MAT 211 Biography Paper & Class Presentation

Total Page:16

File Type:pdf, Size:1020Kb

MAT 211 Biography Paper & Class Presentation Name: Spring 2011 Mathematician: Due Date: MAT 211 Biography Paper & Class Presentation “[Worthwhile mathematical] tasks should foster students' sense that mathematics is a changing and evolving domain, one in which ideas grow and develop over time and to which many cultural groups have contributed. Drawing on the history of mathematics can help teachers to portray this idea…” (NCTM, 1991) You have been assigned to write a brief biography of a person who contributed to the development of geometry. Please prepare a one-page report summarizing your findings and prepare an overhead transparency (or Powerpoint document) to guide your 5-minute, in-class presentation. Please use this sheet as your cover page. Include the following sections and use section headers (Who? When? etc.) in your paper. 1. Who? Who is the person you are describing? Provide the full name. 2. When? When did the person live? Be as specific as you can, including dates of birth and death, if available. 3. Where? Where did the person live? Be as specific as you can. If this varied during the person’s lifetime, describe the chronology of the various locations and how they connected to significant life events (birth, childhood, university, work life). 4. What? What did he or she contribute to geometry, mathematics, or other fields? Provide details on topics, well-known theorems, and results. If you discover any interesting anecdotes about the person, or “firsts” that he or she accomplished, include those here. 5. Why? How is this person’s work connected to the geometry we are currently discussing in class? Why was this person’s work historically significant? Include mathematical advances that resulted from this person’s contributions. 6. Sources: List all resources used. There must be at least three distinct sources, one of which may be your textbook. Use an appropriate reference style. I prefer APA. Assessment Rubric Points Points Required Component of Report Available Earned Who? You have included all components listed above. 2 points When? You have included all components listed above. 2 points Where? You have included all components listed above. 5 points What? You have included all components listed above. 5 points Why? You have included all components listed above. 5 points Sources: You have included sources as described above, 3 points Overall: spelling, grammar, format, structure, and style 3 points In-class presentation: Professional, includes required comp. 5 points Total score 30 points Biography Timeline & Achievements Chapter Mathematician Life Dates Main Contributions Ch. 1 Playfair Pasch Eratosthenes Ch. 2 Viviani Ceva (pronounced “Cheva”) Menelaus Euler (pronounced “Oiler”) Ch. 3 Menaechmus Archimedes Hilbert Hypatia Ch. 4 Alhazen Descartes Fermat Ch. 6 Feuerbach Klein Sophus Lie Ch. 9 Poincaré Saccheri Lambert Wallis Bolyai Lobachevsky Spherical Reimann Geometry Al-Jayyani T. Banchoff Symmetry M. C. Escher & Tilings R. Penrose Marjorie Rice & Doris Schattschneider Biography Presentation Dates Chapter & date Mathematician Presenter (Please write name neatly.) Ch. 1 (See name) Playfair (by Fri. 1/14) Pasch (by Wed. 1/19) Eratosthenes (by Wed. 1/19) Ch. 2 (by 1/24) Viviani Ceva (pronounced “Cheva”) Menelaus Euler (pronounced “Oiler”) Ch. 3 (by 2/7) Menaechmus Archimedes Hilbert Hypatia Ch. 4 (by 2/21) Alhazen Descartes Fermat Ch. 6 (by 3/14) Feuerbach Klein Sophus Lie Ch. 9 (by 3/28) Poincaré Saccheri Lambert Wallis Bolyai Lobachevsky Spherical Reimann Geometry (by 4/18) Al-Jayyani (mathematician) Thomas Banchoff Symmetry & M. C. Escher Tessellations (by 4/11) R. Penrose Marjorie Rice & Doris Schattschneider .
Recommended publications
  • Plato As "Architectof Science"
    Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • What Does Euclid Have to Say About the Foundations Of
    WHAT DOES EUCLID HAVE TO SAY ABOUT THE FOUNDATIONS OF COMPUTER SCIENCE? D. E. STEVENSON Abstract. It is fair to say that Euclid's Elements has b een a driving factor in the developmentof mathematics and mathematical logic for twenty-three centuries. The author's own love a air with mathematics and logic start with the Elements. But who was the man? Do we know anything ab out his life? What ab out his times? The contemp orary view of Euclid is much di erent than the man presented in older histories. And what would Euclid say ab out the status of computer science with its rules ab out everything? 1. Motivations Many older mathematicians mayhave started their love a air with mathematics with a high scho ol course in plane geometry. Until recently, plane geometry was taught from translations of the text suchasby Heath [5]. In myown case, it was the neat, clean picture presented with its neat, clean pro ofs. I would guess that over the twenty-three hundred year history of the text, Euclid must be the all-time, b est selling mathematics textb o ok author. At the turn of the last century, David Hilb ert also found a love of Euclid. So much so that Hilb ert was moved to prop ose his Formalist program for mathematics. Grossly over-simpli ed, Hilb ert prop osed that mathematics was a \meaningless game" in that the rules of logic preordained the results indep endent of any interpretation. Hilb ert was rather vehemently opp osed by L. E.
