Six-Core AMD Opteron™ Processor with AMD

Total Page:16

File Type:pdf, Size:1020Kb

Six-Core AMD Opteron™ Processor with AMD AMD最新テクノロジーアップデート -HPCへの取り組み- 日本AMD株式会社 マーケティング&ビジネス開発本部 エンタープライズプロダクトマーケティング部 部長 山野 洋幸 AMD’s HPC Product Portfolio Energy efficient CPU and discrete GPU processors focused on addressing the most demanding HPC workloads Multi-core x86 Processors • Outstanding Performance • Superior Scalability • Enhanced Power Efficiency Professional Graphics • 3D Accelerators For Visualization • See More and Do More with Your Data ATI Stream Computing • GPU Optimized For Computation • Massive Data-parallel Processing • High Performance Per Watt 2 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 For more information be sure to visit AMD at SC’09 booth #1417 AMD’s HPC Product Portfolio Energy efficient CPU and discrete GPU processors focused on addressing the most demanding HPC workloads Multi-core x86 Processors • Outstanding Performance • Superior Scalability • Enhanced Power Efficiency Professional Graphics • 3D Accelerators For Visualization • See More and Do More with Your Data ATI Stream Computing • GPU Optimized For Computation • Massive Data-parallel Processing • High Performance Per Watt 3 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 For more information be sure to visit AMD at SC’09 booth #1417 Planned Server Platform Roadmap 2006 2007 2008 2009 2010 2011 “Maranello” Socket G34 with AMD SR56x0 and SP5100 Magny-Cours New Architecture Six-Core AMD Opteron™ Processor with AMD way Chipset - Socket F(1207) with AMD SR56x0 and SP5100 Shanghai/Istanbul Platform 2/4 Enterprise Enterprise “Socket F (1207)” Socket F(1207) with Nvidia and Broadcom chipsets Rev F Barcelona Shanghai Istanbul “San Marino” Socket C32+AMD SR56x0 and SP5100 Lisbon New Architecture way - “Adelaide” Platform 1/2 Socket C32 EE+AMD SR5650 and SP5100 Lisbon New Architecture Power Efficient Power Efficient “Buenos Aires” Socket AM3 with AMD SR56x0 and SP5100 Suzuka way - 1 “Socket AM2+” Platform Socket AM2+ with Nvidia and Broadcom chipsets 4 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 Rev F Budapest Suzuka For more information be sure to visit AMD at SC’09 booth #1417 Planned Server Platform Roadmap 2006 2007 2008 2009 2010 2011 “Maranello” Socket G34 with AMD SR56x0 and SP5100 Magny-Cours New Architecture Six-Core AMD Opteron™ Processor with AMD way Chipset - Socket F(1207) with AMD SR56x0 and SP5100 Shanghai/Istanbul Platform 2/4 Enterprise Enterprise “Socket F (1207)” Socket F(1207) with Nvidia and Broadcom chipsets Rev F Barcelona Shanghai Istanbul “San Marino” Socket C32+AMD SR56x0 and SP5100 Lisbon New Architecture way - “Adelaide” Platform 1/2 Socket C32 EE+AMD SR5650 and SP5100 Lisbon New Architecture Power Efficient Power Efficient “Buenos Aires” Socket AM3 with AMD SR56x0 and SP5100 Suzuka way - 1 “Socket AM2+” Platform Socket AM2+ with Nvidia and Broadcom chipsets 5 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 Rev F Budapest Suzuka For more information be sure to visit AMD at SC’09 booth #1417 Six-Core AMD Opteron™ Processor • Six true cores • New HyperTransport™ technology HT Assist • Increased HyperTransport 3 technology (HT3) bandwidth • Higher performing