Discovery of Novel Bacterial Queuine Salvage Enzymes and Pathways in Human Pathogens

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of Novel Bacterial Queuine Salvage Enzymes and Pathways in Human Pathogens Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens a,1 b,1 c,1 b d a Yifeng Yuan , Rémi Zallot , Tyler L. Grove , Daniel J. Payan , Isabelle Martin-Verstraete , Sara Sepic´ , Seetharamsingh Balamkundue, Ramesh Neelakandane, Vinod K. Gadie, Chuan-Fa Liue, Manal A. Swairjof,g, Peter C. Dedone,h,i, Steven C. Almoc, John A. Gerltb,j,k, and Valérie de Crécy-Lagarda,l,2 aDepartment of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611; bInstitute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; cDepartment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461; dLaboratoire de Pathogénèse des Bactéries Anaérobies, Institut Pasteur et Université de Paris, F-75015 Paris, France; eSingapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore; fDepartment of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182; gThe Viral Information Institute, San Diego State University, San Diego, CA 92182; hDepartment of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; iCenter for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; jDepartment of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; kDepartment of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and lUniversity of Florida Genetics Institute, Gainesville, FL 32610 Edited by Tina M. Henkin, The Ohio State University, Columbus, OH, and approved August 1, 2019 (received for review June 16, 2019) Queuosine (Q) is a complex tRNA modification widespread in 1A. The TGT enzyme, which is responsible for the base ex- eukaryotes and bacteria that contributes to the efficiency and accuracy change, is the signature enzyme in the Q biosynthesis pathway. of protein synthesis. Eukaryotes are not capable of Q synthesis and Major differences are found between bacterial and eukaryotic TGT rely on salvage of the queuine base (q) as a Q precursor. While enzymes (22). In eubacteria, TGT functions as a homodimer to many bacteria are capable of Q de novo synthesis, salvage of the incorporate preQ1 into the anticodon wobble of tRNAs (23, 24), prokaryotic Q precursors preQ0 and preQ1 also occurs. With the and maturation to Q is then needed. In contrast, the eukaryotic Escherichia coli exception of YhhQ, shown to transport preQ0 and TGT (eTGT) inserts the q base in tRNAs, yielding Q directly. preQ1, the enzymes and transporters involved in Q salvage and eTGTs are heterodimeric enzymes composed of a catalytic subunit recycling have not been well described. We discovered and char- (queuine tRNA-ribosyltransferase catalytic subunit 1 or QTRT1) acterized 2 Q salvage pathways present in many pathogenic and and an accessory subunit (queuine tRNA-ribosyltransferase acces- MICROBIOLOGY commensal bacteria. The first, found in the intracellular pathogen sory subunit 2 or QTRT2) (25). Key differences defining substrate Chlamydia trachomatis, uses YhhQ and tRNA guanine transglyco- specificities of the prokaryotic and eukaryotic TGTs are in the sylase (TGT) homologs that have changed substrate specificities to Zymomonas mobilis directly salvage q, mimicking the eukaryotic pathway. The second, substrate binding pocket where Val233 ( found in bacteria from the gut flora such as Clostridioides difficile, numbering) is replaced by a glycine and Cys158 is replaced by a valine. These changes allow for the accommodation of q in eTGT salvages preQ1 from q through an unprecedented reaction cata- lyzed by a newly defined subgroup of the radical-SAM enzyme asopposedtopreQ1 (24, 26, 27). family. The source of q can be external through transport by mem- Q synthesis is costly: it starts from GTP (Fig. 1A) and requires bers of the energy-coupling factor (ECF) family or internal through many cofactors (reviewed by Hutinet et al. [21]). Additionally, hydrolysis of Q by a dedicated nucleosidase. This work reinforces 6 of 8 enzymes in the pathway are metalloenzymes. Hence, even the concept that hosts and members of their associated microbiota in bacteria that can synthesize Q de novo, salvaging precursors is compete for the salvage of Q precursors micronutrients. Significance queuosine | nucleoside transport | sequence