Glaucoma and Frequency of Ocular and General Diseases in 30 Patients with Aniridia: a Clinical Study

Total Page:16

File Type:pdf, Size:1020Kb

Glaucoma and Frequency of Ocular and General Diseases in 30 Patients with Aniridia: a Clinical Study Eur J Ophthalmol22 (2012; :1) 104-110 DOI: 10.5301/EJO.2011.8318 ORIGINAL ARTICLE Glaucoma and frequency of ocular and general diseases in 30 patients with aniridia: a clinical study Eugen Gramer1*, Constantin Reiter1*, Gwendolyn Gramer2 1Department of Ophthalmology, University Würzburg, Würzburg - Germany 2University Hospital for Pediatric and Adolescent Medicine, University Heidelberg, Heidelberg - Germany Department of Ophthalmology, University Würzburg, Würzburg - Germany PURPOSE. To evaluate the following in patients with aniridia: age at first examination at the University Eye Hospital and age at diagnosis of glaucoma; visual acuity; frequency of family history of aniridia; and frequency of ocular and general diseases associated with aniridia. METHODS. This was a consecutive examination of 30 unrelated patients with aniridia and retrospective evaluation of ophthalmologic, pediatric, and internal findings. The relative frequency of age at glauco- ma diagnosis within decades was evaluated for the 20 patients with aniridia and glaucoma. Statistical analysis was performed using the Mann-Whitney test. RESULTS. Relative frequency of the age of patients with aniridia at time of glaucoma diagnosis within the following decades was as follows: from birth to 9 years: 15%, 10-19: 15%, 20-29: 15%, 30-39: 15%, 40-49: 35%, and 50-59: 5%. Visual acuity in the better eye of 20/100 or less was found in 60%. Family history of aniridia was found in 33.3% of patients, with 1-4 relatives with aniridia. A total of 76.7% of patients had congenital cataract, and 66.7% had glaucoma. Mean maximum intraocular pressure of the 20 patients with glaucoma was 35.9 mmHg in the right and 32.6 mmHg in the left eye. A total of 53.3% had nystagmus, 26.6% corneal opacifications, 16.7% bilateral lens dislocation upwards, 6.7% optic nerve hypoplasia, 3.3% poor foveal development, and 3.3% Wilms tumor. CONCLUSIONS. Up to the age of 40 years, 15% of patients were diagnosed with glaucoma per age de- cade. Frequent bilateral glaucoma and similar bilateral height of intraocular pressure suggest a genetic glaucoma disposition with malformation at Schlemm canal, besides possible sequential anatomic changes in the chamber angle. Associated ocular abnormalities limit visual prognosis. KEY WORDS. Aniridia, Congenital cataract, Glaucoma, PAX6, Wilms tumor Accepted: April 3, 2011 INTRODUCTION fied mutation of PAX6 gene (1), which provides evidence for genetic heterogeneity in aniridia. Aniridia is very rare, with an Aniridia is a panocular human eye malformation caused by incidence between 1:64,000 and 1:100,000 births and may heterozygous mutations within the Paired Box gene 6 (PAX6) be found in isolation or in combination with other syndromes or cytogenetic deletions of chromosome 11p13 that encom- (2). In two-thirds of patients, aniridia is inherited in an auto- pass PAX6. PAX6 has a wide expression in the developing somal dominant way with complete penetrance, but varying eye, in the neuroectoderm and the surface ectoderm, and expressivity. One-third of cases are sporadic (2). Fluorescent therefore in their derivates, e.g., lens, cornea, and retina. Al- in situ hybridization (FISH) is the chosen method to analyze though 80% of patients with aniridia demonstrate a PAX6 mutations in sporadic cases of aniridia (3), which lets the gene mutation, there are few reported cases with no identi- examiner assess the exact extent of the deletions and the risk of the development of Wilms tumor. *These authors contributed equally to this work. The aim of this study was to evaluate the following in 30 104 © 2011 Wichtig Editore - ISSN 1120-6721 Gramer et al patients with aniridia: 1) age of the patient at first examina- Visual acuity tion of aniridia at the University Eye Hospital Würzburg; 2) age at diagnosis of glaucoma (in 20 patients with aniridia Evaluation of visual acuity was based on the patients’ last and glaucoma), providing indirect information on the onset examination with best-corrected distance vision (digit- of glaucoma in aniridic patients; 3) visual acuity at last ex- based visual acuity chart). Visual field examinations were amination; 4) frequency of family history of aniridia; and 5) not possible in all patients due to infancy, corneal opaci- frequency of ocular and general diseases associated with ties, or reduced visual acuity. Therefore, visual field results aniridia: congenital cataract, glaucoma, nystagmus, cor- were not included in the evaluation. neal opacification, lens dislocation, optic nerve hypoplasia, IOP was measured with Goldmann applanation tonom- poor foveal development, and frequency of Wilms tumor. etry, and gonioscopy was performed with the Goldmann gonioscope. Optic disc evaluation was performed by indi- rect ophthalmoscopy and, if