Integrated Memory Controller • Same power/thermal ranges as Quad-Core AMD Opteron™ processor • Up to 50% higher performance than Quad-Core AMD Opteron™ processor-based servers at the same processor ACP1 Model Cores Freq NB Wattage L2 Cache L3 Cache Production 8435 2.6GHz 8431 2.4GHz 2435 6 2.6GHz 2.2GHz 75W 512K/core 6MB May 2431 2.4GHz 2427 2.2GHz 8425 HE 2.1 GHz 2425 HE 6 2.1 GHz 2.2 GHz 55W 512K/core 6MB July 3rd 2423 HE 2.0 GHz 8439 SE 2.8 GHz 6 2.2 GHz 105W 512K/core 6MB July 24th 2439 SE 2.8 GHz 2419EE 6 1.8GHz 2.0GHz 40W 512K/core 6MB September 6 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 *Based on SPECint® 2006 results published as of 11/09/09. See backup slides or configuration and performance information. For more information be sure to visit AMD at SC’09 booth #1417 Six-Core AMD RDDR-2 RDDR-2 Opteron™ Processor Up to 8 DIMMs Up to 8 DIMMs HT-1 DIMM DIMM DIMM DIMM DIMM DIMM DIMM Performance “Istanbul” HT-3 “Istanbul” DIMM • Six-Core AMD Opteron™ Processor 6M Shared L3 Cache North Bridge enhancements (PF + prefetch) DIMM DIMM DIMM DIMM DIMM DIMM DIMM 45nm Process Technology DIMM • DDR2-800 Memory HT-1 HT-1 • HyperTransport-3 @ 4.8 GT/sec HT-3 HT-3 HT-1 DIMM DIMM DIMM DIMM DIMM DIMM DIMM Reliability/Availability “Istanbul” HT-3 “Istanbul” DIMM • L3 Cache Index Disable • HyperTransport Retry (HT-3 Mode) DIMM DIMM DIMM DIMM DIMM DIMM DIMM • x8 ECC (Supports x4 Chipkill in unganged mode) DIMM HT-1 HT-1 Virtualization HT-3 HT-3 • AMD-V™ with Rapid Virtualization Indexing PCI-e PCI-e or I/O Bridge or Manageability PCI-X PCI-X • APML Management Link* Scalability USB • 48-bit Physical Addressing (256TB) South SATA SE: 2.8GHz • HT Assist (Cache Probe Filter) PCI Bridge Std: 2.6GHz LPC PATA HE: 2.1GHz Continued Platform Compatibility EE: 1.8GHz • Nvidia/Broadcom-based F/1207 platforms 4 socket example block diagram *APML-enabled platform support required. 7 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 For more information be sure to visit AMD at SC’09 booth #1417 Six-Core AMD Opteron™ RDDR-2 RDDR-2 Processor Up to 8 DIMMs Up to 8 DIMMs Performance HT-1 DIMM DIMM DIMM DIMM DIMM DIMM DIMM “Istanbul” “Istanbul” DIMM • Six-Core AMD Opteron™ Processor HT-3 6M Shared L3 Cache North Bridge enhancements (PF + prefetch) DIMM DIMM DIMM DIMM DIMM DIMM DIMM 45nm Process Technology DIMM • DDR2-800 Memory HT-1 HT-1 • HyperTransport-3 @ 4.8 GT/sec HT-3 HT-3 HT-1 DIMM DIMM DIMM DIMM DIMM DIMM DIMM Reliability/Availability “Istanbul” HT-3 “Istanbul” DIMM • L3 Cache Index Disable • HyperTransport Retry (HT-3 Mode) DIMM DIMM DIMM DIMM DIMM DIMM DIMM • x8 ECC (Supports x4 Chipkill in unganged mode) DIMM HT-1 HT-1 Virtualization HT-3 HT-3 • AMD-V™ with Rapid Virtualization Indexing 4 socket example block diagram Manageability STREAM Bandwidth • APML Management Link* (GB/s)* Scalability Product, Freq, Dram 2S 4S 8S • 48-bit Physical Addressing (256TB) • HT Assist (Cache Probe Filter) “Barcelona,” 2.3/2.0, RDDR2-667 17.2 20.5 “Shanghai,” 2.7/2.2, RDDR2-800 21.4 24 Continued Platform Compatibility • Nvidia/Broadcom-based F/1207 platforms “Istanbul,” 2.4/2.2, RDDR2-800 22 42 81.5 *Based on measurements at AMD performance labs. See backup slide for configuration information. 