    [Show full text]
  • Lecture 11. Apollonius and Conic Sections
    Lecture 11. Apollonius and Conic Sections Figure 11.1 Apollonius of Perga Apollonius of Perga Apollonius (262 B.C.-190 B.C.) was born in the Greek city of Perga, close to the southeast coast of Asia Minor. He was a Greek geometer and astronomer. His major mathematical work on the theory of conic sections had a very great influence on the development of mathematics and his famous book Conics introduced the terms parabola, ellipse and hyperbola. Apollonius' theory of conics was so admired that it was he, rather than Euclid, who in antiquity earned the title the Great Geometer. He also made contribution to the study of the Moon. The Apollonius crater on the Moon was named in his honor. Apollonius came to Alexandria in his youth and learned mathematics from Euclid's successors. As far as we know he remained in Alexandria and became an associate among the great mathematicians who worked there. We do not know much details about his life. His chief work was on the conic sections but he also wrote on other subjects. His mathematical powers were so extraordinary that he became known in his time. His reputation as an astronomer was also great. Apollonius' mathematical works Apollonius is famous for his work, the Conic, which was spread out over eight books and contained 389 propositions. The first four books were 69 in the original Greek language, the next three are preserved in Arabic translations, while the last one is lost. Even though seven of the eight books of the Conics have survived, most of his mathematical work is known today only by titles and summaries in works of later authors.
    [Show full text]
  • 4 Aristoxenus and Music Therapy
    4 Aristoxenus and Music Therapy Fr. 26 Wehrli within the Tradition on Music and Catharsis Antonietta Provenza 1. Introduction The importance of music for the ancient Pythagoreans,1 together with recognition of its therapeutic function, already attested at the * My heartfelt thanks to Professor Carl Huffman and all the participants in the Aristoxenus Conference for their interest in my paper and comments. I will always remember those days at DePauw University as wonderful and happy. I wish also to thank Professor Salvatore Nicosia, my research tutor, for having read and discussed with me this essay at different times. Translations are mine, unless otherwise indicated. 1 Still indispensable for a general overview of Early Pythagoreanism and the ques- tions concerning it is Burkert (1972). Among Burkert’s main emphases are the Pla- tonic contamination of sources on Pythagoreanism since the 4th century BCE and the representation of Pythagoras as a “wise man” with shamanistic features (although the unsuitability of the notion of shamanism for ancient Greek culture has been since highlighted in Bremmer [1983] 29–48 and [2002] 27–40; cf. also Minar [1971]), rather than as a “scientist,” since “scientific Pythagoreanism” is not clearly attested until Philolaus. Most important among the studies opposing Burkert’s “shamanistic” Pythagoras and giving prominence to the “scientific” side of early Pythagoreanism and to its relationship with Near-eastern science are Kahn (1974), van der Waerden (1979) and Zhmud (1997). Also see on Pythagoreanism and its sources: Centrone 91 92 Aristoxenus of Tarentum dawn of Greek literature,2 favored the rise of a long tradition relat- ing to the Pythagoreans and music therapy, which is most famously and richly attested in two Neoplatonic works, The Life of Pythagoras (Vita Pythagorae) by Porphyry of Tyre (ca.
    [Show full text]
  • Geometry As Made Rigorous by Euclid and Descartes Seminar at Mimar Sinan David Pierce October 31, 2013
    Geometry as made rigorous by Euclid and Descartes Seminar at Mimar Sinan David Pierce October 31, 2013 Abstract: For Immanuel Kant (born 1724), the discovery of mathematical proof by Thales of Miletus (born around 624 b.c.e.) is a revolution in human thought. Modern textbooks of analytic geometry often seem to represent a return to pre- revolutionary times. The counterrevolution is attributed to Ren´eDescartes (born 1596). But Descartes understands an- cient Greek geometry and adds to it. He makes algebra rig- orous by interpreting its operations geometrically. The definition of the real numbers by Richard Dedekind (born 1831) makes a rigorous converse possible. David Hilbert (born 1862) spells it out: geometry can be interpreted in the ordered field of real numbers, and even in certain countable ordered fields. In modern textbooks, these ideas are often entangled, mak- ing the notion of proof practically meaningless. I propose to disentangle the ideas by means of Book I of Euclid’s Elements and Descartes’s Geometry. List of Figures 1 Menaechmus’s finding of two mean proportionals . 4 1 2 Descartes’slocusproblem . 4 3 Thelocusitself ........................ 5 4 Descartes’sgeometricalsolution. 5 Mathematicians and commentators Thales of Miletus b. c. 624 Herodotus b. c. 484 Eudoxus b. 408 Aristotle b. 384 Menaechmus b. 380 Euclid fl. 300 Archimedes b. 287 Apollonius b. 262 Pappus fl. 320 Proclus b. 412 Eutocius fl. 500 Isidore of Miletus fl. 532–7 Ren´eDescartes b. 1596 Immanuel Kant b. 1724 Richard Dedekind b. 1831 David Hilbert b. 1862 Introduction Rigor in mathematics is ability to stand up under questioning.
