What Does Euclid Have to Say About the Foundations Of

Total Page:16

File Type:pdf, Size:1020Kb

What Does Euclid Have to Say About the Foundations Of WHAT DOES EUCLID HAVE TO SAY ABOUT THE FOUNDATIONS OF COMPUTER SCIENCE? D. E. STEVENSON Abstract. It is fair to say that Euclid's Elements has b een a driving factor in the developmentof mathematics and mathematical logic for twenty-three centuries. The author's own love a air with mathematics and logic start with the Elements. But who was the man? Do we know anything ab out his life? What ab out his times? The contemp orary view of Euclid is much di erent than the man presented in older histories. And what would Euclid say ab out the status of computer science with its rules ab out everything? 1. Motivations Many older mathematicians mayhave started their love a air with mathematics with a high scho ol course in plane geometry. Until recently, plane geometry was taught from translations of the text suchasby Heath [5]. In myown case, it was the neat, clean picture presented with its neat, clean pro ofs. I would guess that over the twenty-three hundred year history of the text, Euclid must be the all-time, b est selling mathematics textb o ok author. At the turn of the last century, David Hilb ert also found a love of Euclid. So much so that Hilb ert was moved to prop ose his Formalist program for mathematics. Grossly over-simpli ed, Hilb ert prop osed that mathematics was a \meaningless game" in that the rules of logic preordained the results indep endent of any interpretation. Hilb ert was rather vehemently opp osed by L. E. J. Brouwer. Brouwer prop osed that it was the intuition of the mathematician who used a p ersonal language to develop mathematics; this language always has meaning [14 ]. A fo cus of Brouwer was the concept of existence. Pretending to 1991 Mathematics Subject Classi cation. 14A99. 1 use an ob ject that has not b een constructed is called impredication. Henr Poincar e said impredi- cation was the ro ot of all mathematical evil. Hilb ert's program eventually would fail, done in by Godel's Incompleteness Theorem. But by no means did this establish intuitionism as the wave of the future. Intuitionism has several facets; it is the existence no impredication facet that broughtmeto study absolute geometry part of Bo ok I with an eye to the history and philosophy of mathematics in Euclidean times. The cause for this was an article byvon Plato [15 ] who prop osed constructive 1 axioms for geometry Brie y, the di erence between constructive and platonic can be stated in terms of Plato and his student Aristotle. This story is well-known in philosophy. Hop efully, not oversimplifying, the question is over existence. Platonic mathematics p ostulates that things just exist. For example, the uncountable set of real numb ers exists as an ideal and we can treat them as if we had access to this set. Essentially, this is a statement of Plato's philosophy. Plato's most famous pupil, Aristotle, disagreed, saying that things must be shown to exist by some metho d or other. Aristotle's stand is often called \empiricism." In mo dern garb, the argument was between Hilb ert's formalism and Brouwer's intuitionism. It is said that \All mathematicians are intuitionists on Sunday and Platonist the rest of the week." Errett Bishop is the most recent prop onent[1]. I nd the intuitionistic argument far more satisfying in computer science: you cannot compute with something until you have created it. According to the the Platonist, Euclid was a platonic mathematician | go gure. This view was p opularized primarily by Pro clus who once headed Plato's Academy and wrote an extensive commentary on the Elements[5 ]. Unfortunately, Pro clus lived ab out six hundred years after Euclid. The history of the platonic versus constructionist views are well do cumented in [2 , 6 ] and the details 1 I use the terms intuitionism and constructivism interchangeably. This may not b e technically correct but the term construction is an inherent part of the geometric discussion 2 Alexander of Aphro disias Amphinomus Anaxgoras Antiphon Aristotle Bryson Demo citus Dio cles Eudemus Euto cius of Aokolon Hero Nicomedes Pappus Plutarch Plato Pro clus Protagoras Simplicius Theon of Smyrna Figure 1. Ma jor Commentators on Geometry are outside our story other than to say conventional wisdom would have said that the constructionist view was not Euclid's. The received story of Euclid is a jumble of comments collected in many contexts. To hear the philosophers tell it, Euclid was as much a philosopher as mathematician. Many logicians talked of a grand scheme by Euclid to set the foundations of mathematics and mathematical logic. But was this his goal? And what was the intellectual climate preceding and during Euclid's time even though we do not know precisely when that was? There is confusion over what commentators have read into the text and what the ancient geometers might themselves have b elieved. Our problem was to understand the \true" Euclid. Section 2 lo oks at the men and their times. Section 3 lo oks at the text of the Elements itself. What might b e Euclid's view of how geometry is conducted in Section 4. 