8 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 For more information be sure to visit AMD at SC’09 booth #1417 HT Assist Improves Two-Socket to Four-Socket Server Performance Scaling 200% 200% STREAM (GB/s) STREAM (GB/s) +100% +93% +96% 180% SPECfp®_rate2006 180% SPECfp®_rate2006 +82% SPECint®_rate2006 +80% SPECint®_rate2006 160% 160% Up to 82% higher Up to 2x 140% 140% performance performance 120% 120% +19% 100% 100% 80% 80% RelativePerformance RelativePerformance 60% 60% 40% 40% 20% 20% 0% 0% Quad-Core AMD Opteron™ processor Quad-Core AMD Opteron™ processor Six-Core AMD Opteron™ processor Six-Core AMD Opteron™ processor ("Shanghai") ("Shanghai") ("Istanbul") ("Istanbul") Model 2384 (2.7GHz) (2P) Model 8384 (2.7GHz) (4P) Model 2435 (2.6GHz) (2P) Model 8435 (2.6GHz) (4P) SPEC, SPECint, and SPECfp are registered trademarks of the Standard Performance Evaluation Corporation. The SPECint_rate and SPECfp_rate results for Six-Core AMD OpteronTM processors are based upon data submitted to Standard Performance Evaluation Corporation as of May 12, 2009. The other SPECint_rate and SPECfp_rate results stated above reflect results published on http://www.spec.org/ as of May 12, 2009. The STREAM results are based on measurements at AMD performance labs as of May 12, 2009. The SPECint_rate and SPECfp_rate comparisons presented above are based on the best performing two-socket and four-socket servers using AMD Opteron™ processor Models 2384, 8384, 2435, and 8435. For the latest results, visit www.spec.org. Please see backup slides for configuration information. 9 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 For more information be sure to visit AMD at SC’09 booth #1417 2 Socket HPL Performance High-Performance Linpack - Two Socket Servers Six-Core AMD Opteron™ 104 Processor ("Istanbul") (139%) Model 2435 (2.6GHz) Intel Xeon Processor 75 ("Gainestown") Model (100%) X5570 (2.93GHz) 0 20 40 60 80 100 120 HPL Gflops* *Based on AMD internal performance lab measurements as of June 15th 2009 – see backup slides for configuration 10 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 For more information be sure to visit AMD at SC’09 booth #1417 Power Efficient Innovations AMD PowerNow!™ Technology with Independent Dynamic Core Technology Allows processors and cores to dynamically operate at lower power AMD Smart Fetch and frequencies, depending on usage and workload to help reduce Technology TCO and to lower power consumption in the datacenter Can reduce power consumption by allowing idle cores to enter a “halt” state Enhanced Performance-per-watt 50% more compute cores vs. quad-core within the same power envelope* AMD PowerCap AMD CoolCore™ Manager Technology Allows IT datacenter Can reduce processor managers to set a energy consumption by fixed limit on a dynamically turning off server's processor sections of the processor power consumption when inactive Extends to the L3 Cache Dual Dynamic Power Management™ Enables more granular power management capabilities to reduce processor energy consumption. Separate power planes for cores and memory controller 11 | AMD HPC Product Portfolio Update @ SC’09 | November 30, 2009 *Compared
Recommended publications
  • Titan X Amd 1.2 V4 Ig 20210319
