X-Linked Idiopathic Infantile Nystagmus Associated with a Missense Mutation in FRMD7 Alan Shiels Washington University School of Medicine in St

Total Page:16

File Type:pdf, Size:1020Kb

X-Linked Idiopathic Infantile Nystagmus Associated with a Missense Mutation in FRMD7 Alan Shiels Washington University School of Medicine in St Washington University School of Medicine Digital Commons@Becker Open Access Publications 2007 X-linked idiopathic infantile nystagmus associated with a missense mutation in FRMD7 Alan Shiels Washington University School of Medicine in St. Louis Thomas M. Bennett Washington University School of Medicine in St. Louis Jessica B. Prince Washington University School of Medicine in St. Louis Lawrence Tychsen Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Shiels, Alan; Bennett, Thomas M.; Prince, Jessica B.; and Tychsen, Lawrence, ,"X-linked idiopathic infantile nystagmus associated with a missense mutation in FRMD7." Molecular Vision.13,. 2233-2241. (2007). https://digitalcommons.wustl.edu/open_access_pubs/1787 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Molecular Vision 2007; 13:2233-41 <http://www.molvis.org/molvis/v13/a253/> ©2007 Molecular Vision Received 5 November 2007 | Accepted 26 November 2007 | Published 29 November 2007 X-linked idiopathic infantile nystagmus associated with a missense mutation in FRMD7 Alan Shiels, Thomas M. Bennett, Jessica B. Prince, Lawrence Tychsen Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO Purpose: Infantile nystagmus is a clinically and genetically heterogeneous eye movement disorder. Here we map and identify the genetic mutation underlying X-linked idiopathic infantile nystagmus (XL-IIN) segregating in two Caucasian- American families. Methods: Eye movements were recorded using binocular infrared digital video-oculography. Genomic DNA was pre- pared from blood or buccal-cells, and linkage analysis was performed using short tandem repeat (STR) and single nucle- otide polymorphism (SNP) markers. Pedigree and haplotype data were managed using Cyrillic, and LOD scores calcu- lated using MLINK. Mutation profiling of PCR-amplified exons was performed by dye-terminator cycle-sequencing and analyzed by automated capillary electrophoresis. Results: Video-oculography of affected males recorded conjugate, horizontal, pendular nystagmus with increasing-ve- locity waveforms in primary gaze converting to jerk nystagmus in eccentric gaze. Linkage analysis detected significantly positive two-point LOD scores (Z) at markers DXS8078 (Z=4.82, recombination fraction [θ]=0) and DXS1047 (Z=3.87, θ=0). Haplotyping indicated that the IIN locus mapped to the physical interval DXS8057-(11.59 Mb)-rs6528335 on Xq25-q26. Sequencing of positional-candidate genes detected a c.425T>G transversion in exon-6 of the gene for FERM domain containing-7 (FRMD7) that cosegregated with affected and carrier status. In addition, the same change was found to cosegregate with IIN in a genetically unrelated family but was not detected in 192 control individuals. Conclusions: The c.425T>G change is predicted to result in the missense substitution of the phylogenetically conserved leucine at codon 142 for an arginine (p.L142R), and supports a causative role for FRMD7 mutations in the pathogenesis of XL-IIN. Idiopathic infantile nystagmus (IIN), also referred to as forms may also present. Less often, IIN may exhibit predomi- congenital nystagmus (CN), congenital “motor” nystagmus nantly vertical or torsional (elliptical) waveforms. Beyond (CMN), idiopathic congenital nystagmus (ICN), or congeni- exclusion of sensory defect nystagmus and neurological nys- tal idiopathic nystagmus (CIN), is a genetically heterogeneous tagmus, IIN must also be carefully differentiated from certain form of developmental nystagmus that usually presents be- other forms of infantile nystagmus including, fusional malde- tween birth and 6 months of age with an estimated annual velopment nystagmus syndrome or latent fixation nystagmus, incidence of 1/20,000 [1]. IIN is a diagnosis of “primary” or spamus nutans syndrome, which is characterized by asymetric isolated nystagmus after exclusion of “secondary” nystagmus or unilateral nystagmus, and periodic alternating nystagmus, associated with patent neurological disease (e.g. glioma, cor- which resembles IIN except that the null-point shifts position tical visual impairment), or identifiable sensory visual defects in a regular cyclic pattern [2]. including, opacities of the cornea, lens and vitreous, foveal All three classical types of Mendelian inheritance have hypoplasia in albinism and aniridia, achromatopsia, retinal been reported for IIN (Table 1); however, X-linked inherit- dystrophies, and optic nerve hypoplasia. Classical