Bass – Glaucomatous-Type Field Loss Not Due to Glaucoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Visual Acuity Assessment
VISUAL ACUITY ASSESSMENT J. R. WEATHERILL Bradford Tests of visual function in cataract patients are performed recognised that patients with macular dysfunction have in order to answer two questions: (I) To what extent is the difficulty in reading out of proportion to their Snellen cataract responsible for the patient's symptoms? (2) Will acuity. This difficultyis probably due to parafoveal scoto removal of the cataract improve the patient's sight? To mas which prevent the whole word being seen at the same answer the firstquestion the optical qualities of the eye are time. If a patient reports that the main problem is with assessed, and to answer the second tests are employed reading, it is helpful to observe whether the patient holds which assess retinal and neural function and which are the page steadily or keeps moving it to avoid scotomas. relatively unaffected by the optical degradation caused by With current reading tests patients with poor macular opacities in the media. At Bradford we employ the tests function can read small print for brief periods, particularly listed in Table I. if they are used to reading and recognise the overall shape of the words. A Logmar equivalent for near vision com Snellen Acuity prising random words of equal length and composed of Although the Snellen acuity test measures the function of letters without either ascenders or descenders, read under only the central 1_20 in monochrome at 100% contrast, it controlled conditions of illumination and at a standard dis is nonetheless the 'gold standard' by which ophthal tance, would provide a more accurate measure of macular mologists judge and are judged. -
GUIDE for the Evaluation of VISUAL Impairment
International Society for Low vision Research and Rehabilitation GUIDE for the Evaluation of VISUAL Impairment Published through the Pacific Vision Foundation, San Francisco for presentation at the International Low Vision Conference VISION-99. TABLE of CONTENTS INTRODUCTION 1 PART 1 – OVERVIEW 3 Aspects of Vision Loss 3 Visual Functions 4 Functional Vision 4 Use of Scales 5 Ability Profiles 5 PART 2 – ASSESSMENT OF VISUAL FUNCTIONS 6 Visual Acuity Assessment 6 In the Normal and Near-normal range 6 In the Low Vision range 8 Reading Acuity vs. Letter Chart Acuity 10 Visual Field Assessment 11 Monocular vs. Binocular Fields 12 PART 3 – ESTIMATING FUNCTIONAL VISION 13 A General Ability Scale 13 Visual Acuity Scores, Visual Field Scores 15 Calculation Rules 18 Functional Vision Score, Adjustments 20 Examples 22 PART 4 – DIRECT ASSESSMENT OF FUNCTIONAL VISION 24 Vision-related Activities 24 Creating an Activity Profile 25 Participation 27 PART 5 – DISCUSSION AND BACKGROUND 28 Comparison to AMA scales 28 Statistical Use of the Visual Acuity Score 30 Comparison to ICIDH-2 31 Bibliography 31 © Copyright 1999 by August Colenbrander, M.D. All rights reserved. GUIDE for the Evaluation of VISUAL Impairment Summer 1999 INTRODUCTION OBJECTIVE Measurement Guidelines for Collaborative Studies of the National Eye Institute (NEI), This GUIDE presents a coordinated system for the Bethesda, MD evaluation of the functional aspects of vision. It has been prepared on behalf of the International WORK GROUP Society for Low Vision Research and Rehabilitation (ISLRR) for presentation at The GUIDE was approved by a Work Group VISION-99, the fifth International Low Vision including the following members: conference. -
Vision Rehabi I Itation for Patients with Age Related Macular Degeneration
Vision rehabi I itation for GARY S. RUBIN patients with age related macular degeneration Epidemiology of low vision The over-representation of macular degeneration patients in the low-vision clinic is The epidemiology of vision impairment is dealt reflected in the chief complaints of those with in detail elsewhere.1 However, there is one referred for rehabilitation. A study of 1000 particularly salient factor that bears emphasis. consecutive patients seen at the Wilmer Low The prevalence of vision impairment increases Vision clinic indicated that 64% listed 'reading' dramatically with advancing age. Statistics as their chief complaint, while other activities compiled in the UK by the Royal National were identified by fewer than 8% of patients. Institute for the Blind2 indicate that there were Undoubtedly the bias towards reading approximately 1.1 million blind or partially problems results partly from the nature of the sighted persons in 1996, of whom 82% were 65 low-vision services offered. Those served by a years of age or older. Thus it is not surprising to community-based programme that includes learn that the major causes of vision impairment home visits might be more likely to report are age-related eye diseases. Fig. 1 illustrates the problems with activities of daily living, while a distribution of causes of vision impairment blind rehabilitation centre would be more likely 5 from three recent studies?- Approximately to address mobility issues. Nevertheless, most equal percentages are attributed to macular macular degeneration patients are referred to degeneration and cataract, with smaller hospital or optometry clinic services, and as percentages for glaucoma, diabetic retinopathy their overwhelming concern is with reading, and optic neuropathies. -