    English TITAN X_AMD 1.2 Installation Guide V4 Parts List A CPU Water Block A A-1 BPTA-CPUMS-V2-SKA ..........1 pc A-1 A-2 A-2 Backplane assembly ..............1 set B Fittings B-1 BPTA-DOTFH1622 ...............4 pcs B-2 TA-F61 ...................................2 pcs B-3 BPTA-F95 ..............................2 pcs B-4 BP-RIGOS5 ...........................2 pcs B-5 TA-F60 ..................................2 pcs B-6 TA-F40 ..................................2 pcs C Accessory C-1 Hard tube ..............................2 pcs C-2 Fitting + soft tube ....................1 pc C-3 CPU set SCM3FL20 SPRING B SCM3F6 1mm Spacer Back Pad Paste Pad Metal Backplane M3x32mm Screw B-1 B-2 B-3 B-4 B-5 B-6 C C-1 Hard Tube ※ The allowable variance in tube length is ± 2mm C-2 Fitting + soft tube Bitspower reserves the right to change the product design and interpretations. These are subject to change without notice. Product colors and accessories are based on the actual product. — 1 — I. AMD Motherboard system 54 AMD SOCKET 939 / 754 / 940 IN 48 AMD SOCKET AM4 AMD SOCKET AM3 / AM3+ AMD SOCKET AM2 / AM2+ AMD SOCKET FM1 / FM2+ Bitspower Fan and DRGB RF Remote Controller Hub (Not included) are now available at microcenter.com DRGB PIN on Motherboard or other equipment. 96 90 BPTA-RFCHUB The CPU water block has a DRGB cable, which AMD SOCKET AM4 AMD SOCKET AM3 AM3+ / AMD SOCKET AM2 AM2+ / AMD SOCKET FM1 / FM2+ can be connected to the DRGB extension cable of the radiator fans. Fan and DRGB RF Remote Motherboard Controller Hub (Not included) OUT DRGB LED Do not over-tighten the thumb screws Installation (SCM3FL20).
    [Show full text]
  • FCC Information and Copyright
    N68S3B Setup Manual FCC Information and Copyright This equipment has been tested and found to comply with the limits of a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. There is no guarantee that interference will not occur in a particular installation. The vendor makes no representations or warranties with respect to the contents here and specially disclaims any implied warranties of merchantability or fitness for any purpose. Further the vendor reserves the right to revise this publication and to make changes to the contents here without obligation to notify any party beforehand. Duplication of this publication, in part or in whole, is not allowed without first obtaining the vendor’s approval in writing. The content of this user’s manual is subject to be changed without notice and we will not be responsible for any mistakes found in this user’s manual. All the brand and product names are trademarks of their respective companies. Dichiarazione di conformità Short Declaration of conformity sintetica We declare this product is complying Ai sensi dell’art. 2 comma 3 del D.M. with the laws in force and meeting all 275 del 30/10/2002 the essential requirements as specified by the directives Si dichiara che questo prodotto è conforme alle normative vigenti e 2004/108/CE, 2006/95/CE and soddisfa i requisiti essenziali richiesti 1999/05/CE dalle direttive whenever these laws may be applied 2004/108/CE, 2006/95/CE e 1999/05/CE quando ad esso applicabili Table of Contents Chapter 1: Introduction .......................................