IIN pre- ance is likely the most common form [3]. Two loci for autoso- sents as conjugate, horizontal oscillations of the eyes, in pri- mal dominant IIN have been identified on 6p12 (NYS2) [4,5] mary or eccentric gaze (i.e. uniplanar), often with a preferred and 7p11.2 (NYS3) [6,7] with tentative evidence from haplo- head turn or tilt that is associated with a fixed “null-point” type analysis for additional loci [8,9]. Indeed, a third locus for where the nystagmus intensity is dampened [2]. Other associ- autosomal donminant nystagmus (NYS4) has been mapped ated features are restricted to strabismus (esotropia), refrac- to 13q31-q33 [10,11]; however NYS4 involves tive error (astigmatism), and occasionally head nodding. Eye vestibulocerebellar dysfunction and is clinically distinct from movement recordings reveal that classical IIN is predominantly IIN. X-linked IIN has been associated with two physically a horizontal jerk waveform, with a “diagnostic” accelerating independent loci (both symbolized NYS1) that map to Xp11.4- velocity slow phase. However, pendular and triangular wave- p11.3 [8,12] and Xq26.3-q27.1 [13-18]. In addition, a locus for infantile periodic alternating nystagmus (NYS5), which Correspondence to: A. Shiels, Department of Ophthalmology and often accompanies albinism, has been assigned to chromo- Visual Sciences, Campus Box 8096, Washington University School some X [19]. Here we define an interval on Xq for IIN and of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110; Phone: identify a mutation in the gene encoding a putative cytoskeletal (314) 362-1637; FAX: (314) 362-1646; email: protein referred to as four-point-one (4.1), ezrin, radixin, [email protected] 2233 Molecular Vision 2007; 13:2233-41 <http://www.molvis.org/molvis/v13/a253/> ©2007 Molecular Vision moesin (FERM) domain containing-7 (FRMD7), which was technology Information [NCBI]) were polymerase chain re- recently associated with XL-IIN [20-24]. action (PCR) amplified with M13-tailed primers [25] in the presence of an IRDye800 labeled M13-universal primer (Li- METHODS Cor, Lincoln, NE), and detected using a 4200 DNA analyzer Participants and ophthalmic exams: Ethical approval for this running Gene ImagIR software (Li-Cor) as described previ- study was obtained from the Washington University Human ously [26]. Single nucleotide polymorphism (SNP) markers Research Protection Office, and written informed consent was from the SNP database (dbSNP, NCBI), were PCR amplified provided by all participants prior to enrollment in accordance with M13-tailed primers designed from the flanking sequence with the tenets of the Declaration of Helsinki. Participants were (250-500 bp apart) using appropriate software (e.g. ascertained from the ophthalmic records at St. Louis Children’s PrimerQuest, idtdna.com), and scored by sequencing essen- Hospital. Blood samples were collected by venepuncture tially as described for mutation analysis below. Pedigree and (about 20 ml) or finger-stick (about 200 µl) into K2EDTA haploptype data were managed using Cyrillic (v.2.1) software vacutainer or microtainer tubes (BD Biosciences, San Jose, (FamilyGenetix Ltd., Reading, UK), and two-point LOD scores CA), respectively. Buccal-cell samples were self-collected into (Z) calculated using the MLINK sub-program from the LINK- 50 ml conical tubes (Falcon; BD Biosciences) after vigorous AGE (5.1) package of programs [27] assuming X-linked domi- rinsing (about 30 s) with Scope (about 20 ml) mouthwash nant inheritance with 45% penetrance in females. Marker al- (Procter & Gamble, Cincinnati, OH). lele frequencies were assumed to be equal, and a gene fre- Ophthalmologic examination included: best-corrected quency of 0.0001 was assumed for the disease locus. visual acuity in each eye (using optotypes at 33 cm and 6 m), Mutation analysis: Genomic sequence for FRMD7 was cycloplegic refraction, visual field testing, pupillary exami- obtained from the Entrez human genome browser (NCBI), and nation for isocoria and afferent defects, slit lamp examination gene-specific M13-tailed PCR primers were selected from the with retro-illumination, ocular motor examination for strabis- NCBI resequencing amplicon (RSA) probe database (NCBI). mus (cover testing), binocular sensorial testing of fusion and Genomic DNA (1 ng/µl, 10-50 µl reactions), was amplified stereopsis (Titmus and Randot tests), and dilated funduscopic (35-40 cycles) in a GeneAmp 9700 thermal cycler using examination of the optic nerves, maculae, and peripheral reti- AmpliTaq Gold Universal PCR Master Mix (Applied nae. Care was taken to verify absence of signs of ocular or Biosystems, Foster City, CA) and gene-specific primers (25 oculocutaneous albinism, e.g. iris transillumination defects,