2. The Ancients There seem to be far more ancient commentators Fig. 1 on geometry than there are investigators Fig 2. The purp ose of this section is to identify those p eople who probably had a direct in uence on the technical content of the Elements. 3 Mid 5th Century to Mid 4th Century Hipp o crates of Chios Oenipides of Chios Eratosthenes of Cyrene Time of Plato and Aristotle Archytas of Tarentum Dinostratus Eudoxus of Cnidus Leo damus Leon Menaechmus Theaetetus of Athens Post Euclid App olonius Archimedes Figure 2. Ma jor Contributors to Geometry 2.1. The Men Themselves. Of all those mentioned in the history of geometry there are four pre-Euclideans whom I will mention here. There are two groups: one in the 4th Century and the other in the time of Plato in the 3rd Century. 2.1.1. 4th Century Investigators. In the 4th century BC, Hipp o crates and Oenopides gure promi- nently in the century preceding the establishment of Plato's Academy. Oenopides is reputed to b e the p erson who required only rulers and compasses b e used. In several places, Knorr [9 ] expresses doubt that such a requirement was ever made. It seems highly unlikely that the early geometers put any arti cial imp ediments in the way of development[9,p. 345]. Hipp o crates was, apparently, the geometer of the 4th century. He added signi cantly to the knowledge of his time, but he was also considered the rst compiler of geometry [7, p. 179]. 4 2.1.2. Plato's Academy. After Hipp o crates and Oenopides there is a lull in geometry research but there is also the founding of Plato's Academy. Plato himself was not a mathematician and the Academywas not a hotb ed of mathematical research. Plato is known to have commented that the metho ds of geometry were not abstract enough; several centuries later, Carpus would complain that the metho ds were to o abstract to b e useful [9 , p. 364{365]. The Academy did make a signi cant turn towards mathematics when Eudoxus joined it. Eudoxus. Eudoxus is most rememb ered for his work on approximations to limits, or the so-called \metho d of exhaustion." He was also a consummate geometer. How much did he know ab out constructive metho ds? There is a group of historians that place heavy emphasis on religious motives for solving geometric problems. Seidenb erg [11 , 12 ] calls these \p eg and cord" metho ds. These techniques were known throughout Western Asia. The story is that the priests of various religions solved several imp ortant problems constructively and the Greek mathematicians to ok it from there. Interestingly enough, Eudoxus did sp end time in Egypt studying astronomy with the priests. The apparent impredication in Theorem 1, Bo ok 1 can be seen di erently through the metho ds discussed in Seidenb erg [11 , 12 ]. One need not invoke a continuity principle at all, but simply observe the use of cord and peg metho ds. On the other hand, religion was probably just another application [9 , p. 16]. Eudoxus [6] is given credit for developing deductive reasoning. He also seems to have made a distinction b etween magnitudes and numb ers. While numb ers were prior and ruled by \common notions", magnitudes were not. Magnitudes were ruled by ratios and prop ortions. Menaechmus. Menaechmus was at the Academy at the same time as Eudoxus, probably as a student, then as a teacher. Menaechmus puts the priorityto problems over theorems [9, p. 76, p. 351]. There are twotyp es of problems [9 , p. 359]: A. Those that lead to the determination by certain gures that result in another gure and B. Those that lead to the construction of a gure with sp eci ed prop erties. 5 Name Dates So crates 469 BC to 399 BC Plato c. 428 BC to c. 347 BC Eudoxus 408 BC to 355 BC Aristotle 384 BC to 322 BC Euclid No rm guesses: 325 BC to 300 BC Archimedes 287 BC to 212 BC Theon c. 335 AD to 395 AD Pro clus 410 AD to 485 AD Figure 3. Chronology of Imp ortant Greeks Menaechmus seems to b e the rst recorded intuitionist fo cusing on establishing existence. Euclid. Much controversy could be avoided if we knew more ab out Euclid the man.