    [Show full text]
  • History of Conic Sections
    Algebra 2 HS Mathematics Unit: 11 Lesson: 01 History of Conic Sections Image Credit: http://commons.wikimedia.org/wiki/User:Magister_Mathematicae. (2012). Scalable Image of Conic Sections [Web Photo]. Retrieved from http://en.wikipedia.org/wiki/File:Conic_Sections.svg When the ancient Greeks began the study of curves known as conic sections, it was for the fun of studying figures but appeared to have no practical application. Many years later it was found that the knowledge gained from their studies had tremendous scientific and real world applications. The conic sections, which include the circle, the ellipse, the parabola, and the hyperbola, are not only found throughout the natural world but are evident in everything from architecture to astronomy. Menaechmus, one of Plato's pupils, is generally credited with developing the first definition of a conic section. Euclid is credited with writing at least four books on conic sections. However, all work from Menaechmus and Euclid has been lost. Archimedes also studied conic sections. Although most of his work has also been lost, one book on solids of revolution of conics did survive. The ancient Greek geometer Appolonious of Perga, revised the definition of conic sections in the 3rd century B. C. to more closely mirror the definition used today. He determined that by slicing a right circular cone at varying angles, all four conic sections could be obtained. Appolonious applied his discoveries about conic sections to planetary motion which helped in the development of Greek astronomy. Hundreds of years later, the work of Appolonious was translated into Arabic. Although most of the original works of Appolonious were lost, the Arabic translation has survived.
    [Show full text]
  • MA 341 Fall 2011
    MA 341 Fall 2011 The Origins of Geometry 1.1: Introduction In the beginning geometry was a collection of rules for computing lengths, areas, and volumes. Many were crude approximations derived by trial and error. This body of knowledge, developed and used in construction, navigation, and surveying by the Babylonians and Egyptians, was passed to the Greeks. The Greek historian Herodotus (5th century BC) credits the Egyptians with having originated the subject, but there is much evidence that the Babylonians, the Hindu civilization, and the Chinese knew much of what was passed along to the Egyptians. The Babylonians of 2,000 to 1,600 BC knew much about navigation and astronomy, which required knowledge of geometry. Clay tablets from the Sumerian (2100 BC) and the Babylonian cultures (1600 BC) include tables for computing products, reciprocals, squares, square roots, and other mathematical functions useful in financial calculations. Babylonians were able to compute areas of rectangles, right and isosceles triangles, trapezoids and circles. They computed the area of a circle as the square of the circumference divided by twelve. The Babylonians were also responsible for dividing the circumference of a circle into 360 equal parts. They also used the Pythagorean Theorem (long before Pythagoras), performed calculations involving ratio and proportion, and studied the relationships between the elements of various triangles. See Appendices A and B for more about the mathematics of the Babylonians. 1.2: A History of the Value of π The Babylonians also considered the circumference of the circle to be three times the diameter. Of course, this would make 3 — a small problem.