425-428 YOSHI:Shoja
European Journal of Ophthalmology / Vol. 19 no. 3, 2009 / pp. 425-428 Effects of astigmatism on the Humphrey Matrix perimeter TOSHIAKI YOSHII, TOYOAKI MATSUURA, EIICHI YUKAWA, YOSHIAKI HARA Department of Ophthalmology, Nara Medical University, Nara - Japan PURPOSE. To evaluate the influence of astigmatism in terms of its amount and direction on the results of Humphrey Matrix perimetry. METHODS. A total of 31 healthy volunteers from hospital staff were consecutively recruited to undergo repeat testing with Humphrey Matrix 24-2 full threshold program with various induced simple myopic astigmatism. All subjects had previous experience (at least twice) with Matrix testing. To produce simple myopic astigmatism, a 0 diopter (D), +1 D, or +2 D cylindrical lens was added and inserted in the 180° direction and in the 90° direction after complete correction of distance vision. The influences of astigmatism were evaluated in terms of the mean deviation (MD), pattern standard deviation (PSD), and test duration (TD). RESULTS. A significant difference was observed only in the MD from five sessions. The MD in cases of 2 D inverse astigmatism was significantly lower than that in the absence of astig- matism. CONCLUSIONS. In patients with inverse myopic astigmatism of ≥ 2 D, the influences of astig- matism on the visual field should be taken into consideration when the results of Humphrey Matrix perimetry are evaluated. (Eur J Ophthalmol 2009; 19: 425-8) KEY WORDS. Astigmatism, Frequency doubling technology, FDT Matrix, Perimetry Accepted: October 10, 2008 INTRODUCTION as an FDT perimeter and became commercially available. In this perimeter, the examination time was shortened due Refractive error is one of the factors affecting the results to changes in the algorithm, the target size was made of perimetry. -
Masqueraders of Age-Related Macular Degeneration
COVER STORY Masqueraders of Age-related Macular Degeneration A number of inherited retinal diseases phenocopy AMD. BY RONY GELMAN, MD, MS; AND STEPHEN H. TSANG, MD, PHD ge-related macular degeneration (AMD) is a leading cause of central visual loss among the elderly population in the developed world. The Currently, there are no published A non-neovascular form is characterized by mac- guidelines to prognosticate ular drusen and other abnormalities of the retinal pigment epithelium (RPE) such as geographic atrophy (GA) and Stargardt macular degeneration. hyperpigmented areas in the macula. The neovascular form is heralded by choroidal neovascularization (CNV), with subsequent development of disciform scarring. ABCA4 defect heterozygote carrier may be as high as This article reviews the pathologic and diagnostic char- one in 20.11,12 An estimated 600 disease-causing muta- acteristics of inherited diseases that may masquerade as tions in the ABCA4 gene exist, of which the three most AMD. The review is organized by the following patterns common mutations account for less than 10% of the of inheritance: autosomal recessive (Stargardt disease and disease phenotypes.13 cone dystrophy); autosomal dominant (cone dystrophy, The underlying pathology of disease in STGD involves adult vitelliform dystrophy, pattern dystrophy, North accumulation of lipofuscin in the RPE through a process Carolina macular dystrophy, Doyne honeycomb dystro- of disc shedding and phagocytosis.14,15 Lipofuscin is toxic phy, and Sorsby macular dystrophy); X-linked (X-linked to the RPE; furthermore, A2E, a component of lipofuscin, retinoschisis); and mitochondrial (maternally inherited causes inhibition of 11-cis retinal regeneration16 and diabetes and deafness). complement activation. -
Visual Performance of Scleral Lenses and Their Impact on Quality of Life In
