within a pathway were substituted by genes that were acquired horizontally from other domains of life. Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary processes.
    [Show full text]
  • Effects of Environmental Contaminants on Gene Expression, DNA Methylation and Gut Microbiota in Buff-Tailed Bumble Bee - Bombus Terrestris
    UNIVERSITYOF LEICESTER DOCTORAL THESIS Effects of environmental contaminants on gene expression, DNA methylation and gut microbiota in Buff-tailed Bumble bee - Bombus terrestris Author: Supervisor: Pshtiwan BEBANE Eamonn MALLON A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Genetics and Genome Biology March 2019 Abstract Bee populations are increasingly at risk. In this thesis, I explore various mechanisms through which environmental contaminants, namely imidacloprid and black carbon, can affect bumble bee epigenetics, behaviour and gut microbiota. I found imidacloprid has numerous epigenetic effects on Bombus terrestris non reproductive workers. I analysed three whole methylome (BS-seq) libraries and seven RNA-seq libraries of the brains of imidacloprid exposed workers and three BS-seq libraries and nine RNA-seq li- braries from unexposed, control workers. I found 79, 86 and 16 genes differentially methylated at CpGs, CHHs and CHGs sites respectively between groups. I found CpG methylation much more focused in exon regions compared with methylation at CHH or CHG sites. I found 378 genes that were differentially expressed between imidacloprid treated and control bees. In ad- dition, I found 25 genes differentially alternatively spliced between control and imidacloprid samples. I used Drosophila melanogaster as a model for the behavioural effects of imidacloprid on in- sects. Imidacloprid did not affect flies’ periodicity. Low doses (2.5 ppb) of imidacloprid in- creased flies’ activity while high doses (20 ppb) decreased activity. Canton-S strain was more sensitive to imidacloprid during geotaxis assay than M1217. I proposed that a possible modulator of imidacloprid’s effects on insects is its effects on insects’ gut microbiota.
    [Show full text]
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • Pyrimidine Base Degradation in Cultured Murine C-1300 Neuroblastoma Cells and in Situ Tumors
    Pyrimidine base degradation in cultured murine C-1300 neuroblastoma cells and in situ tumors. M Tuchman, … , M L Ramnaraine, B L Mirkin J Clin Invest. 1988;81(2):425-430. https://doi.org/10.1172/JCI113336. Research Article Dihydropyrimidine dehydrogenase (DPD), the initial, rate-limiting step in pyrimidine degradation, was studied in two cell lines of murine neuroblastoma (MNB-T1 and MNB-T2) that were derived from C-1300 MNB tumor carried in A/J mice. The MNB-T2 (low malignancy) cell line was originally derived from the in situ tumor and carried in tissue culture for more than 100 passages; the MNB-T1 (high malignancy) line consisted of a new sub-culture that was also established from the in situ MNB tumor. DPD activity was determined in cytosolic preparations of MNB utilizing high performance liquid chromatography to separate the radiolabeled substrate ([2-14C]thymine) from [2-14C]dihydrothymine. The apparent affinity of DPD for NADPH in MNB cells (Km approximately 0.08 mM) was identical to that of A/J mouse brain and liver. The DPD activity of the high malignancy (MNB-T1) cell line was 14.3% of that observed in the low malignancy (MNB-T2) line. In situ tumors formed after implantation of high malignancy (MNB-T1) cells into A/J mice had only 25.2% of the DPD activity observed in tumors derived from low malignancy (MNB-T2) cells. When MNB-T2 cells were injected into naive A/J mice, tumors developed in only 68% of animals, the tumor growth rate was slow and a mortality of 20% was observed.
    [Show full text]
  • Discovery of Novel Bacterial Queuine Salvage Enzymes and Pathways in Human Pathogens
    Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens a,1 b,1 c,1 b d a Yifeng Yuan , Rémi Zallot , Tyler L. Grove , Daniel J. Payan , Isabelle Martin-Verstraete , Sara Sepic´ , Seetharamsingh Balamkundue, Ramesh Neelakandane, Vinod K. Gadie, Chuan-Fa Liue, Manal A. Swairjof,g, Peter C. Dedone,h,i, Steven C. Almoc, John A. Gerltb,j,k, and Valérie de Crécy-Lagarda,l,2 aDepartment of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611; bInstitute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; cDepartment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461; dLaboratoire de Pathogénèse des Bactéries Anaérobies, Institut Pasteur et Université de Paris, F-75015 Paris, France; eSingapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore; fDepartment of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182; gThe Viral Information Institute, San Diego State University, San Diego, CA 92182; hDepartment of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; iCenter for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; jDepartment of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; kDepartment of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and lUniversity of Florida Genetics Institute, Gainesville, FL 32610 Edited by Tina M. Henkin, The Ohio State University, Columbus, OH, and approved August 1, 2019 (received for review June 16, 2019) Queuosine (Q) is a complex tRNA modification widespread in 1A. The TGT enzyme, which is responsible for the base ex- eukaryotes and bacteria that contributes to the efficiency and accuracy change, is the signature enzyme in the Q biosynthesis pathway.
    [Show full text]
  • Downloaded As a Text File, Is Completely Dynamic
    BMC Bioinformatics BioMed Central Database Open Access ORENZA: a web resource for studying ORphan ENZyme activities Olivier Lespinet and Bernard Labedan* Address: Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France Email: Olivier Lespinet - [email protected]; Bernard Labedan* - [email protected] * Corresponding author Published: 06 October 2006 Received: 25 July 2006 Accepted: 06 October 2006 BMC Bioinformatics 2006, 7:436 doi:10.1186/1471-2105-7-436 This article is available from: http://www.biomedcentral.com/1471-2105/7/436 © 2006 Lespinet and Labedan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description: We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities.