Recommended publications
  • Plato As "Architectof Science"
    Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries.
    [Show full text]
  • UNDERSTANDING MATHEMATICS to UNDERSTAND PLATO -THEAETEUS (147D-148B Salomon Ofman
    UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b Salomon Ofman To cite this version: Salomon Ofman. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b. Lato Sensu, revue de la Société de philosophie des sciences, Société de philosophie des sciences, 2014, 1 (1). hal-01305361 HAL Id: hal-01305361 https://hal.archives-ouvertes.fr/hal-01305361 Submitted on 20 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO - THEAETEUS (147d-148b) COMPRENDRE LES MATHÉMATIQUES POUR COMPRENDRE PLATON - THÉÉTÈTE (147d-148b) Salomon OFMAN Institut mathématique de Jussieu-PRG Histoire des Sciences mathématiques 4 Place Jussieu 75005 Paris [email protected] Abstract. This paper is an updated translation of an article published in French in the Journal Lato Sensu (I, 2014, p. 70-80). We study here the so- called ‘Mathematical part’ of Plato’s Theaetetus. Its subject concerns the incommensurability of certain magnitudes, in modern terms the question of the rationality or irrationality of the square roots of integers. As the most ancient text on the subject, and on Greek mathematics and mathematicians as well, its historical importance is enormous.
    [Show full text]
  • 15 Famous Greek Mathematicians and Their Contributions 1. Euclid
    15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books.
    [Show full text]
  • Phantom Paths from Problems to Equations
    Archimedes and the Angel: Phantom Paths from Problems to Equations Fabio Acerbi CNRS, UMR 8163 ‘Savoirs, textes, langage’, Lille [email protected] Introduction This paper is a critical review of Reviel Netz’ The Transformation of Mathematics in the Early Mediterranean World.1 Its aim is to show that Netz’ methods of inquiry are too often unsatisfactory and to argue briefly for a substantially different interpretation of the evi- dence which he adduces. These two aims are pursued in parallel throughout the review and can hardly be disjoined. The review is uncommonly long and uncommonly direct, at times perhaps even a trifle vehement, in criticizing the methods and conclusions displayed in the book. There are two reasons for this. First, the transforma- tion of Academic scholarship into a branch of the editorial business and, very recently, into an expanding division of the media-driven star-system, has dramatically reduced the time left to study primary sources, to get properly informed of works by other scholars,2 and even just to read more than once what was written as a first draft. Second, at the same time, it is increasingly difficult to find serious reviews. Though the number of reviews and book-notices is explod- ing, it is clear that most reviews are written just to get a copy of an otherwise too expensive book. At any rate, the current policy is to keep sharp criticisms, if any, hidden under a seemingly gentle stylistic surface. The present paper is organized as follows. In the first section, I present Archimedes’ problem; in the next, I report the contents 1 R.
    [Show full text]
  • Ancient Rhetoric and Greek Mathematics: a Response to a Modern Historiographical Dilemma
    Science in Context 16(3), 391–412 (2003). Copyright © Cambridge University Press DOI: 10.1017/S0269889703000863 Printed in the United Kingdom Ancient Rhetoric and Greek Mathematics: A Response to a Modern Historiographical Dilemma Alain Bernard Dibner Institute, Boston To the memory of three days in the Negev Argument In this article, I compare Sabetai Unguru’s and Wilbur Knorr’s views on the historiography of ancient Greek mathematics. Although they share the same concern for avoiding anach- ronisms, they take very different stands on the role mathematical readings should have in the interpretation of ancient mathematics. While Unguru refuses any intrusion of mathematical practice into history, Knorr believes this practice to be a key tool for understanding the ancient tradition of geometry. Thus modern historians have to find their way between these opposing views while avoiding an unsatisfactory compromise. One approach to this, I propose, is to take ancient rhetoric into account. I illustrate this proposal by showing how rhetorical categories can help us to analyze mathematical texts. I finally show that such an approach accommodates Knorr’s concern about ancient mathematical practice as well as the standards for modern historical research set by Unguru 25 years ago. Introduction The title of the present paper indicates that this work concerns the relationship between ancient rhetoric and ancient Greek mathematics. Such a title obviously raises a simple question: Is there such a relationship? The usual appreciation of ancient science and philosophy is at odds with such an idea. This appreciation is rooted in the pregnant categorization that ranks rhetoric and science at very different levels.