    [Show full text]
  • Cray XT and Cray XE Y Y System Overview
    Crayyy XT and Cray XE System Overview Customer Documentation and Training Overview Topics • System Overview – Cabinets, Chassis, and Blades – Compute and Service Nodes – Components of a Node Opteron Processor SeaStar ASIC • Portals API Design Gemini ASIC • System Networks • Interconnection Topologies 10/18/2010 Cray Private 2 Cray XT System 10/18/2010 Cray Private 3 System Overview Y Z GigE X 10 GigE GigE SMW Fibre Channels RAID Subsystem Compute node Login node Network node Boot /Syslog/Database nodes 10/18/2010 Cray Private I/O and Metadata nodes 4 Cabinet – The cabinet contains three chassis, a blower for cooling, a power distribution unit (PDU), a control system (CRMS), and the compute and service blades (modules) – All components of the system are air cooled A blower in the bottom of the cabinet cools the blades within the cabinet • Other rack-mounted devices within the cabinet have their own internal fans for cooling – The PDU is located behind the blower in the back of the cabinet 10/18/2010 Cray Private 5 Liquid Cooled Cabinets Heat exchanger Heat exchanger (XT5-HE LC only) (LC cabinets only) 48Vdc flexible Cage 2 buses Cage 2 Cage 1 Cage 1 Cage VRMs Cage 0 Cage 0 backplane assembly Cage ID controller Interconnect 01234567 Heat exchanger network cable Cage inlet (LC cabinets only) connection air temp sensor Airflow Heat exchanger (slot 3 rail) conditioner 48Vdc shelf 3 (XT5-HE LC only) 48Vdc shelf 2 L1 controller 48Vdc shelf 1 Blower speed controller (VFD) Blooewer PDU line filter XDP temperature XDP interface & humidity sensor
    [Show full text]
  • PURE Crossfirex 790GX
    PC-AM3RS790G - PURE CrossFireX 790GX The Sapphire PURE CrossFireX 790GX AM3 is designed for AMD Phenom II™ AM3 true quad-core processors and next generation graphics with high speed DDR3 DRAM module. Performance, scalability, and personalization are coupled with an innovative and efficient design incorporating new ATI CrossFireX and Hybrid CrossFire technologies. The Sapphire PURE CrossFireX 790GX AM3 is designed for PC enthusiasts, high-performance gamers and professional overclockers**. Cut to the chase and open up the system BIOS to mad tweaking for the hardcore overclocker, via real-time control and then using the AMD OverDrive utility. Get the power of multi GPU graphics behind you to experience the ultimate in high definition gaming . Loaded with next generation technologies like PCI Express® 2.0 and HyperTransport™ 3.0 technology, get the ammo you need in gaming, HD editing, and high resolution video to lead the pack, not follow it. Build your dream PC. Start with a Sapphire PURE CrossFireX 790GX AM3 motherboard. Overview Features Features and Benefits AMD Phenom&tarade; Quad-Core Processors with True Quad-Core Technology Realize new possibilities for connecting with friends, family, and digital entertainment with the phenomenal performance of the AMD Phenom™ II AM3 series quad-core processor. Built from the ground up for true quad-core performance, AMD Phenom™ processors speed through advanced multitasking, critical business productivity, advanced visual design and modeling, serious gaming, and visually stunning digital media
    [Show full text]
  • 2018 Annual Report on Form 10-K
    2018 ANNUAL REPORT ON FORM 10-K MARCH 2019 DEAR SHAREHOLDERS: From the industry’s first 1GHz CPU to the world’s first GPU delivering a teraflop of computing power, AMD has always stood for pushing the boundaries of what is possible. A few years ago, we made several big bets to accelerate our pace of innovation, strengthen our execution, and enable AMD to deliver a leadership portfolio of computing and graphics processors capable of increasing our share of the $75 billion high-performance computing market. In 2018, we saw those bets begin to pay off as we delivered our second straight year of greater than 20% annual revenue growth and significantly improved our gross margin and profitability from the previous year. REVENUE GROSS MARGIN % R&D INVESTMENT EXPENSE/REVENUE % $ Billions $ Billions $6.5B 38% $1.43B 34% $5.3B 34% 33% $4.3B $1.20B 23% $1.01B 31% 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 Added $2.2B in revenue Significantly improved gross Increased R&D by more than Significant improvement over the last 2 years margin over last 2 years based 40% over the last 2 years in OPEX leverage on new product portfolio Our newest Ryzen™, EPYC™ and datacenter GPU products contributed more than $1.2 billion of revenue in 2018 and helped us gain share across our priority markets. In 2018, we added 3.9% points of desktop processor unit share, 5.3% points of notebook processor unit share and met our goal of exiting the year with mid-single digit server processor market share.