    [Show full text]
  • Treatise on Conic Sections
    OF CALIFORNIA LIBRARY OF THE UNIVERSITY OF CALIFORNIA fY OF CALIFORNIA LIBRARY OF THE UNIVERSITY OF CALIFORNIA 9se ? uNliEHSITY OF CUIFORHU LIBRARY OF THE UNIVERSITY OF CUIfORHlA UNIVERSITY OF CALIFORNIA LIBRARY OF THE UNIVERSITY OF CALIFORNIA APOLLONIUS OF PERGA TREATISE ON CONIC SECTIONS. UonDon: C. J. CLAY AND SONS, CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, AVE RIARIA LANE. ©Inaooh): 263, ARGYLE STREET. lLftp>is: P. A. BROCKHAUS. 0fto goTit: MACMILLAN AND CO. ^CNIVERSITT• adjViaMai/u Jniuppus 9lnlMus%^craticus,naufmato cum ejcctus aa UtJ ammaScrudh Geainetncn fJimmta defer,pta, cxcUnwimJIe cnim veiiigia video. coMXiXcs ita Jiatur^hcnc fperemus,Hominnm APOLLONIUS OF PEEGA TEEATISE ON CONIC SECTIONS EDITED IN MODERN NOTATION WITH INTRODUCTIONS INCLUDING AN ESSAY ON THE EARLIER HISTORY OF THE SUBJECT RV T. L. HEATH, M.A. SOMETIME FELLOW OF TRINITY COLLEGE, CAMBRIDGE. ^\€$ .•(', oh > , ' . Proclub. /\b1 txfartl PRINTED BY J. AND C. F. CLAY, AT THE UNIVERSITY PRESS. MANIBUS EDMUNDI HALLEY D. D. D. '" UNIVERSITT^ PREFACE. TT is not too much to say that, to the great majority of -*- mathematicians at the present time, Apollonius is nothing more than a name and his Conies, for all practical purposes, a book unknown. Yet this book, written some twenty-one centuries ago, contains, in the words of Chasles, " the most interesting properties of the conies," to say nothing of such brilliant investigations as those in which, by purely geometrical means, the author arrives at what amounts to the complete determination of the evolute of any conic. The general neglect of the " great geometer," as he was called by his contemporaries on account of this very work, is all the more remarkable from the contrast which it affords to the fate of his predecessor Euclid ; for, whereas in this country at least the Elements of Euclid are still, both as regards their contents and their order, the accepted basis of elementary geometry, the influence of Apollonius upon modern text-books on conic sections is, so far as form and method are concerned, practically nil.
    [Show full text]
  • Pappus of Alexandria: Book 4 of the Collection
    Pappus of Alexandria: Book 4 of the Collection For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Managing Editor J.Z. Buchwald Associate Editors J.L. Berggren and J. Lützen Advisory Board C. Fraser, T. Sauer, A. Shapiro Pappus of Alexandria: Book 4 of the Collection Edited With Translation and Commentary by Heike Sefrin-Weis Heike Sefrin-Weis Department of Philosophy University of South Carolina Columbia SC USA [email protected] Sources Managing Editor: Jed Z. Buchwald California Institute of Technology Division of the Humanities and Social Sciences MC 101–40 Pasadena, CA 91125 USA Associate Editors: J.L. Berggren Jesper Lützen Simon Fraser University University of Copenhagen Department of Mathematics Institute of Mathematics University Drive 8888 Universitetsparken 5 V5A 1S6 Burnaby, BC 2100 Koebenhaven Canada Denmark ISBN 978-1-84996-004-5 e-ISBN 978-1-84996-005-2 DOI 10.1007/978-1-84996-005-2 Springer London Dordrecht Heidelberg New York British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2009942260 Mathematics Classification Number (2010) 00A05, 00A30, 03A05, 01A05, 01A20, 01A85, 03-03, 51-03 and 97-03 © Springer-Verlag London Limited 2010 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.
    [Show full text]
  • The Origins of Greek Mathematics1
    The Origins of Greek Mathematics1 Though the Greeks certainly borrowed from other civilizations, they built a culture and civilization on their own which is The most impressive of all civilizations, • The most influential in Western culture, • The most decisive in founding mathematics as we know it. • The impact of Greece is typified by the hyperbole of Sir Henry Main: “Except the blind forces of nature, nothing moves in this world which is not Greek in its origin.”2 Including the adoption of Egyptian and other earlier cultures by the Greeks, we find their patrimony in all phases of modern life. Handicrafts, mining techniques, engineering, trade, governmental regulation of commerce and more have all come down to use from Rome and from Rome through Greece. Especially, our democrasies and dictatorships go back to Greek exemplars, as well do our schools and universities, our sports, our games. And there is more. Our literature and literary genres, our alphabet, our music, our sculpture, and most particularly our mathematics all exist as facets of 1 c 2000, G. Donald Allen 2Rede° Lecture for 1875, in J.A. Symonds, Studies of Greek Poets, London, 1920. Origins of Greek Mathematics 2 the Greek heritage. The detailed study of Greek mathematics reveals much about modern mathematics, if not the modern directions, then the logic and methods. The best estimate is that the Greek civilization dates back to 2800 BCE — just about the time of the construction of the great pyramids in Egypt. The Greeks settled in Asia Minor, possibly their original home, in the area of modern Greece, and in southern Italy, Sicily, Crete, Rhodes, Delos, and North Africa.
    [Show full text]