similarity network | comparative genomics | rSAM Queuosine (Q) is a tRNA modification found in eukaryotes and bacteria that plays an important role in translational efficiency he gut microbiome provides a variety of micronutrients im- and accuracy. Queuine (q), the Q nucleobase, is increasingly Tportant for human health (1). Among them is queuine (q), appreciated as an important micronutrient that contributes to recently designated “a longevity vitamin” (2). In eukaryotes, q is human health. We describe here that q salvage pathways exist the precursor base to the queuosine (Q) tRNA modification (3). in bacteria, including many pathogens and host-associated or- Mammals solely rely on q salvage from dietary sources and from ganisms, suggesting a direct competition for the q precursor in their gut microbiota to synthesize Q-modified tRNAs (4–6). To the human gut microbiome. We also show how a rational use of comparative genomics can lead to the discovery of novel types obtain Q34-tRNA, q is exchanged with the guanine (G) at the of enzymatic reactions, illustrated by the discovery of the queuine wobble position of tRNAs containing G34U35N36 anticodons (Asp, Asn, Tyr, and His) (7), in a reaction catalyzed by a eukaryotic type lyase enzyme. tRNA(34) guanine transglycosylase (TGT) (8, 9). The physiological Author contributions: Y.Y., R.Z., I.M.-V., S.C.A., J.A.G., and V.d.C.-L. designed research; importance of the Q modification is not fully understood. Al- Y.Y., R.Z., T.L.G., D.J.P., and I.M.-V. performed research; S.B., R.N., V.K.G., C.-F.L., and though it is not essential in tested cells under normal conditions P.C.D. contributed new reagents/analytic tools; Y.Y., R.Z., T.L.G., S.S., M.A.S., and (4, 10–14), Q plays a role in regulation of translation, cell pro- V.d.C.-L. analyzed data; and Y.Y., R.Z., T.L.G., I.M.-V., P.C.D., and V.d.C.-L. wrote the paper. liferation, stress response, and cell signaling (6, 15–17). Deficiency The authors declare no conflict of interest. of Q-tRNA level correlates with diseases including tumor growth This article is a PNAS Direct Submission. (reviewed in ref. 6), encephalomyelitis (18), and leukemia (19). Published under the PNAS license. Recently, Q-tRNA levels in human and mice cells have been Data deposition: The data reported in this paper have been deposited in the Protein Data shown to control translational speed of Q‐decoded codons as well Bank, https://www.rcsb.org (ID code 6P78). as near‐cognate codons (20). Taken together, q is a micronutrient 1Y.Y., R.Z., and T.L.G. contributed equally to this work. that links nutrition to translation efficiency. 2To whom correspondence may be addressed. Email: [email protected]. Unlike eukaryotes, most bacteria perform de novo synthesis of This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Q via a pathway similar to the one elucidated in Escherichia coli, 1073/pnas.1909604116/-/DCSupplemental. recently summarized by Hutinet et al. (21) and presented in Fig. www.pnas.org/cgi/doi/10.1073/pnas.1909604116 PNAS Latest Articles | 1of10 Downloaded by guest on September 27, 2021 Fig. 1. Queuosine tRNA modification biosynthesis and predicted salvage pathways. (A) Biosynthesis of the Q modification at position 34 (Q34-tRNA) and preQ0/preQ1 salvage pathway in E. coli.(B) Predicted Q34-tRNA biosynthesis and queuine salvage pathway in C. trachomatis D/UW-3/CX. Red dashed arrows represent uncharacterized reactions. Molecule abbreviations and protein names are described in the main text. advantageous, as it reduces metabolic demand. Many organisms but lack all of the other genes encoding Q biosynthetic enzymes. have TGT encoding genes but lack those necessary for preQ0 This is the case for the intracellular human pathogen Chlamydia and preQ1 synthesis (28). In those organisms, precursors must be trachomatis D/UW-3/CX, even if the presence of Q has never been salvaged to obtain Q-modified tRNAs. Significant amounts of experimentally validated. The only predicted Q synthesis genes in free q have been detected in various plant and animal food C. trachomatis are the TGT homolog TGTCt (CT193; UniProt ID products (29), and preQ0 is certainly available in natural envi- O84196) and the YhhQ homolog YhhQCt (CT140; UniProt ID ronments (30). Specific transporters are expected to be involved