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • MAT 211 Biography Paper & Class Presentation
    Name: Spring 2011 Mathematician: Due Date: MAT 211 Biography Paper & Class Presentation “[Worthwhile mathematical] tasks should foster students' sense that mathematics is a changing and evolving domain, one in which ideas grow and develop over time and to which many cultural groups have contributed. Drawing on the history of mathematics can help teachers to portray this idea…” (NCTM, 1991) You have been assigned to write a brief biography of a person who contributed to the development of geometry. Please prepare a one-page report summarizing your findings and prepare an overhead transparency (or Powerpoint document) to guide your 5-minute, in-class presentation. Please use this sheet as your cover page. Include the following sections and use section headers (Who? When? etc.) in your paper. 1. Who? Who is the person you are describing? Provide the full name. 2. When? When did the person live? Be as specific as you can, including dates of birth and death, if available. 3. Where? Where did the person live? Be as specific as you can. If this varied during the person’s lifetime, describe the chronology of the various locations and how they connected to significant life events (birth, childhood, university, work life). 4. What? What did he or she contribute to geometry, mathematics, or other fields? Provide details on topics, well-known theorems, and results. If you discover any interesting anecdotes about the person, or “firsts” that he or she accomplished, include those here. 5. Why? How is this person’s work connected to the geometry we are currently discussing in class? Why was this person’s work historically significant? Include mathematical advances that resulted from this person’s contributions.
    [Show full text]
  • Calendar of Roman Events
    Introduction Steve Worboys and I began this calendar in 1980 or 1981 when we discovered that the exact dates of many events survive from Roman antiquity, the most famous being the ides of March murder of Caesar. Flipping through a few books on Roman history revealed a handful of dates, and we believed that to fill every day of the year would certainly be impossible. From 1981 until 1989 I kept the calendar, adding dates as I ran across them. In 1989 I typed the list into the computer and we began again to plunder books and journals for dates, this time recording sources. Since then I have worked and reworked the Calendar, revising old entries and adding many, many more. The Roman Calendar The calendar was reformed twice, once by Caesar in 46 BC and later by Augustus in 8 BC. Each of these reforms is described in A. K. Michels’ book The Calendar of the Roman Republic. In an ordinary pre-Julian year, the number of days in each month was as follows: 29 January 31 May 29 September 28 February 29 June 31 October 31 March 31 Quintilis (July) 29 November 29 April 29 Sextilis (August) 29 December. The Romans did not number the days of the months consecutively. They reckoned backwards from three fixed points: The kalends, the nones, and the ides. The kalends is the first day of the month. For months with 31 days the nones fall on the 7th and the ides the 15th. For other months the nones fall on the 5th and the ides on the 13th.