Recommended publications
  • Expanding the Phenotypic Spectrum of PAX6 Mutations: from Congenital Cataracts to Nystagmus
    G C A T T A C G G C A T genes Article Expanding the Phenotypic Spectrum of PAX6 Mutations: From Congenital Cataracts to Nystagmus Maria Nieves-Moreno 1,* , Susana Noval 1 , Jesus Peralta 1, María Palomares-Bralo 2 , Angela del Pozo 3 , Sixto Garcia-Miñaur 4, Fernando Santos-Simarro 4 and Elena Vallespin 5 1 Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] (S.N.); [email protected] (J.P.) 2 Department of Molecular Developmental Disorders, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] 3 Department of Bioinformatics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] 4 Department of Clinical Genetics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] (S.G.-M.); [email protected] (F.S.-S.) 5 Department of Molecular Ophthalmology, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] * Correspondence: [email protected] Abstract: Background: Congenital aniridia is a complex ocular disorder, usually associated with severe visual impairment, generally caused by mutations on the PAX6 gene. The clinical phenotype of PAX6 mutations is highly variable, making the genotype–phenotype correlations difficult to establish. Methods: we describe the phenotype of eight patients from seven unrelated families Citation: Nieves-Moreno, M.; Noval, with confirmed mutations in PAX6, and very different clinical manifestations.
    [Show full text]
  • Journal of Ophthalmology & Clinical Research
    ISSN: 2573-9573 Case Report Journal of Ophthalmology & Clinical Research Bilateral Congenital Ectropion Uveae, Anterior Segment Dysgenesis and Aniridia with Microspherophakic Congenital Cataracts and RubeosisIridis Rao Muhammad Arif Khan* and Ashal Kaiser Pal *Corresponding author Rao Muhammad Arif Khan, MCPS, FCPS, FPO, FACS, Pediatric Ophthalmologist, King Edward Medical University, Al-Awali Street, Taif Road, Makkah, Saudi Arabia, Pediatric Ophthalmologist, King Edward Medical University, Tel: 00966560479694; E-mail: [email protected] Makkah, Saudi Arabia Submitted: 02 Apr 2018; Accepted: 12 Apr 2018; Published: 19 Apr 2018 Abstract In recent times, multiple eye diseases have been seen associated with an increase in the rate of Demodex infestation as a possible cause, but in the particular case of dry eye syndrome in patients treated with platelet-rich plasma, this increase in mite may be relevant to guide a more adequate treatment focusing on the elimination of the mite in conjunction with the recovery of the ocular ecology. The demodex mite is a commensal parasite that lives in hair follicles, sebaceous glands and meibomian, which in a high rate of infestation can generate alterations in the ocular area. Performing an adequate diagnosis for the detection of the mite and treatment for its eradication can be effective for the recovery of the normal physiology of the tear film that constitutes a cause of dry eye. Introduction Congenital ectropion uvea is a rare ocular manifestation of neural crest syndrome [1]. It is a non-progressive anomaly characterized by presence of iris pigment epithelium on anterior surface of iris from the pigment ruff [2]. Congenital glaucoma is its common association [3-8].
    [Show full text]
  • Congenital Ocular Anomalies in Newborns: a Practical Atlas
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2020;9(2):e090207 doi: 10.7363/090207 Received: 2019 Jul 19; revised: 2019 Jul 23; accepted: 2019 Jul 24; published online: 2020 Sept 04 Mini Atlas Congenital ocular anomalies in newborns: a practical atlas Federico Mecarini1, Vassilios Fanos1,2, Giangiorgio Crisponi1 1Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy 2Department of Surgery, University of Cagliari, Cagliari, Italy Abstract All newborns should be examined for ocular structural abnormalities, an essential part of the newborn assessment. Early detection of congenital ocular disorders is important to begin appropriate medical or surgical therapy and to prevent visual problems and blindness, which could deeply affect a child’s life. The present review aims to describe the main congenital ocular anomalies in newborns and provide images in order to help the physician in current clinical practice. Keywords Congenital ocular anomalies, newborn, anophthalmia, microphthalmia, aniridia, iris coloboma, glaucoma, blepharoptosis, epibulbar dermoids, eyelid haemangioma, hypertelorism, hypotelorism, ankyloblepharon filiforme adnatum, dacryocystitis, dacryostenosis, blepharophimosis, chemosis, blue sclera, corneal opacity. Corresponding author Federico Mecarini, MD, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy; tel.: (+39) 3298343193; e-mail: [email protected].