O84142; Fig. 1B). Indeed, its environment (the mammalian cell) for salvage to occur. We previously demonstrated that a member does not contain preQ0/preQ1, but q or Q are supposedly available. of the COG1738 protein family (YhhQ) can transport preQ0 and We predict that the TGTCt substrate specificity must have preQ1 in E. coli (28). Transporters of the energy-coupling factor switched from preQ1 (classically observed for bacterial TGTs) to (ECF) family (QueT and QrtT) have been predicted to be in- q (observed for eTGTs). A structure-based multiple sequence volved in 7-deazapurine salvage, mainly in Gram-positive or- alignment was performed by using TGTs from C. trachomatis, ganisms, but have never been experimentally validated (31). Chlamydophila caviae, and Chlamydia psittaci (harboring the While tRNA turnover is ubiquitous and constant (32) and re- proposed eukaryotic type salvage pathway), typical bacterial leases the Q nucleoside and/or its monophosphate derivatives TGTs (preQ1 specific), and eTGTs (q specific). While sequences (6), the identities of the nucleotidases, nucleosidases, and other aligned well overall, the residues that accommodate the 7- enzymes involved in tRNA degradation for Q precursors salvage substituent group of the substrate differ for the organisms pre- remain elusive. dicted to salvage q (Fig.
Recommended publications
  • METABOLIC EVOLUTION in GALDIERIA SULPHURARIA By
    METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA By CHAD M. TERNES Bachelor of Science in Botany Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2015 METABOLIC EVOLUTION IN GALDIERIA SUPHURARIA Dissertation Approved: Dr. Gerald Schoenknecht Dissertation Adviser Dr. David Meinke Dr. Andrew Doust Dr. Patricia Canaan ii Name: CHAD M. TERNES Date of Degree: MAY, 2015 Title of Study: METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA Major Field: PLANT SCIENCE Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. Additionally, it can also grow solely as a heterotroph, which results in the cessation of photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely correlated with G. sulphuraria ’s broad capacity for carbon metabolism, which rivals that of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria revealed several pathways that are uncharacteristic for plants and algae, even red algae. Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer and conservation through ancestry. Although some metabolic pathways as a whole appear to be retained through ancestry, genes encoding individual enzymes within a pathway were substituted by genes that were acquired horizontally from other domains of life. Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary processes.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,822,071 B1 Stephens Et Al
    USOO6822071B1 (12) United States Patent (10) Patent No.: US 6,822,071 B1 Stephens et al. (45) Date of Patent: Nov. 23, 2004 (54) POLYPEPTIDES FROM CHLAMYDIA (56) References Cited PNEUMONIAE AND THEIR USE IN THE DIAGNOSIS, PREVENTION AND FOREIGN PATENT DOCUMENTS TREATMENT OF DISEASE WO 99/27105 * 6/1999 (75) Inventors: Richard S. Stephens, Orinda, CA (US); OTHER PUBLICATIONS Wayne Mitchell, San Francsico, CA Gerhold et al-BioEssays 18(12):973-981, 1996.* (US); Sue S. Kalman, Saratoga, CA Wells et al Journal of Leukocyte Biology 61(5):545-550, (US); Ronald Davis, Palo Alto, CA 1997.* (US) Russell et al Journal of Molecular Biology 244:33-350, 1994.* (73) Assignee: The Regents of the University of Rudinger et al., in “Peptide Hormones' Parsons, TA ets, California, Oakland, CA (US) University Park Press pp. 1–6, 1976.* Burgess et al, The Journal of Cell Biology, 111:2129-2138, Notice: Subject to any disclaimer, the term of this 1990.* patent is extended or adjusted under 35 Lazar et al, Molecular and Cellular Biology U.S.C. 154(b) by 0 days. 8(3):1247–1252, 1988.* Jobling et al, Mol-Microbiol. 5(7): 1755–67, 1991.* (21) Appl. No.: 09/438,185 Pir-68 Database Accession No. E72002 Kalmar et al. Apr. (22) Filed: Nov. 11, 1999 23, 1999.* (Under 37 CFR 1.47) * cited by examiner Primary Examiner Patricia A. Duffy Related U.S. Application Data (74) Attorney, Agent, or Firm Townsend and Townsend (60) Provisional application No. 60/128,606, filed on Apr. 8, and Crew 1999, and provisional application No.