feasible, with the 78-D lens. In MATERIALS AND METHODS patients who underwent examinations in the past decade, in addition quantitative disc analysis was performed using Consecutive ophthalmologic examination of 30 patients different computerized optic nerve head analyzers, e.g., with aniridia was performed during the last 29 years with Heidelberg Retina Tomograph (HRT). Photodocumentation standardized documentation. Age of the patient at first ex- was performed in most of the patients. Mann-Whitney test amination at the University Eye Hospital Würzburg and age was used for statistical analysis. of the patients with glaucoma at diagnosis of glaucoma, maximum intraocular pressure (IOP), and family history of aniridia were requested from patients and their ophthal- RESULTS mologists. This study presents a retrospective evaluation of the files of these patients and a prospective inquiry of Age of the patients at first examination at the the age at glaucoma diagnosis and evaluates ophthalmo- University Eye Hospital logic, pediatric, and internal findings. The relative frequency of age at diagnosis of glaucoma within age decades was calculated for the 20 patients with aniridia and glaucoma. Mean age at first examination in our hospital in 30 patients Some patients had first diagnosis of glaucoma at hospital with bilateral aniridia was 28±19.3 years. Age distribution visit. If no information on age at diagnosis of glaucoma was at first examination in our hospital was as follows: up to 9 available, the age at diagnosis of glaucoma at examination years 23.3%, 10-19 years 13.3%, 20-29 years 13.3%, 30- in the clinic was used. 39 years 10%, 40-49 years 26.7%, 50-59 years 3.3%, 60- 69 years 6.7% (Fig. 1). A total of 37% of all patients were Definition of aniridia in family history first referred to our hospital before the age of 20 years. Family history was defined as the patient or his or her rel- Age of patients with glaucoma at glaucoma di- atives reporting aniridia in one or more first- or second- agnosis degree relatives as diagnosed by an ophthalmologist. The number of relatives with aniridia was requested. Many pa- Age distribution of the 20 aniridic patients with glaucoma tients were seen only one time because ophthalmologists at diagnosis was as follows: up to 9 years 15%, 10-19 recommended a second opinion. Family history was reas- years 15%, 20-29 years 15%, 30-39 years 15%, 40-49 sessed for patients with follow-up. Several patients were years 35%, 50-59 years 5% (Fig. 2). There is a high vari- seen before molecular-genetic diagnostics was available. ability in the onset of glaucoma in patients with aniridia. All patients were advised at the first visit to inform their rel- In 30% of patients glaucoma was diagnosed before the atives about the necessity of ophthalmologic screening for age of 20 years, showing that every third aniridic patient aniridia. A total of 29 patients were included in the statisti- with glaucoma had glaucoma onset before the age of 20 cal analysis because for one patient without glaucoma only years. There was no significant difference in the mean age data on family history and visual acuity were available. at first examination at our hospital between patients with © 2011 Wichtig Editore - ISSN 1120-6721 105 Associated diseases in 30 patients with aniridia Fig. 1 - Frequency distribution of age at first examination at the Uni- Fig. 2 - Age of the patient at glaucoma diagnosis in 20 patients with versity Eye Hospital within age decades in 29 patients with aniridia. aniridia and glaucoma. Frequency of diseases associated with aniridia Associated diseases were congenital cataract in 76.7% and glaucoma in 66.7%; out of these, 10% had unilateral and 90% bilateral glaucoma. Only one of these patients had congenital glaucoma. Mean maximum IOP of the 20 glaucoma patients was 35.9 mmHg in the right and 32.6 mmHg in the left eye. A total of 53.3% had nystagmus, 26.6% corneal opacifications, 16.7% bilateral lens dislo- cation upwards, 6.7% optic nerve hypoplasia, 3.3% poor foveal development, and 3.3% Wilms tumor (Fig. 3). DISCUSSION Fig. 3 - Relative frequency of ocular and systemic diseases associ- ated with aniridia. Glaucoma in aniridia and age of patients at glau- coma diagnosis glaucoma and patients without glaucoma (29.6±16.6 years vs 24.7±25.1 years) (p=0.49). The main aim of our study was to evaluate the age at onset of glaucoma and to calculate the frequency of age at diag- Visual acuity nosis within age decades in 20 aniridic patients with glau- coma, examined consecutively. With the same approach, Decreased vision in the better eye of 20/100 or less was we evaluated the age at diagnosis in different types of found in 60% of all patients. glaucoma in more than 2,000 patients with glaucoma (4). This allows a comparison between the age at diagnosis Family history within decades between aniridic patients with glaucoma and patients with, e.g., primary open-angle glaucoma or Family history of aniridia was found in 10 of 30 unrelated pigmentary glaucoma.