    [Show full text]
  • Eleventh Edition
    SUPPLEMENT TO April 15, 2009 A JOBSON PUBLICATION www.revoptom.com Eleventh Edition Joseph W. Sowka, O.D., FAAO, Dipl. Andrew S. Gurwood, O.D., FAAO, Dipl. Alan G. Kabat, O.D., FAAO Supported by an unrestricted grant from Alcon, Inc. 001_ro0409_handbook 4/2/09 9:42 AM Page 4 TABLE OF CONTENTS Eyelids & Adnexa Conjunctiva & Sclera Cornea Uvea & Glaucoma Viitreous & Retiina Neuro-Ophthalmic Disease Oculosystemic Disease EYELIDS & ADNEXA VITREOUS & RETINA Blow-Out Fracture................................................ 6 Asteroid Hyalosis ................................................33 Acquired Ptosis ................................................... 7 Retinal Arterial Macroaneurysm............................34 Acquired Entropion ............................................. 9 Retinal Emboli.....................................................36 Verruca & Papilloma............................................11 Hypertensive Retinopathy.....................................37 Idiopathic Juxtafoveal Retinal Telangiectasia...........39 CONJUNCTIVA & SCLERA Ocular Ischemic Syndrome...................................40 Scleral Melt ........................................................13 Retinal Artery Occlusion ......................................42 Giant Papillary Conjunctivitis................................14 Conjunctival Lymphoma .......................................15 NEURO-OPHTHALMIC DISEASE Blue Sclera .........................................................17 Dorsal Midbrain Syndrome ..................................45
    [Show full text]
  • X-Linked Diseases: Susceptible Females
    REVIEW ARTICLE X-linked diseases: susceptible females Barbara R. Migeon, MD 1 The role of X-inactivation is often ignored as a prime cause of sex data include reasons why women are often protected from the differences in disease. Yet, the way males and females express their deleterious variants carried on their X chromosome, and the factors X-linked genes has a major role in the dissimilar phenotypes that that render women susceptible in some instances. underlie many rare and common disorders, such as intellectual deficiency, epilepsy, congenital abnormalities, and diseases of the Genetics in Medicine (2020) 22:1156–1174; https://doi.org/10.1038/s41436- heart, blood, skin, muscle, and bones. Summarized here are many 020-0779-4 examples of the different presentations in males and females. Other INTRODUCTION SEX DIFFERENCES ARE DUE TO X-INACTIVATION Sex differences in human disease are usually attributed to The sex differences in the effect of X-linked pathologic variants sex specific life experiences, and sex hormones that is due to our method of X chromosome dosage compensation, influence the function of susceptible genes throughout the called X-inactivation;9 humans and most placental mammals – genome.1 5 Such factors do account for some dissimilarities. compensate for the sex difference in number of X chromosomes However, a major cause of sex-determined expression of (that is, XX females versus XY males) by transcribing only one disease has to do with differences in how males and females of the two female X chromosomes. X-inactivation silences all X transcribe their gene-rich human X chromosomes, which is chromosomes but one; therefore, both males and females have a often underappreciated as a cause of sex differences in single active X.10,11 disease.6 Males are the usual ones affected by X-linked For 46 XY males, that X is the only one they have; it always pathogenic variants.6 Females are biologically superior; a comes from their mother, as fathers contribute their Y female usually has no disease, or much less severe disease chromosome.