    [Show full text]
  • Socket AM3 Processor Functional Data Sheet
    AMD Confidential – Advance Information Socket AM3 Processor Functional Data Sheet Publication # 40778 Revision: 1.13 Issue Date: January 2009 Advanced Micro Devices AMD Confidential – Advance Information © 2007 – 2009 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
    [Show full text]
  • AMD Opteron™ 4000 Series Platform Quick Reference Guide
    AMD Opteron™ 4000 Series Platform Quick Reference Guide The AMD Opteron™ 4100 Series processor, the world’s lowest power per core processor1, sets the foundation for cloud workloads and affordability for mainstream infrastructure servers with prices starting at $992. AMD Opteron™ 4100 Series Processor END USER BENEFITS Outstanding Performance-Per-Watt > Designed from the ground up to handle demanding server workloads at the lowest available energy draw, beating the competition by as much as 40% (per/core).1 Business Value > The world’s first 1P and 2P capable processor at sub $100 pricing.2 Easy to Purchase and Operate > Scalable solutions with feature, component and platform consistency. PRODUCT FEATURES New AMD-P 2.0 Power Savings Features: > Ultra-low power platforms provide power efficiency beyond just the processor, 3 SOUNDBITE for both 1P and 2P server configurations. THE WORLD’S LOWEST POWER PER CORE SERVER PROCESSOR1 > APML (Advanced Platform Management Link)4 provides an interface for processor and systems management monitoring and controlling of system resources such as platform power Quick Features consumption via p-state limits and CPU thermals to closely monitor power and cooling. AMD-P 2.0: > Link Width PowerCap which changes all 16-bit links to 8-bit links5 can help power conscious Ultra-low power platform > customers improve performance-per-watt. > Advanced Platform Management Link (APML)4 > AMD CoolSpeed Technology reduces p-states when a temperature limit is reached to allow a > Link Width PowerCap server to operate if the processor’s thermal environment exceeds safe operational limits. > AMD CoolSpeed Technology > When C1E5,6 is enabled, the cores, southbridge and memory controller enter a sleep state that > C1E6 can equate to significant power savings in the datacenter depending on system configuration.
    [Show full text]
  • Supermicro H8DME-2
    Supermicro H8DME-2 Key Features 1. Dual AMD® Opteron™ 2000 Series (Socket F) Support, 1000 MHz HyperTransport Link 2. nVidia MCP55 Pro / NEC uPD720400 Chipset 3. Up to 32GB DDR2 667 SDRAM Up to 32GB DDR2 533 SDRAM Up to 64GB DDR2 400 SDRAM 4. Dual-port Gigabit LAN/Ethernet Controller 5. 6 SATA2 3.0Gb/s HDD Support 6. 2 x8 PCI-e, 2 64-bit 133/100MHz PCI-X, 2 64-bit 100MHz PCI-X 7. ATI ES1000 Graphics 8. SIMLC IPMI 2.0 Support 9. 8 Fan Support with Speed Control Product SKUs Chassis ( Optimized for H8DME-2 ) MBD-H8DME-2- • H8DME-2 (Standard Retail Pack) O • CSE-825TQ-560LPV * • CSE-825TQ-R700LPV * MBD-H8DME-2- • H8DME-2 (Bulk Pack) B 2U Chassis * Please use air-shroud MCP-310-00025- 01 Physical Stats (Air-shrouds sold separately) • CSE-745TQ-800 • Extended ATX Form Factor • CSE-745TQ-R800 • CSE-745TQ-700 • 12" x 13.05" (30.5cm x 33.2cm) • Dimensions CSE-745TQ-R700 Rackmount • CSE-743TQ-R760 Tower / 4U • CSE-743T-R760 Processor/Chipset • CSE-743i-R760 • CSE-743T-650 • Dual 1207-pin Socket F • CSE-743i-650 • Supports up to two AMD Opteron™ 2000 Series (Socket F) processor(s) CPU • • Dual-core Support To ensure system stability, a 420W (minimum) ATX power supply Important [ 4-pin (+12V), 8-pin (+12V) and 24- • 1000MHz HyperTransport Chassis Notes pin are required] System Bus • nVidia MCP55 Pro Chipset • NEC uPD720400 Expansion Slots • 2 x8 PCI-e slots • System Memory 1 SEPC (Supermicro extended Power Connector) slot for 2U active PCI-Express • riser cards with a power extension Sixteen 240-pin DIMM sockets (i.e.
