Cissoid ∗ History Diocles ( 250 – ∼100 BC) Invented This Curve to Solve the Dou- Bling of the Cube Problem (Also Know As the the Delian Prob- Lem)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
15 Famous Greek Mathematicians and Their Contributions 1. Euclid
15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books. -
Differential Geometry
Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2. -
An Approach on Simulation of Involute Tooth Profile Used on Cylindrical Gears
BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică „Gheorghe Asachi” din Iaşi Volumul 66 (70), Numărul 2, 2020 Secţia CONSTRUCŢII DE MAŞINI AN APPROACH ON SIMULATION OF INVOLUTE TOOTH PROFILE USED ON CYLINDRICAL GEARS BY MIHĂIȚĂ HORODINCĂ “Gheorghe Asachi” Technical University of Iaşi, Faculty of Machine Manufacturing and Industrial Management Received: April 6, 2020 Accepted for publication: June 10, 2020 Abstract. Some results on theoretical approach related by simulation of 2D involute tooth profiles on spur gears, based on rolling of a mobile generating rack around a fixed pitch circle are presented in this paper. A first main approach proves that the geometrical depiction of each generating rack position during rolling can be determined by means of a mathematical model which allows the calculus of Cartesian coordinates for some significant points placed on the rack. The 2D involute tooth profile appears to be the internal envelope bordered by plenty of different equidistant positions of the generating rack during a complete rolling. A second main approach allows the detection of Cartesian coordinates of this internal envelope as the best approximation of 2D involute tooth profile. This paper intends to provide a way for a better understanding of involute tooth profile generation procedure. Keywords: tooth profile; involute; generating rack; simulation. 1. Introduction Gear manufacturing is a major topic in industry due to a large scale utilization of gears for motion transmissions and speed reducers. Commonly the flank gear surface on cylindrical toothed wheels (gears) is described by two Corresponding author: e-mail: [email protected] 22 Mihăiţă Horodincă orthogonally curves: an involute as flank line (in a transverse plane) and a profile line. -
Phantom Paths from Problems to Equations
Archimedes and the Angel: Phantom Paths from Problems to Equations Fabio Acerbi CNRS, UMR 8163 ‘Savoirs, textes, langage’, Lille [email protected] Introduction This paper is a critical review of Reviel Netz’ The Transformation of Mathematics in the Early Mediterranean World.1 Its aim is to show that Netz’ methods of inquiry are too often unsatisfactory and to argue briefly for a substantially different interpretation of the evi- dence which he adduces. These two aims are pursued in parallel throughout the review and can hardly be disjoined. The review is uncommonly long and uncommonly direct, at times perhaps even a trifle vehement, in criticizing the methods and conclusions displayed in the book. There are two reasons for this. First, the transforma- tion of Academic scholarship into a branch of the editorial business and, very recently, into an expanding division of the media-driven star-system, has dramatically reduced the time left to study primary sources, to get properly informed of works by other scholars,2 and even just to read more than once what was written as a first draft. Second, at the same time, it is increasingly difficult to find serious reviews. Though the number of reviews and book-notices is explod- ing, it is clear that most reviews are written just to get a copy of an otherwise too expensive book. At any rate, the current policy is to keep sharp criticisms, if any, hidden under a seemingly gentle stylistic surface. The present paper is organized as follows. In the first section, I present Archimedes’ problem; in the next, I report the contents 1 R. -
On the Topology of Hypocycloid Curves