    [Show full text]
  • Aniridia in Children
    Aniridia in Children This material will help you understand aniridia and how it is treated. What is aniridia? Aniridia is an eye disorder where the iris is completely or partially absent. The iris is the colored part of the eye that surrounds the black pupil. People with aniridia have large pupils. The condition affects both eyes. How does aniridia affect my child’s eyesight? Aniridia alone does not affect your child’s visual acuity. Some children with aniridia have very good vision (20/30 or better) whereas others have very poor vision (20/200 or worse). However, because aniridia causes the pupils to be large, your child may have sensitivity to light and glare. Aniridia is also associated with other eye conditions including: • Cataracts (clouding of the eye lens) • Glaucoma (increased eye pressure) • Nystagmus (wobbly eyes) • Scarring of the cornea (the front of the eye) What causes aniridia? Aniridia is caused by a genetic mutation. The mutation affects the PAX6 gene, which is involved in the early development of the eyes, brain, spinal cord, and pancreas. There are different ways that the mutation can be inherited. In some cases, aniridia is part of a syndrome. A syndrome is a group of medical conditions that occur together. The following syndromes involve aniridia: • Miller syndrome (aniridia and Wilm’s (kidney) tumor) • WAGR syndrome (Wilm’s (kidney) tumor, aniridia, genital abnormalities, and mental retardation) Kellogg Eye Center Aniridia 1 • Gillepsie’s syndrome (aniridia, mental retardation, and balance problems) How is aniridia treated? Glasses or contacts can help your child see more clearly. There are special types of glasses and contacts available that can also help reduce sensitivity to light.
    [Show full text]
  • Clinical Manifestations of Congenital Aniridia
    Clinical Manifestations of Congenital Aniridia Bhupesh Singh, MD; Ashik Mohamed, MBBS, M Tech; Sunita Chaurasia, MD; Muralidhar Ramappa, MD; Anil Kumar Mandal, MD; Subhadra Jalali, MD; Virender S. Sangwan, MD ABSTRACT Purpose: To study the various clinical manifestations as- were subluxation, coloboma, posterior lenticonus, and sociated with congenital aniridia in an Indian population. microspherophakia. Corneal involvement of varying degrees was seen in 157 of 262 (59.9%) eyes, glaucoma Methods: In this retrospective, consecutive, observa- was identified in 95 of 262 (36.3%) eyes, and foveal hy- tional case series, all patients with the diagnosis of con- poplasia could be assessed in 230 of 262 (87.7%) eyes. genital aniridia seen at the institute from January 2005 Median age when glaucoma and cataract were noted to December 2010 were reviewed. In all patients, the was 7 and 14 years, respectively. None of the patients demographic profile, visual acuity, and associated sys- had Wilm’s tumor. temic and ocular manifestations were studied. Conclusions: Congenital aniridia was commonly as- Results: The study included 262 eyes of 131 patients sociated with classically described ocular features. with congenital aniridia. Median patient age at the time However, systemic associations were characteristically of initial visit was 8 years (range: 1 day to 73 years). Most absent in this population. Notably, cataract and glau- cases were sporadic and none of the patients had par- coma were seen at an early age. This warrants a careful ents afflicted with aniridia. The most common anterior evaluation and periodic follow-up in these patients for segment abnormality identified was lenticular changes.
    [Show full text]
  • Congenital Cornea Plana in Finland
    Clinical Genetics 1913: 4: 301-310 Congenital cornea plana in Finland A. W. ERIKSSON,W. LEHMANN,AND H. FORSIUS Folkhalsan Institute of Genetics, Population Genetics Unit, Helsinki; Institute of Human Genetics, University of Kiel, Kiel; University of Oulu Eye Hospital, Oulu, Finland Two different hereditary forms of congenital cornea plana are described: an autosomal dominant form with relatively mild symptoms, and an autosomal recessive form (CPCR) with more severe symptoms, such as decreased visual acuity, extreme hyperopia (total refraction usually 10 D or more), hazy limbus corneae, more or less pronounced opacities in the corneal parenchyma, and marked arcus senilk, often detectable at an early age. As far as can be judged from the number of cases hitherto published, cornea plana is a rare disease. In Finland, 49 caw of the recessive and seven of the dominant form of cornea plana congenita have been discovered to date, which is about twice the number of cases of recessively inherited cornea plana reported elsewhere in the world. In Finnish Lapland, the gene frequency of cornea plana congenita recessiva is estimated to be 1.3 (about 16 patients per 100,000 inhabi- tants), or about four times as high as in Finland as a whole. Around the lower reaches of the River Kemijoki there is a relatively high prevalence of the recessive form of the disease. The Kemijoki pedigree includes 25 patients related to each other through their ancestors. Accepted for publication 31 Junuury 1973 The descriptive name cornea plana does not Rudiments of a corneal limbus appear at the quite correspond to the ocular findings in end of the second month (fetal length 25-30 the disease in question.