    [Show full text]
  • AMD Socket 939/AM2/AM2+/AM3
    10318 Bluegrass Parkway Ph: 502-499-0117 Louisville, KY 40299 Fax: 502-499-0981 www.computeroutlet.net Open M-F: 9:30 to 6:00 [email protected] Rev. 08/03/2012 Processors Motherboards Memory AMD Socket 939/AM2/AM2+/AM3/AM3+/FM1 AMD Socket 754 FP/EDO AMD 3200+ 939 $59 Jetway S755Twin $59 16 M/32M/64M FP/EDO 72 Pin Simm $11/21/49 Socket AM3: Athlon II 250 X2/ 960T X4 $80 / 129 AMD Socket FM1 SDRAM Socket AM3+: FX4100/FX6100/FX8120 $125/165/189 Gigabyte A75M-D2H $99 64/128 MB SDRAM 66 MHz $19/39 Socket FM1: AMD X4-631/A3300/A3650 APU $129/119/129 AM2+(DDR2) 64M/128M/256M/512M SDRAM PC100/133 $10/15/25/45 Intel Socket 775/1055/1056/2011/LGA771 ASRock mAtx A/V/Lan $69 512 MB SDRAM PC100 /133 Ecc/Reg $69 Socket 775:Celeron 430 1.8G $49 AM3(DDR3) DDR1 E6400/E6420/E7500/E8500 $135/139/145/169 Gigabyte M68MT-D3 $69 128/256M/512M/1 G DDR266/333/400 $15/19/29/39 Quad Q8300 $175 Gigabyte GA-880GM-UD2H $105 256M/512M/ 1G (ECC/REG )DDR266/333/400 $35/49/89 Socket 1156 G6950:i3-540/i5-760/i7-950 $119/142/239/315 Biostar A880G+ $69 256M /512M/1G DDR266/333/400 Notebook $20/25/45 Socket 1155: i3-2100/i5-2400/i5-3450/i7-2600/i7-2600k $146/222/219/359/369 Biostar N68S3+ $69 DDR2 Socket 2011: i7- 3820/3930K $344/677 Foxconn A7DA-S 3.0 $119 256M/512M/ 1G/ 2G/4G 400/533/667/800 $10/20/29/39/89 Foxconn M61PMP-K $69 512M/ 1GB /2GB 400/533/667 ECC only $29/39/55 Xeon ASRock N68-VS3 UCC $69 1G/2G/4G ECC/REG or ECC Full Buffered $45/89/159 3065/3110/3430 $199/235/279 MSI 760GM-E51 $99 256M/512M Notebook $10/20 Xeon Dual Core MSI 790X-G45 $129 1G/2G/4G Notebook
    [Show full text]
  • AMD's Early Processor Lines, up to the Hammer Family (Families K8
    AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) Dezső Sima October 2018 (Ver. 1.1) Sima Dezső, 2018 AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) • 1. Introduction to AMD’s processor families • 2. AMD’s 32-bit x86 families • 3. Migration of 32-bit ISAs and microarchitectures to 64-bit • 4. Overview of AMD’s K8 – K10.5 (Hammer-based) families • 5. The K8 (Hammer) family • 6. The K10 Barcelona family • 7. The K10.5 Shanghai family • 8. The K10.5 Istambul family • 9. The K10.5-based Magny-Course/Lisbon family • 10. References 1. Introduction to AMD’s processor families 1. Introduction to AMD’s processor families (1) 1. Introduction to AMD’s processor families AMD’s early x86 processor history [1] AMD’s own processors Second sourced processors 1. Introduction to AMD’s processor families (2) Evolution of AMD’s early processors [2] 1. Introduction to AMD’s processor families (3) Historical remarks 1) Beyond x86 processors AMD also designed and marketed two embedded processor families; • the 2900 family of bipolar, 4-bit slice microprocessors (1975-?) used in a number of processors, such as particular DEC 11 family models, and • the 29000 family (29K family) of CMOS, 32-bit embedded microcontrollers (1987-95). In late 1995 AMD cancelled their 29K family development and transferred the related design team to the firm’s K5 effort, in order to focus on x86 processors [3]. 2) Initially, AMD designed the Am386/486 processors that were clones of Intel’s processors.