    [Show full text]
  • The Function of Diorism in Ancient Greek Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Historia Mathematica 37 (2010) 579–614 www.elsevier.com/locate/yhmat The function of diorism in ancient Greek analysis Ken Saito a, Nathan Sidoli b, a Department of Human Sciences, Osaka Prefecture University, Japan b School of International Liberal Studies, Waseda University, Japan Available online 26 May 2010 Abstract This paper is a contribution to our knowledge of Greek geometric analysis. In particular, we investi- gate the aspect of analysis know as diorism, which treats the conditions, arrangement, and totality of solutions to a given geometric problem, and we claim that diorism must be understood in a broader sense than historians of mathematics have generally admitted. In particular, we show that diorism was a type of mathematical investigation, not only of the limitation of a geometric solution, but also of the total number of solutions and of their arrangement. Because of the logical assumptions made in the analysis, the diorism was necessarily a separate investigation which could only be carried out after the analysis was complete. Ó 2009 Elsevier Inc. All rights reserved. Re´sume´ Cet article vise a` contribuer a` notre compre´hension de l’analyse geometrique grecque. En particulier, nous examinons un aspect de l’analyse de´signe´ par le terme diorisme, qui traite des conditions, de l’arrangement et de la totalite´ des solutions d’un proble`me ge´ome´trique donne´, et nous affirmons que le diorisme doit eˆtre saisi dans un sens plus large que celui pre´ce´demment admis par les historiens des mathe´matiques.
    [Show full text]
  • Bibliography
    Bibliography Afshar, Iraj: Bibliographie des Catalogues des Manuscrits Persans. Tehran: 1958. Almagest: see Ptolemy. Apollonius: Apollonii Pergaei quae Graece exstant cum commentariis Eutocii (ed. J. L. Heiberg), 2 vols. Leipzig: 1891, 1893. Arberry, A. J. : The Chester Beatty Library, A Handlist of the Arabic Manuscripts, Vol. VII. Dublin: 1964. Archimedes: Archimedis Opera Omnia cum commentariis Eutocii, (iterum ed. J. L. Heiberg), 3 vols. Leipzig: 1910-1915. Archimedes: see also Heath. Aristarchus of Samos: On the Sizes and Distances of the Sun and Moon (ed. T. Heath). Oxford: 1913. Aristotle, Nicomachean Ethics: Aristotelis Ethica Nicomachea (ed. I. Bywater). Oxford: 1894. Aristotle, Prior Analytics: Aristotelis Analytica Priora et Posteriora (ed. W. D. Ross and L. Minio-Paluello). Oxford: 1964. Autolycus: J. Mogenet, Autolycus de Pitane. Louvain, 1950 (Universite de Louvain, Recueil de Travaux d'Histoire et de Philologie, 3e. Serie Fasc. 37). Awad, Gurgis: "Arabic Manuscripts in American Libraries". Sumer 1, 237-277 (1951). (Arabic). Bachmann, Peter: Galens Abhandlung dariiber, dal3 der vorziigliche Arzt Philosoph sein mul3. Gottingen: 1965 (Ak. Wiss. Gottingen, Nachrichten Phil. -hist. Kl. 1965.1). Belger, C.: "Ein neues Fragmentum Mathematicum Bobiense". Hermes 16, 261-84 (1881). Boilot, D. J.: "L'oeuvre d'al-Beruni, essai bibliographique". Melanges de l'Institut Dominicain d'Etudes Orientales du Caire ~, 161-256 (1955). Bretschneider, C. A.: Die Geometrie und die Geometer vor Eukleides. Leipzig: 1870. 217 Bib Ziography Brockelmann, Carl: Geschichte der Arabischen Litteratur, zweite den Supplementbanden angepasste Aunage, 2 vols. Leiden: 1943, 1949 [GAL] [and] Supplementbande I-III. Leiden: 1937, 1938, 1942 [S]. Bulmer-Thomas, I.: "Conon of Samos". Dictionary of Scientific Biography III, (New York), 391 (1971).
    [Show full text]
  • A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Journal of Humanistic Mathematics Volume 7 | Issue 2 July 2017 A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time John B. Little College of the Holy Cross Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Ancient History, Greek and Roman through Late Antiquity Commons, and the Mathematics Commons Recommended Citation Little, J. B. "A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time," Journal of Humanistic Mathematics, Volume 7 Issue 2 (July 2017), pages 269-293. DOI: 10.5642/ jhummath.201702.13 . Available at: https://scholarship.claremont.edu/jhm/vol7/iss2/13 ©2017 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. A Mathematician Reads Plutarch: Plato's Criticism of Geometers of His Time Cover Page Footnote This essay originated as an assignment for Professor Thomas Martin's Plutarch seminar at Holy Cross in Fall 2016.
    [Show full text]