Recommended publications
  • Bass – Glaucomatous-Type Field Loss Not Due to Glaucoma
    Glaucoma on the Brain! Glaucomatous-Type Yes, we see lots of glaucoma Field Loss Not Due to Not every field that looks like glaucoma is due to glaucoma! Glaucoma If you misdiagnose glaucoma, you could miss other sight-threatening and life-threatening Sherry J. Bass, OD, FAAO disorders SUNY College of Optometry New York, NY Types of Glaucomatous Visual Field Defects Paracentral Defects Nasal Step Defects Arcuate and Bjerrum Defects Altitudinal Defects Peripheral Field Constriction to Tunnel Fields 1 Visual Field Defects in Very Early Glaucoma Paracentral loss Early superior/inferior temporal RNFL and rim loss: short axons Arcuate defects above or below the papillomacular bundle Arcuate field loss in the nasal field close to fixation Superotemporal notch Visual Field Defects in Early Glaucoma Nasal step More widespread RNFL loss and rim loss in the inferior or superior temporal rim tissue : longer axons Loss stops abruptly at the horizontal raphae “Step” pattern 2 Visual Field Defects in Moderate Glaucoma Arcuate scotoma- Bjerrum scotoma Focal notches in the inferior and/or superior rim tissue that reach the edge of the disc Denser field defects Follow an arcuate pattern connected to the blind spot 3 Visual Field Defects in Advanced Glaucoma End-Stage Glaucoma Dense Altitudinal Loss Progressive loss of superior or inferior rim tissue Non-Glaucomatous Etiology of End-Stage Glaucoma Paracentral Field Loss Peripheral constriction Hereditary macular Loss of temporal rim tissue diseases Temporal “islands” Stargardt’s macular due
    [Show full text]
  • Optic Nerve Hypoplasia Plus: a New Way of Looking at Septo-Optic Dysplasia
    Optic Nerve Hypoplasia Plus: A New Way of Looking at Septo-Optic Dysplasia Item Type text; Electronic Thesis Authors Mohan, Prithvi Mrinalini Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 22:50:06 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/625105 OPTIC NERVE HYPOPLASIA PLUS: A NEW WAY OF LOOKING AT SEPTO-OPTIC DYSPLASIA By PRITHVI MRINALINI MOHAN ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelors degree With Honors in Physiology THE UNIVERSITY OF ARIZONA M A Y 2 0 1 7 Approved by: ____________________________ Dr. Vinodh Narayanan Center for Rare Childhood Disorders Abstract Septo-optic dysplasia (SOD) is a rare congenital disorder that affects 1/10,000 live births. At its core, SOD is a disorder resulting from improper embryological development of mid-line brain structures. To date, there is no comprehensive understanding of the etiology of SOD. Currently, SOD is diagnosed based on the presence of at least two of the following three factors: (i) optic nerve hypoplasia (ii) improper pituitary gland development and endocrine dysfunction and (iii) mid-line brain defects, including agenesis of the septum pellucidum and/or corpus callosum. A literature review of existing research on the disorder was conducted. The medical history and genetic data of 6 patients diagnosed with SOD were reviewed to find damaging variants.