Física Teórica, Julio Abad, 1–16 (2008) ON THE TOPOLOGY OF HYPOCYCLOIDS Enrique Artal Bartolo∗ and José Ignacio Cogolludo Agustíny Departamento de Matemáticas, Facultad de Ciencias, IUMA Universidad de Zaragoza, 50009 Zaragoza, Spain Abstract. Algebraic geometry has many connections with physics: string theory, enu- merative geometry, and mirror symmetry, among others. In particular, within the topo- logical study of algebraic varieties physicists focus on aspects involving symmetry and non-commutativity. In this paper, we study a family of classical algebraic curves, the hypocycloids, which have links to physics via the bifurcation theory. The topology of some of these curves plays an important role in string theory [3] and also appears in Zariski’s foundational work [9]. We compute the fundamental groups of some of these curves and show that they are in fact Artin groups. Keywords: hypocycloid curve, cuspidal points, fundamental group. PACS classification: 02.40.-k; 02.40.Xx; 02.40.Re . 1. Introduction Hypocycloid curves have been studied since the Renaissance (apparently Dürer in 1525 de- scribed epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on some particular hypocycloids, like the astroid, see [5]). Hypocycloids are described as the roulette traced by a point P attached to a circumference S of radius r rolling about the inside r 1 of a fixed circle C of radius R, such that 0 < ρ = R < 2 (see Figure 1). If the ratio ρ is rational, an algebraic curve is obtained. The simplest (non-trivial) hypocycloid is called the deltoid or the Steiner curve and has a history of its own both as a real and complex curve. -
Around and Around ______
Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular. -
Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions. -
Apollonius of Pergaconics. Books One - Seven
APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro]. -
On the Topology of Hypocycloids
ON THE TOPOLOGY OF HYPOCYCLOIDS ENRIQUE ARTAL BARTOLO AND JOSE´ IGNACIO COGOLLUDO-AGUST´IN Abstract. Algebraic geometry has many connections with physics: string theory, enumerative geometry, and mirror symmetry, among others. In par- ticular, within the topological study of algebraic varieties physicists focus on aspects involving symmetry and non-commutativity. In this paper, we study a family of classical algebraic curves, the hypocycloids, which have links to physics via the bifurcation theory. The topology of some of these curves plays an important role in string theory [3] and also appears in Zariski’s foundational work [9]. We compute the fundamental groups of some of these curves and show that they are in fact Artin groups. 1. Introduction Hypocycloid curves have been studied since the Renaissance (apparently D¨urer in 1525 described epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on some particular hypocycloids, like the astroid, see [5]). Hypocy- cloids are described as the roulette traced by a point P attached to a circumference S of radius r rolling about the inside of a fixed circle C of radius R, such that r 1 0 < ρ = R < 2 (see Figure 1). If the ratio ρ is rational, an algebraic curve is ob- tained. The simplest (non-trivial) hypocycloid is called the deltoid or the Steiner curve and has a history of its own both as a real and complex curve. S r C P arXiv:1703.08308v1 [math.AG] 24 Mar 2017 R Figure 1. Hypocycloid Key words and phrases. hypocycloid curve, cuspidal points, fundamental group. -
Calendar of Roman Events
Introduction Steve Worboys and I began this calendar in 1980 or 1981 when we discovered that the exact dates of many events survive from Roman antiquity, the most famous being the ides of March murder of Caesar. Flipping through a few books on Roman history revealed a handful of dates, and we believed that to fill every day of the year would certainly be impossible. From 1981 until 1989 I kept the calendar, adding dates as I ran across them. In 1989 I typed the list into the computer and we began again to plunder books and journals for dates, this time recording sources. Since then I have worked and reworked the Calendar, revising old entries and adding many, many more. The Roman Calendar The calendar was reformed twice, once by Caesar in 46 BC and later by Augustus in 8 BC. Each of these reforms is described in A. K. Michels’ book The Calendar of the Roman Republic. In an ordinary pre-Julian year, the number of days in each month was as follows: 29 January 31 May 29 September 28 February 29 June 31 October 31 March 31 Quintilis (July) 29 November 29 April 29 Sextilis (August) 29 December. The Romans did not number the days of the months consecutively. They reckoned backwards from three fixed points: The kalends, the nones, and the ides. The kalends is the first day of the month. For months with 31 days the nones fall on the 7th and the ides the 15th. For other months the nones fall on the 5th and the ides on the 13th. -