    [Show full text]
  • SMBIOS Specification
    1 2 Document Identifier: DSP0134 3 Date: 2019-10-31 4 Version: 3.4.0a 5 System Management BIOS (SMBIOS) Reference 6 Specification Information for Work-in-Progress version: IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF or its members. Because this document is a Work in Progress, this document may still change, perhaps profoundly and without notice. This document is available for public review and comment until superseded. Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/feedback 7 Supersedes: 3.3.0 8 Document Class: Normative 9 Document Status: Work in Progress 10 Document Language: en-US 11 System Management BIOS (SMBIOS) Reference Specification DSP0134 12 Copyright Notice 13 Copyright © 2000, 2002, 2004–2019 DMTF. All rights reserved. 14 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15 management and interoperability. Members and non-members may reproduce DMTF specifications and 16 documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17 time, the particular version and release date should always be noted. 18 Implementation of certain elements of this standard or proposed standard may be subject to third party 19 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21 or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22 inaccurate identification or disclosure of such rights, owners or claimants.
    [Show full text]
  • Lista Sockets.Xlsx
    Data de Processadores Socket Número de pinos lançamento compatíveis Socket 0 168 1989 486 DX 486 DX 486 DX2 Socket 1 169 ND 486 SX 486 SX2 486 DX 486 DX2 486 SX Socket 2 238 ND 486 SX2 Pentium Overdrive 486 DX 486 DX2 486 DX4 486 SX Socket 3 237 ND 486 SX2 Pentium Overdrive 5x86 Socket 4 273 março de 1993 Pentium-60 e Pentium-66 Pentium-75 até o Pentium- Socket 5 320 março de 1994 120 486 DX 486 DX2 486 DX4 Socket 6 235 nunca lançado 486 SX 486 SX2 Pentium Overdrive 5x86 Socket 463 463 1994 Nx586 Pentium-75 até o Pentium- 200 Pentium MMX K5 Socket 7 321 junho de 1995 K6 6x86 6x86MX MII Slot 1 Pentium II SC242 Pentium III (Cartucho) 242 maio de 1997 Celeron SEPP (Cartucho) K6-2 Socket Super 7 321 maio de 1998 K6-III Celeron (Socket 370) Pentium III FC-PGA Socket 370 370 agosto de 1998 Cyrix III C3 Slot A 242 junho de 1999 Athlon (Cartucho) Socket 462 Athlon (Socket 462) Socket A Athlon XP 453 junho de 2000 Athlon MP Duron Sempron (Socket 462) Socket 423 423 novembro de 2000 Pentium 4 (Socket 423) PGA423 Socket 478 Pentium 4 (Socket 478) mPGA478B Celeron (Socket 478) 478 agosto de 2001 Celeron D (Socket 478) Pentium 4 Extreme Edition (Socket 478) Athlon 64 (Socket 754) Socket 754 754 setembro de 2003 Sempron (Socket 754) Socket 940 940 setembro de 2003 Athlon 64 FX (Socket 940) Athlon 64 (Socket 939) Athlon 64 FX (Socket 939) Socket 939 939 junho de 2004 Athlon 64 X2 (Socket 939) Sempron (Socket 939) LGA775 Pentium 4 (LGA775) Pentium 4 Extreme Edition Socket T (LGA775) Pentium D Pentium Extreme Edition Celeron D (LGA 775) 775 agosto de
    [Show full text]