A RQUIVOS B RASILEIROS DE ORIGINAL ARTICLE Visual performance of scleral lenses and their impact on quality of life in patients with irregular corneas Desempenho visual das lentes esclerais e seu impacto na qualidade de vida de pacientes com córneas irregulares Dilay Ozek1, Ozlem Evren Kemer1, Pinar Altiaylik2 1. Department of Ophthalmology, Ankara Numune Education and Research Hospital, Ankara, Turkey. 2. Department of Ophthalmology, Ufuk University Faculty of Medicine, Ankara, Turkey. ABSTRACT | Purpose: We aimed to evaluate the visual quality CCS with scleral contact lenses were 0.97 ± 0.12 (0.30-1.65), 1.16 performance of scleral contact lenses in patients with kerato- ± 0.51 (0.30-1.80), and 1.51 ± 0.25 (0.90-1.80), respectively. conus, pellucid marginal degeneration, and post-keratoplasty Significantly higher contrast sensitivity levels were recorded astigmatism, and their impact on quality of life. Methods: with scleral contact lenses compared with those recorded with We included 40 patients (58 eyes) with keratoconus, pellucid uncorrected contrast sensitivity and spectacle-corrected contrast marginal degeneration, and post-keratoplasty astigmatism who sensitivity (p<0.05). We found the National Eye Institute Visual were examined between October 2014 and June 2017 and Functioning Questionnaire overall score for patients with scleral fitted with scleral contact lenses in this study. Before fitting contact lens treatment to be significantly higher compared with scleral contact lenses, we noted refraction, uncorrected dis- that for patients with uncorrected sight (p<0.05). Conclusion: tance visual acuity, spectacle-corrected distance visual acuity, Scleral contact lenses are an effective alternative visual correction uncorrected contrast sensitivity, and spectacle-corrected contrast method for keratoconus, pellucid marginal degeneration, and sensitivity. -
Visual Field Test
EYE FACTS visual field test Your visual field refers to how much you can see around you, including objects in your peripheral (side) vision. This test produces a map of your field of vision. Visual field tests help your ophthalmologist (Eye M.D.) monitor any loss of vision and diagnose eye problems and disease. Visual field testing is used to monitor peripheral, or side, vision. HOW IS A VISUAL FIELD TEST PERFORMED? The test is performed with a large, bowl-shaped in- Normal visual field Severe visual loss strument called a perimeter. In order to test one eye at a time, one of your eyes is temporarily patched during the test. You will be seated and positioned comfortably in front of the perimeter and asked to look straight ahead at a fixed spot (the fixation target). The computer randomly flashes points of light around the bowl-shaped perimeter. When you see a light, press the indicator button. It is very important These grids are results of visual field tests.T he dark to always keep looking straight ahead. Do not move black shaded areas show where loss of vision has your eyes to look for the target; wait until it appears occurred. in your side vision. It is normal for some of the lights to be difficult to see. A delay in seeing a light does not necessarily mean your field of vision is damaged. If you need to rest during the test, tell the technician and they will pause the test until you are ready to continue. Your ophthalmologist will interpret the results of your test and discuss them with you. -
Optic Disc and Macular Vessel Density Measured by Optical
www.nature.com/scientificreports OPEN Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma Tzu-Yu Hou1,2, Tung-Mei Kuang1,2, Yu-Chieh Ko1,2, Yu-Fan Chang1,2, Catherine Jui-Ling Liu1,2 & Mei-Ju Chen1,2* There is distinct pathogenesis between primary open-angle glaucoma (POAG) and primary angle- closure glaucoma (PACG). Although elevated intraocular pressure (IOP) is the major risk factor for glaucoma, non-IOP risk factors such as vascular abnormalities and lower systolic/diastolic perfusion pressure may play a role in the pathogenic process. This study aimed to compare the vessel density (VD) in the optic disc and macula using optical coherence tomography angiography (OCTA) between POAG and PACG eyes. Thirty-two POAG eyes, 30 PACG eyes, and 39 control eyes were included. All the optic disc VD parameters except the inside disc VD were signifcantly lower in glaucomatous eyes than in control eyes. Compared with PACG eyes, only the inferior temporal peripapillary VD was signifcantly lower in POAG eyes. The parafoveal VD was signifcantly lower in each quadrant in glaucomatous eyes than in control eyes. The central macular and parafoveal VD did not difer between POAG and PACG eyes. In conclusion, the inferior temporal peripapillary VD was signifcantly reduced in POAG eyes compared with PACG eyes, while PACG eyes showed a more evenly distributed reduction in the peripapillary VD. The distinct patterns of VD change may be associated with the diferent pathogenesis between POAG and PACG. Glaucoma is an optic neuropathy characterised by progressive loss of retinal ganglion cells and their axons accompanied by corresponding visual feld (VF) defects. -