Bibliography
Bibliography Afshar, Iraj: Bibliographie des Catalogues des Manuscrits Persans. Tehran: 1958. Almagest: see Ptolemy. Apollonius: Apollonii Pergaei quae Graece exstant cum commentariis Eutocii (ed. J. L. Heiberg), 2 vols. Leipzig: 1891, 1893. Arberry, A. J. : The Chester Beatty Library, A Handlist of the Arabic Manuscripts, Vol. VII. Dublin: 1964. Archimedes: Archimedis Opera Omnia cum commentariis Eutocii, (iterum ed. J. L. Heiberg), 3 vols. Leipzig: 1910-1915. Archimedes: see also Heath. Aristarchus of Samos: On the Sizes and Distances of the Sun and Moon (ed. T. Heath). Oxford: 1913. Aristotle, Nicomachean Ethics: Aristotelis Ethica Nicomachea (ed. I. Bywater). Oxford: 1894. Aristotle, Prior Analytics: Aristotelis Analytica Priora et Posteriora (ed. W. D. Ross and L. Minio-Paluello). Oxford: 1964. Autolycus: J. Mogenet, Autolycus de Pitane. Louvain, 1950 (Universite de Louvain, Recueil de Travaux d'Histoire et de Philologie, 3e. Serie Fasc. 37). Awad, Gurgis: "Arabic Manuscripts in American Libraries". Sumer 1, 237-277 (1951). (Arabic). Bachmann, Peter: Galens Abhandlung dariiber, dal3 der vorziigliche Arzt Philosoph sein mul3. Gottingen: 1965 (Ak. Wiss. Gottingen, Nachrichten Phil. -hist. Kl. 1965.1). Belger, C.: "Ein neues Fragmentum Mathematicum Bobiense". Hermes 16, 261-84 (1881). Boilot, D. J.: "L'oeuvre d'al-Beruni, essai bibliographique". Melanges de l'Institut Dominicain d'Etudes Orientales du Caire ~, 161-256 (1955). Bretschneider, C. A.: Die Geometrie und die Geometer vor Eukleides. Leipzig: 1870. 217 Bib Ziography Brockelmann, Carl: Geschichte der Arabischen Litteratur, zweite den Supplementbanden angepasste Aunage, 2 vols. Leiden: 1943, 1949 [GAL] [and] Supplementbande I-III. Leiden: 1937, 1938, 1942 [S]. Bulmer-Thomas, I.: "Conon of Samos". Dictionary of Scientific Biography III, (New York), 391 (1971). -
On Some Borrowed and Misunderstood Problems in Greek Catoptrics
On Some Borrowed and Misunderstood Problems in Greek Catoptrics by ALEXANDERJONES Optics was one of the first sciences to which ancient Greek mathe- maticians attempted to apply the apparatus of geometry. They were most successful in describing geometrically certain phenomena of per- spective (as in Euclid’s Optics and parts of Pappus’s Collection, Book 6),less so in catoljtrics, the study of mirrors.’ The problems typically encountered in the surviving writings on catoptrics fall into two classes: those dealing with the reflection of rays cast from a luminous source such as the sun upon minors of plane or curved surface, and those involving the projection of lines of sight from the eye by way of a minor to an object. The most basic problem of the first class, to make a burning mirror, is solved correctly in Diocles’s On Burning Mirrors (ca. 200 B.C.) with both spherical and parabolic mirrors; other prob- lems were investigated by Diocles, by Anthemius (ca. A.D. 620) in his On Paradoxical Devices, and doubtless by other authors in the cen- turies between.2 In general these problems were amenable to geo- metrical treatment in antiquity because Hellenistic geometers were equipped to study the tangent lines to a wide range of curves (or the tangent planes to analogous surfaces) and the behaviour of straight lines in a given direction or through a given point .and inflected at the curve or surface at equal angles to the tangent at the point of in- cidence. Problems of the other class, in which it was required to make an ar- rangement of mirrors or a mirror with a special curvature, such that a *Institute for the History and Philosophy of Science and Technology, Victoria College, Univer- sity of Toronto, Toronto, Canada MSS 1K7.