    [Show full text]
  • Insertion of Aqueous Shunt in Pedicatric Glaucoma
    1/29/2018 Challenges of Insertion of Aqueous shunt in paediatric glaucoma Ahmed Elkarmouty MD, FRCS Moorfields Eye Hospital London, UK Classification • Primary Childhood Glaucoma • A- Primary Congenital Glaucoma (PCG) 1: 10,000–18,000 • B- Juvenile Open Angle Glaucoma (JOAG) (5-35 ys,)1 : 50,000. • Secondary Childhood Glaucoma • A- Glaucoma associated with non-acquired ocular anomalies • B- Glaucoma associated with non- acquired systemic disease or syndrome • C- Glaucoma associated with acquired condition • D- Glaucoma following Cataract surgery 1 1/29/2018 Glaucoma associated with non- acquired ocular anomalies • Conditions with predominantly ocular anomalies present at birth which may or may not be associated with systemic signs • Axenfeld Reiger anomaly • Peters anomaly • Ectropion Uvae • Congenital iris hypolplasia • Aniridia • Oculodermal melanocytosis • Posterior polymorphous dystrophy • Microphthalmos • Microcornea • Ectopia Lentis ( et pupillae) • Persistent foetus vasculopathy Glaucoma associated with non- acquired systemic disease or syndrome predominantly associated with known syndrome, systemic anomalies present at birth which may be associated with ocular signs • Down Syndrome • Connective tissue disorder: Marfan syndrome, Weill- Marchesiani syndrome, Stickler syndrome • Metabolic disorder : Homocystenuria, lowe syndrome, Mucoploysacchroidoses • Phacomatoses: Neurofibromatoses, Sturge Weber, Klipple-Trenaunay- weber syndrome, Rubenstein Taybi • Congenital Rubella 2 1/29/2018 Glaucoma associated with acquired condition Conditions
    [Show full text]
  • Expanding the Phenotypic Spectrum of PAX6 Mutations: from Congenital Cataracts to Nystagmus
    G C A T T A C G G C A T genes Article Expanding the Phenotypic Spectrum of PAX6 Mutations: From Congenital Cataracts to Nystagmus Maria Nieves-Moreno 1,* , Susana Noval 1 , Jesus Peralta 1, María Palomares-Bralo 2 , Angela del Pozo 3 , Sixto Garcia-Miñaur 4, Fernando Santos-Simarro 4 and Elena Vallespin 5 1 Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] (S.N.); [email protected] (J.P.) 2 Department of Molecular Developmental Disorders, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] 3 Department of Bioinformatics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] 4 Department of Clinical Genetics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] (S.G.-M.); [email protected] (F.S.-S.) 5 Department of Molecular Ophthalmology, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] * Correspondence: [email protected] Abstract: Background: Congenital aniridia is a complex ocular disorder, usually associated with severe visual impairment, generally caused by mutations on the PAX6 gene. The clinical phenotype of PAX6 mutations is highly variable, making the genotype–phenotype correlations difficult to establish. Methods: we describe the phenotype of eight patients from seven unrelated families Citation: Nieves-Moreno, M.; Noval, with confirmed mutations in PAX6, and very different clinical manifestations.
    [Show full text]
  • WAGR Syndrome: Clinical Features and Guidelines for Management
    WAGR syndrome: clinical features and guidelines for management Kelly Trout, BSN, RN International WAGR Syndrome Association 2020 Introduction WAGR syndrome is a rare multiple congenital-anomaly syndrome caused by interstitial deletion of the distal portion of chromosome 11p13. Deletion size varies between individuals from 1 million to 26.5 million base pairs, with an average of 11 million base pairs. Variability in size of the genetic deletion is thought to account for the variable phenotype. WAGR is an acronym for the most prominent features: W is for Wilms tumor, A for aniridia, G for genitourinary anomalies, and R for range of developmental delays. Wilms tumor and genital anomalies are caused by deletion of the WT1 tumor-suppressor gene, and aniridia is caused by deletion of the PAX6 ocular development gene. Developmental delays are presumed to be the result of deletion of as yet unidentified genes in the region. Most cases are identified by chromosome studies of children with isolated aniridia and are due to de novo deletions, although a few familial translocations have been reported. Individuals with WAGR syndrome have a high risk for development of Wilms tumor and late-onset renal failure, as well as a variety of additional associated conditions. Diagnosis ● Most cases of WAGR syndrome are identified in infants with isolated aniridia, 30% of whom will be positive for the characteristic deletion (11p13) ● In rare cases, aniridia may not be present. Children with Wilms tumor and genital anomalies may also warrant genetic testing ●
    [Show full text]
  • Solved/Unsolved