    [Show full text]
  • Prolonging Healthy Aging: Longevity Vitamins and Proteins PERSPECTIVE Bruce N
    PERSPECTIVE Prolonging healthy aging: Longevity vitamins and proteins PERSPECTIVE Bruce N. Amesa,1 Edited by Cynthia Kenyon, Calico Labs, San Francisco, CA, and approved September 13, 2018 (received for review May 30, 2018) It is proposed that proteins/enzymes be classified into two classes according to their essentiality for immediate survival/reproduction and their function in long-term health: that is, survival proteins versus longevity proteins. As proposed by the triage theory, a modest deficiency of one of the nutrients/cofactors triggers a built-in rationing mechanism that favors the proteins needed for immediate survival and reproduction (survival proteins) while sacrificing those needed to protect against future damage (longevity proteins). Impairment of the function of longevity proteins results in an insidious acceleration of the risk of diseases associated with aging. I also propose that nutrients required for the function of longevity proteins constitute a class of vitamins that are here named “longevity vitamins.” I suggest that many such nutrients play a dual role for both survival and longevity. The evidence for classifying taurine as a conditional vitamin, and the following 10 compounds as putative longevity vitamins, is reviewed: the fungal antioxidant ergo- thioneine; the bacterial metabolites pyrroloquinoline quinone (PQQ) and queuine; and the plant antioxidant carotenoids lutein, zeaxanthin, lycopene, α-andβ-carotene, β-cryptoxanthin, and the marine carotenoid astaxanthin. Because nutrient deficiencies are highly prevalent in the United States (and elsewhere), appro- priate supplementation and/or an improved diet could reduce much of the consequent risk of chronic disease and premature aging. vitamins | essential minerals | aging | nutrition I propose that an optimal level of many of the known adverse health effects.
    [Show full text]
  • Preferential Import of Queuosine-Modified Trnas Into
    Published online 9 July 2021 Nucleic Acids Research, 2021, Vol. 49, No. 14 8247–8260 https://doi.org/10.1093/nar/gkab567 Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis Sneha Kulkarni1,2, Mary Anne T. Rubio1,3,EvaHegedusov˝ a´ 1, Robert L. Ross4, Patrick A. Limbach 5, Juan D. Alfonzo3 and Zdenekˇ Paris 1,2,* 1Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceskˇ eBud´ ejovice,ˇ Czech Republic, 2Faculty 3 of Science, University of South Bohemia, Ceskˇ eBud´ ejovice,ˇ Czech Republic, Department of Microbiology and The Downloaded from https://academic.oup.com/nar/article/49/14/8247/6318497 by guest on 01 October 2021 Center for RNA Biology, The Ohio State University, Columbus, OH, USA, 4Metabolomics Mass Spectrometry Core, Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA and 5Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA Received November 30, 2020; Revised May 28, 2021; Editorial Decision June 13, 2021; Accepted June 21, 2021 ABSTRACT sine (Q), a hypermodified 7-deaza-guanosine, is one of the most chemically intricate modifications described to date. Transfer RNAs (tRNAs) are key players in protein syn- Q is found at the wobble position 34 of tRNAs that contain thesis. To be fully active, tRNAs undergo extensive a5-GUN-3 anticodon sequence, where N represents any post-transcriptional modifications, including queuo- of the canonical nucleotides, which includes tRNAHisGUG, sine (Q), a hypermodified 7-deaza-guanosine present tRNAAspGUC, tRNAAsnGUU, tRNATyr GUA (3). Q is in the anticodon of several tRNAs in bacteria and eu- found in both bacteria and eukarya, and catalyzed by tRNA karya.