    [Show full text]
  • X-Linked Infantile Nystagmus
    X-linked infantile nystagmus Description X-linked infantile nystagmus is a condition characterized by abnormal eye movements. Nystagmus is a term that refers to involuntary side-to-side movements of the eyes. In people with this condition, nystagmus is present at birth or develops within the first six months of life. The abnormal eye movements may worsen when an affected person is feeling anxious or tries to stare directly at an object. The severity of nystagmus varies, even among affected individuals within the same family. Sometimes, affected individuals will turn or tilt their head to compensate for the irregular eye movements. Frequency The incidence of all forms of infantile nystagmus is estimated to be 1 in 5,000 newborns; however, the precise incidence of X-linked infantile nystagmus is unknown. Causes Mutations in the FRMD7 gene cause X-linked infantile nystagmus. The FRMD7 gene provides instructions for making a protein whose exact function is unknown. This protein is found mostly in areas of the brain that control eye movement and in the light-sensitive tissue at the back of the eye (retina). Research suggests that FRMD7 gene mutations cause nystagmus by disrupting the development of certain nerve cells in the brain and retina. In some people with X-linked infantile nystagmus, no mutation in the FRMD7 gene has been found. The genetic cause of the disorder is unknown in these individuals. Researchers believe that mutations in at least one other gene, which has not been identified, can cause this disorder. Learn more about the gene associated with X-linked infantile nystagmus • FRMD7 Inheritance This condition is inherited in an X-linked pattern.
    [Show full text]
  • Autosomal-Dominant Nystagmus, Foveal Hypoplasia and Presenile Cataract Associated with a Novel PAX6 Mutation
    European Journal of Human Genetics (2014) 22, 344–349 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation Shery Thomas1,2,6, Mervyn G Thomas1,6, Caroline Andrews3,4,5, Wai-Man Chan3,4,5, Frank A Proudlock1, Rebecca J McLean1, Archana Pradeep1, Elizabeth C Engle*,3,4,5,7 and Irene Gottlob*,1,7 Autosomal-dominant idiopathic infantile nystagmus has been linked to 6p12 (OMIM 164100), 7p11.2 (OMIM 608345) and 13q31-q33 (OMIM 193003). PAX6 (11p13, OMIM 607108) mutations can also cause autosomal-dominant nystagmus, typically in association with aniridia or iris hypoplasia. We studied a large multigenerational white British family with autosomal-dominant nystagmus, normal irides and presenile cataracts. An SNP-based genome-wide analysis revealed a linkage to a 13.4-MB region on chromosome 11p13 with a maximum lod score of 2.93. A mutation analysis of the entire coding region and splice junctions of the PAX6 gene revealed a novel heterozygous missense mutation (c.227C4G) that segregated with the phenotype and is predicted to result in the amino-acid substitution of proline by arginine at codon 76 p.(P76R). The amino- acid variation p.(P76R) within the paired box domain is likely to destabilise the protein due to steric hindrance as a result of the introduction of a polar and larger amino acid. Eye movement recordings showed a significant intrafamilial variability of horizontal, vertical and torsional nystagmus. High-resolution in vivo imaging of the retina using optical coherence tomography (OCT) revealed features of foveal hypoplasia, including rudimentary foveal pit, incursion of inner retinal layers, short photoreceptor outer segments and optic nerve hypoplasia.
    [Show full text]
  • Analysis of Gene Expression Profiles to Study Malaria Vaccine Dose Efficacy & Immune Response Modulation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.454986; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Analysis of Gene Expression Profiles to study Malaria Vaccine Dose Efficacy & Immune Response Modulation. Supantha Dey*1,2, Harpreet Kaur2, Mohit Mazumder2, Elia Brodsky2 1- Department of Genetic Engineering & Biotechnology, University of Dhaka, Bangladesh. 2 - Pine Biotech, New Orleans, LA, USA Emails of Authors: Supantha Dey: [email protected] Harpreet Kaur:[email protected]; [email protected] Mohit Mazumder: [email protected] Elia Brodsky: [email protected] Abstract Malaria is a life-threatening disease, and the Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of the different vaccination doses on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on 275 and 583 samples collected from the GEO datasets. At first, exploratory data analysis based Principal component analysis (PCA) shown the distinct pattern of different doses. Subsequently, differential gene expression analysis using edgeR revealed the significantly (FDR <0.005) 158 down-regulated and 61 upregulated genes between control vs.
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]