    [Show full text]
  • Role of Uridine Triphosphate in the Phosphorylation of 1-ß-D- Arabinofuranosylcytosine by Ehrlich Ascites Tumor Cells1
    [CANCER RESEARCH 47, 1820-1824, April 1, 1987] Role of Uridine Triphosphate in the Phosphorylation of 1-ß-D- Arabinofuranosylcytosine by Ehrlich Ascites Tumor Cells1 J. Courtland White2 and Leigh H. Hiñes Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103 ABSTRACT potent feedback regulation by dCTP (3-9). The level of dCTP in the cell has been shown to be an important determinant of Pyrimidine nucleotide pools were investigated as determinants of the ara-C action in a variety of cell types (10-12). For example, rate of phosphorylation of l-j9-D-arabinofuranosylcytosine (ara-C) by Harris et al. (10) demonstrated that the sensitivity of several Ehrlich ascites cells and cell extracts. Cells were preincubated for 2 h with 10 MMpyrazofurin, 10 imi glucosamine, 50 MM3-deazauridine, or mouse tumor cell lines to ara-C was inversely proportional to 1 HIMuridine in order to alter the concentrations of pyrimidine nucleo- their cellular dCTP level. In addition, these authors observed tides. Samples of the cell suspensions were taken for assay of adenosine that thymidine enhanced ara-C sensitivity in those cell lines S'-triphosphate (ATP), uridine 5'-triphosphate (IIP), cytidine S'-tn- where there was a depression in dCTP levels but not in those phosphate, guanosine S'-triphosphate, deoxycytidine S'-triphosphate cell lines where thymidine did not alter dCTP pools. Cellular (dCTP), and deoxythymidine S'-triphosphate; then l MM[3H|ara-C was pools of dCTP may also be decreased by inhibitors of the de added and its rate of intrazellular uptake was measured for 30 min.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Consequences of Methotrexate Inhibition of Purine Biosynthesis in L5178Y Cells'
    [CANCER RESEARCH 35, 1427-1432,June 1975] Consequences of Methotrexate Inhibition of Purine Biosynthesis in L5178Y Cells' William M. Hryniuk2 Larry W. Brox,3J. Frank Henderson, and Taiki Tamaoki DepartmentofMedicine, University ofManitoba,and TheManitoba Institute ofCellBiology, Winnipeg,Manitoba [W. M. H.J and CancerResearch Unit (McEachern Laboratory), and DepartmentofBiochemistry, University ofAlberta, Edmonton,Alberta T6G 2E1 [L. W. B.,J. F. H., T. T.J,Canada SUMMARY recently been shown that the cytotoxicity of methotrexate against cultured mouse lymphoma L5178Y cells is in part Addition of 1 @Mmethotrexate to cultures of L5178Y attributable to a “purineless―state(6, 7). Thus, hypoxan cells results in an initial inhibition ofthymidine, uridine, and thine partially prevented the methotrexate-induced inhibi leucine incorporation into acid-insoluble material followed, tion of thymidine, uridine, and leucine incorporation into after about 10 hr. by a partial recovery in the extent of macromolecules and also delayed the loss ofcell viability, as incorporation of these precursors. Acid-soluble adenosine measured by cloning experiments. These studies also triphosphate and guanosine triphosphate concentrations are showed that, during incubation of L5178Y cells with greatly reduced initially, but guanosine triphosphate con methotrexate in the absence of hypoxanthine, incorporation centrations appear to recover partially by 10 hr. Acid of thymidine into DNA was first inhibited but later partially soluble uridine triphosphate and cytidine
    [Show full text]
  • Induced Alterations in the Urine Metabolome in Cardiac Surgery
    www.nature.com/scientificreports OPEN Bretschneider solution- induced alterations in the urine metabolome in cardiac surgery Received: 16 August 2018 Accepted: 1 November 2018 patients Published: xx xx xxxx Cheng-Chia Lee1,3, Ya-Ju Hsieh 2, Shao-Wei Chen3,4, Shu-Hsuan Fu2, Chia-Wei Hsu 2, Chih-Ching Wu 2,5,6, Wei Han7, Yunong Li7, Tao Huan7, Yu-Sun Chang2,6,8, Jau-Song Yu2,9,10, Liang Li7, Chih-Hsiang Chang1,3 & Yi-Ting Chen 1,2,11,12 The development of Bretschneider’s histidine-tryptophan-ketoglutarate (HTK) cardioplegia solution represented a major advancement in cardiac surgery, ofering signifcant myocardial protection. However, metabolic changes induced by this additive in the whole body have not been systematically investigated. Using an untargeted mass spectrometry-based method to deeply explore the urine metabolome, we sought to provide a holistic and systematic view of metabolic perturbations occurred in patients receiving HTK. Prospective urine samples were collected from 100 patients who had undergone cardiac surgery, and metabolomic changes were profled using a high-performance chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) method. A total of 14,642 peak pairs or metabolites were quantifed using diferential 13C-/12C-dansyl labeling LC-MS, which targets the amine/phenol submetabolome from urine specimens. We identifed 223 metabolites that showed signifcant concentration change (fold change > 5) and assembled several potential metabolic pathway maps derived from these dysregulated metabolites. Our data indicated upregulated histidine metabolism with subsequently increased glutamine/glutamate metabolism, altered purine and pyrimidine metabolism, and enhanced vitamin B6 metabolism in patients receiving HTK.
    [Show full text]