    [Show full text]
  • Downloaded As a Text File, Is Completely Dynamic
    BMC Bioinformatics BioMed Central Database Open Access ORENZA: a web resource for studying ORphan ENZyme activities Olivier Lespinet and Bernard Labedan* Address: Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France Email: Olivier Lespinet - [email protected]; Bernard Labedan* - [email protected] * Corresponding author Published: 06 October 2006 Received: 25 July 2006 Accepted: 06 October 2006 BMC Bioinformatics 2006, 7:436 doi:10.1186/1471-2105-7-436 This article is available from: http://www.biomedcentral.com/1471-2105/7/436 © 2006 Lespinet and Labedan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description: We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Functional Annotation of Uncharacterized Enzymes in Yeast
    Functional Annotation of Uncharacterized Enzymes in Saccharomyces cerevisiae by Julia Ann Hanchard A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Julia Hanchard 2019 Abstract Functional Annotation of Uncharacterized Enzymes in Saccharomyces cerevisiae Julia Hanchard Doctor of Philosophy, 2019 Department of Molecular Genetics University of Toronto In the post-genomic era, clinicians and scientists are increasingly reliant on interpretation of variants in metabolic genes for determining pathogenicity. These interpretations depend on functional annotation of the roles genes provide in metabolism, an annotation that is far from complete. I embarked on a journey of enzyme discovery to fill gaps in our knowledge of metabolism in the budding yeast, Saccharomyces cerevisiae. I carried out a genetic and metabolomic screen of 120 uncharacterized candidate enzyme encoding genes that comprised my master’s thesis. This dissertation describes my work in ascribing function to two distinct enzymes, Das2 and Tda5. Throughout my study I have found that Das2 is a novel uridine/cytidine kinase that functions in concert with a second minor uridine kinase, Urk1. These two enzymes are interdependent and in turn depend on a third enzyme, the major uracil phosphoribosyl transferase, Fur1 for stability. These three enzymes form a complex that is essential to wild-type pyrimidine salvage. As I aimed to elucidate the function of Tda5, I discovered that this uncharacterized enzyme is essential to growth. Loss of function mutations in TDA5 are alleviated by de-repression of its sporulation specific paralog, Ydl114w, and when YDL114W is deleted, tda5Δ is rescued by hypomorphic mutations in the ergosterol biosynthetic pathway.
    [Show full text]
  • Coupled Nucleoside Phosphorylase Reactions in Escherichia Coli John Lewis Ott Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1956 Coupled nucleoside phosphorylase reactions in Escherichia coli John Lewis Ott Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Microbiology Commons Recommended Citation Ott, John Lewis, "Coupled nucleoside phosphorylase reactions in Escherichia coli " (1956). Retrospective Theses and Dissertations. 13758. https://lib.dr.iastate.edu/rtd/13758 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI COUPLED NUCLEOSIDE PHOSPHORYLASE REACTIONS IN ESCHERICHIA COLI / by John Lewis Ott A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physlolgglcal Bacteriology Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean of Graduate College Iowa State College 1956 UMI Number: DP12892 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Synthesis of Tritium Labeled Queuine, Preq1 and Related Azide Probes Toward Examining the Prevalence of Queuine
    Synthesis of Tritium Labeled Queuine, PreQ1 and Related Azide Probes Toward Examining the Prevalence of Queuine by Allen F. Brooks A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2012 Doctoral Committee: Research Professor Hollis D. Showalter, Co-Chair Associate Professor George A. Garcia, Co-Chair Professor Hashim M. Al-Hashimi Assistant Professor Garry D. Dotson Assistant Professor Matthew B. Soellner © Allen F. Brooks 2012 In memory of Edward and Lillian Pederson ii Acknowledgements With my remaining time short, it is appropriate to look back and thank those that supported me in my dissertation work either professionally or as a friend. First and foremost, I have to acknowledge my best friend from the program, Adam Lee. If it was not for the trip to the ACS meeting in Chicago, Adam and I likely would have never got to know each other. Luckily, fate arranged such an occurrence. If not for Adam’s friendship and the support of some others, I likely would have left the program in my second year. I also have to thank Jason Witek, an undergraduate who worked in the Showalter lab. We actually met during the Organic Mechanisms course, as he was in an academic program of his own design. The time we worked together in the lab was a productive one, and interestingly an amusing time as well. I also have to thank several other associates for their help in progressing my research as well as making time here more pleasant, those individuals being: Dr.