    Supplementary Materials: Supplementary table 1. Demographic details for the 54 individual patients (solved/unsolved) and their clinical features including cataract type, details of ocular co-morbidities, systemic features and whether cataract was the presenting feature (non-isolated cataract patients only). Abbreviations: yes (Y), no (N), not applicable (N/A). Age at Famil Ag M/ Age at Cataract Cataract Cataract Systemic Consanguinit Patient ID Gene Confirmed genetic diagnosis Ethnicity diagnosi Ocular co-morbidities FH y ID e F surgery type RE type LE presenting sign features y s (days) Aniridia, nystagmus, 23 years Posterior Posterior 1-1 1 PAX6 Aniridia White British 25 F - glaucoma, foveal N N N Y 4 months subcapsular subcapsular hypoplasia Cleft palate, epilepsy, high Aphakia Aphakia Macular atrophy, myopia, 7 years 9 7 years 8 arched palate, 2-1 2 COL11A1 Stickler syndrome, type II Not Stated 34 F (post- (post- lens subluxation, vitreous N N N months months flattened surgical) surgical) anomaly maxilla, short stature (5'2ft) Anterior segment dysgenesis, pupillary abnormalities including 12 years Posterior Posterior ectopic pupils, ectropion 3-1 3 CPAMD8 Anterior segment dysgenesis 8 Other, Any other 27 F - N N Y N 5 months subcapsular subcapsular UVAE and irodensis, nystagmus, dysplastic optic discs, large corneal diameters Gyrate atrophy of choroid and 23 years 29 years 1 Posterior Posterior Retinal dystrophy, Bipolar 4-1 4 OAT White British 42 F N N N retina 7 months month subcapsular subcapsular exotropia disorder 1 year 6 1 year
    [Show full text]
  • TUBB3 M323V Syndrome Presents with Infantile Nystagmus
    G C A T T A C G G C A T genes Case Report TUBB3 M323V Syndrome Presents with Infantile Nystagmus Soohwa Jin 1, Sung-Eun Park 2, Dongju Won 3, Seung-Tae Lee 3, Sueng-Han Han 2 and Jinu Han 4,* 1 Department of Opthalmology, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] 2 Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (S.-E.P.); [email protected] (S.-H.H.) 3 Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (D.W.); [email protected] (S.-T.L.) 4 Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea * Correspondence: [email protected]; Tel.: +82-2-2019-3445 Abstract: Variants in the TUBB3 gene, one of the tubulin-encoding genes, are known to cause congenital fibrosis of the extraocular muscles type 3 and/or malformations of cortical development. Herein, we report a case of a 6-month-old infant with c.967A>G:p.(M323V) variant in the TUBB3 gene, who had only infantile nystagmus without other ophthalmological abnormalities. Subsequent brain magnetic resonance imaging (MRI) revealed cortical dysplasia. Neurological examinations did not reveal gross or fine motor delay, which are inconsistent with the clinical characteristics of patients with the M323V syndrome reported so far. A protein modeling showed that the M323V mutation in the TUBB3 gene interferes with αβ heterodimer formation with the TUBA1A gene.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Pax6 During Visual System Development
    Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development Thorsten Pfirrmanna,1, Enrico Jandta,1, Swantje Ranfta,b, Ashwin Lokapallya, Herbert Neuhausa, Muriel Perronc, and Thomas Hollemanna,2 aInstitute for Physiological Chemistry, University of Halle-Wittenberg, 06114 Halle, Germany; bGynecological Hospital, University Medical Center Mannheim, 68167 Mannheim, Germany; and cParis-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay, France Edited by Richard M. Harland, University of California, Berkeley, CA, and approved July 19, 2016 (received for review January 16, 2016) Pax6 is a key transcription factor involved in eye, brain, and pancreas remains unclear how Pax6 protein is removed from the eyestalk development. Although pax6 is expressed in the whole prospective territory on time. Some authors report the regulation of Pax6 retinal field, subsequently its expression becomes restricted to the activity by posttranslational modifications (21–23), and most optic cup by reciprocal transcriptional repression of pax6 and pax2. interestingly, Tuoc et al. showed that in cortical progenitor cells, However, it remains unclear how Pax6 protein is removed from the Pax6 protein is degraded by the proteasome mediated by Trim11 eyestalk territory on time. Here, we report that Mid1, a member of (24). However, the existence of similar mechanisms leading to the RBCC/TRIM E3 ligase family, which was first identified in patients the development of the visual system is not known. with the X-chromosome–linked Opitz BBB/G (OS) syndrome, inter- The data of our present study show that Midline1 (Mid1) acts with Pax6. We found that the forming eyestalk is a major do- serves as one of these links.
    [Show full text]
  • Journal of Ophthalmology & Clinical Research
    ISSN: 2573-9573 Case Report Journal of Ophthalmology & Clinical Research Bilateral Congenital Ectropion Uveae, Anterior Segment Dysgenesis and Aniridia with Microspherophakic Congenital Cataracts and RubeosisIridis Rao Muhammad Arif Khan* and Ashal Kaiser Pal *Corresponding author Rao Muhammad Arif Khan, MCPS, FCPS, FPO, FACS, Pediatric Ophthalmologist, King Edward Medical University, Al-Awali Street, Taif Road, Makkah, Saudi Arabia, Pediatric Ophthalmologist, King Edward Medical University, Tel: 00966560479694; E-mail: [email protected] Makkah, Saudi Arabia Submitted: 02 Apr 2018; Accepted: 12 Apr 2018; Published: 19 Apr 2018 Abstract In recent times, multiple eye diseases have been seen associated with an increase in the rate of Demodex infestation as a possible cause, but in the particular case of dry eye syndrome in patients treated with platelet-rich plasma, this increase in mite may be relevant to guide a more adequate treatment focusing on the elimination of the mite in conjunction with the recovery of the ocular ecology. The demodex mite is a commensal parasite that lives in hair follicles, sebaceous glands and meibomian, which in a high rate of infestation can generate alterations in the ocular area. Performing an adequate diagnosis for the detection of the mite and treatment for its eradication can be effective for the recovery of the normal physiology of the tear film that constitutes a cause of dry eye. Introduction Congenital ectropion uvea is a rare ocular manifestation of neural crest syndrome [1]. It is a non-progressive anomaly characterized by presence of iris pigment epithelium on anterior surface of iris from the pigment ruff [2]. Congenital glaucoma is its common association [3-8].
    [Show full text]
  • Lid and Lash Conditions
    Perth Veterinary Ophthalmology Lid and Lash Conditions Eyelid Diseases The most common eyelid diseases are entropion, ectropion and facial droop. Entropion Entropion means a turning in of the lids. This is a common complaint in young dogs but can sometimes affect older dogs and cats as well. Most cases in young dogs affect the lower lids, but the upper lid can become affected in later life in some breeds such as Cocker Spaniels and Bloodhounds. Entropion Some breeds such as Shar Peis, Chows, Rottweillers and Mastiffs can have very complex entropion leading to defects in both upper and lower lids. A Shar Pei with severe upper and lower lid entropion Entropion is painful and can be potentially blinding. The rolling in of the lid leads to hair coming into contact with the cornea, leading to pain, ulceration and scarring (which can affect vision). In severe cases this can even lead to perforation of the eye. There are many causes of entropion. It can be primary or secondary to other problems affecting the lids (such as ectopic cilia, distichiasis etc. - see below). Some possible causes include the lid being too long, the lid being too tight, instability of the lateral canthus (outer cornea of the eyelids), misdirection of the lateral canthal tendon, brachycephalic anatomy (big eyes and short nose - e.g. Pekingese, Pugs, Shih Tsus, Persian cats etc.), diamond eye defects, loose or too much skin, facial droop etc. Often these cases are referred to a veterinary ophthalmologist for proper assessment and treatment to provide the best outcome. Entropion requires surgical correction.
    [Show full text]
  • Congenital Ocular Anomalies in Newborns: a Practical Atlas
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2020;9(2):e090207 doi: 10.7363/090207 Received: 2019 Jul 19; revised: 2019 Jul 23; accepted: 2019 Jul 24; published online: 2020 Sept 04 Mini Atlas Congenital ocular anomalies in newborns: a practical atlas Federico Mecarini1, Vassilios Fanos1,2, Giangiorgio Crisponi1 1Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy 2Department of Surgery, University of Cagliari, Cagliari, Italy Abstract All newborns should be examined for ocular structural abnormalities, an essential part of the newborn assessment. Early detection of congenital ocular disorders is important to begin appropriate medical or surgical therapy and to prevent visual problems and blindness, which could deeply affect a child’s life. The present review aims to describe the main congenital ocular anomalies in newborns and provide images in order to help the physician in current clinical practice. Keywords Congenital ocular anomalies, newborn, anophthalmia, microphthalmia, aniridia, iris coloboma, glaucoma, blepharoptosis, epibulbar dermoids, eyelid haemangioma, hypertelorism, hypotelorism, ankyloblepharon filiforme adnatum, dacryocystitis, dacryostenosis, blepharophimosis, chemosis, blue sclera, corneal opacity. Corresponding author Federico Mecarini, MD, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy; tel.: (+39) 3298343193; e-mail: [email protected].
    [Show full text]