    [Show full text]
  • Queuine, a Bacterial Derived Hypermodified Nucleobase, Shows Protection in in Vitro Models of Neurodegeneration
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427538; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Queuine, a bacterial derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration Patricia Richard1*, Xavier Manière2*, Lucie Kozlowski2, Hélène Guillorit2,3, Patrice Garnier2, Antoine Danchin4, Nicole C. McKnight1** 1 Stellate Therapeutics Inc., 101 Avenue of the Americas, JLABS @ NYC, New York, NY 10013 2 Stellate Therapeutics SAS, 47 rue de Montmorency, 75003, Paris, France 3 Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier, France 4 Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France ** corresponding author Email: [email protected] * These authors contributed equally to this work 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427538; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Growing evidence suggests that human gut bacteria, comprising the microbiome that communicates with the brain through the so-called ‘gut-brain-axis’, are linked to neurodegener- ative disorders. Imbalances in the microbiome of Parkinson’s disease (PD) and Alzheimer’s dis- ease (AD) patients have been detected in several studies. Queuine is a hypermodified nucleobase enriched in the brain and exclusively produced by bacteria and salvaged by humans through their gut epithelium. Queuine replaces guanine at the wobble position of tRNAs with GUN anticodons and promotes efficient cytoplasmic and mitochondrial mRNA translation.
    [Show full text]
  • Deficiency of Queuine, a Highly Modified Furine Base, in Transfer Rnas from Primary and Metastatic Ovarian Malignant Tumors in Women1
    [CANCER RESEARCH 54, 446X-4471. August 15, 19<M| Deficiency of Queuine, a Highly Modified Furine Base, in Transfer RNAs from Primary and Metastatic Ovarian Malignant Tumors in Women1 Wlodzimierz Baranowski,2 Guy Dirheimer, Jerzy Andrzej Jakowicki, and GérardKeith Second Clinic of Gynecological Surgery, Academy of Medicine, 8 Jaczewski Street, Lublin 20849. Poland fW. B., J. A. J.J, and Unité"Structure des Macromolécules Biologiques et Mécanismesde Reconnaissance, " Institut de Biologie Moléculaireet Cellulaire du CNRS, 15 rue RenéDescartes, Strasbourg 67084, France [G. D., G. K.] ABSTRACT queuine on their own despite its presence in their queuine family tRNAs. In mammals, queuine is provided by the intestinal flora or as The IUN As from rapidly growing tissues, particularly from neoplasia, a diet factor. Furthermore, in embryonic tissues and regenerating rat often exhibit queuine deficiency. In order to check whether different kinds liver (i.e., in rapidly growing tissues), the queuine family tRNAs are of ovarian tumors display queuine deficiencies we have analyzed tRNA partially queuine deficient (6, 9). Similar observations of queuine samples from 16 ovarian malignancies. The tRNAs from histologically normal myometrium (4 samples) and myoma (6 samples) were taken as deficiency have been made in queuine family tRNAs from placenta healthy tissue and benign tumor references. Queuine deficiency was de tissue despite the presence of a large amount of free queuine in the termined by an exchange assay using (8-'H]guanine and tRNA:guanine amniotic fluid (8, 10). It has in addition been observed that neoplastic transglycosylase from Escherìchiacoli. tissues very often exhibit significant deficiencies in the queuine con The mean values of queuine deficiencies in tRNAs were: 10.95 ±2.21 tent of queuine family tRNAs (9).
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]