Physical Eye Examination
Physical Eye Examination Kaevalin Lekhanont, MD Department of Ophthalmology Ramathibodi Hospp,ital, Mahidol Universit y Outline • Visual acuity (VA) testing – Distant VA test – Pinhole test – Near VA test • Visual field testing • Record and interpretations Outline • Penlight examination •Swingggping penli ght test • Direct ophthalmoscopy – Red reflex examination • Schiotz tonometry • RdditttiRecord and interpretations Conjunctiva, Sclera Retina Cornea Iris Retinal blood vessels Fovea Pupil AtAnteri or c ham ber Vitreous Aqueous humor Lens Optic nerve Trabecular meshwork Ciliary body Choriod and RPE Function evaluation • Visual function – Visual acuity test – Visual field test – Refraction • Motility function Anatomical evaluation Visual acuity test • Distant VA test • Near VA test Distance VA test Snellen’s chart • 20 ฟุตหรือ 6 เมตร • วัดที่ละขาง ตาขวากอนตาซาย • ออานทละตาานทีละตา แถวบนลงลแถวบนลงลางาง • บันทึกแถวลางสุดที่อานได Pinhole test VA with pinhole (PH) Refractive error emmetitropia myypopia hyperopia VA record 20/200 ผูปวยสามารถอานต ัวเลขทมี่ ี ขนาดใหญขนาดใหญพอทคนปกตพอที่คนปกติ สามารถอานไดจากท ี่ระยะ 200 ฟตฟุต แตแตผผปูปวยอานไดจากวยอานไดจาก ที่ระยะ 20 ฟุต 20/20 Distance VA test • ถาอานแถวบนสุดไไไมได ใหเดินเขาใกล chthart ทีละกาวจนอานได (10/200, 5/200) • Counting finger 2ft - 1ft - 1/2ft • Hand motion • Light projection • Light perception • No light perception (NLP) ETDRS Chart Most accurate Illiterate E chart For children age ≥ 3.5 year Near VA test Near chart •14 นวิ้ หรอื 33 เซนตเมตริ • วัดที่ละขาง ตาขวากอนตาซาย • อานทีละตา แถวบนลงลาง -
IMI Pathologic Myopia
Special Issue IMI Pathologic Myopia Kyoko Ohno-Matsui,1 Pei-Chang Wu,2 Kenji Yamashiro,3,4 Kritchai Vutipongsatorn,5 Yuxin Fang,1 Chui Ming Gemmy Cheung,6 Timothy Y. Y. Lai,7 Yasushi Ikuno,8–10 Salomon Yves Cohen,11,12 Alain Gaudric,11,13 and Jost B. Jonas14 1Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan 2Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan 3Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan 4Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, Japan 5School of Medicine, Imperial College London, London, United Kingdom 6Singapore Eye Research Institute, Singapore National Eye Center, Singapore 7Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Hong Kong 8Ikuno Eye Center, 2-9-10-3F Juso-Higashi, Yodogawa-Ku, Osaka 532-0023, Japan 9Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan 10Department of Ophthalmology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan 11Centre Ophtalmologique d’Imagerie et de Laser, Paris, France 12Department of Ophthalmology and University Paris Est, Creteil, France 13Department of Ophthalmology, APHP, Hôpital Lariboisière and Université de Paris, Paris, France 14Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany Correspondence: Kyoko Pathologic myopia is a major cause of visual impairment worldwide. Pathologic myopia is Ohno-Matsui, Department of distinctly different from high myopia. High myopia is a high degree of myopic refractive Ophthalmology and Visual Science, error, whereas pathologic myopia is defined by a presence of typical complications in Tokyo Medical and Dental the fundus (posterior staphyloma or myopic maculopathy equal to or more serious than University, Tokyo, Japan; diffuse choroidal atrophy). -
An Investigation of Visual Field Test Parameters in Glaucoma, Patterns Of
An investigation of visual field test parameters in glaucoma, patterns of visual field loss in diabetics and multispectral imaging of the optic nerve head in glaucoma A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Medical and Human Sciences 2012 Yanfang Wang School of Medicine (Human Development) 1 CONTENTS Title page……………………………………………………………1 Contents……………………………………………………….........2 List of Tables………………………………………………………..9 List of Figures……………………………………………………..10 List of Abbreviations……………………………………………...14 Abstract …………………………………………………………...16 Declaration………………………………………………………...17 Copyright statement………………………………………………17 Acknowledgment……………………………………………...…..19 1. Rationale of the study…………………………………………..20 2. Glaucoma……………………………………………………….24 2.1- Classification of glaucoma……………………………………….........24 2.2 - Clinical assessment in glaucoma……………………………………..27 2.2.1- IOP measurement………………………………………………..27 2.2.2 - Examination of structural and functional loss in glaucoma….28 2.3 - Management…………………………………………………………..32 3. Visual field testing……………………………………………..33 3.1 - Stimuli and background……………………………………………...33 3.2 - Test strategies………………………………………………………….34 3.2.1 - Frequency-of-seeing (FOS) curve and threshold………………34 3.2.2 - Supra-threshold strategy………………………………………..36 2 3.2.3 - Threshold strategy……………………………………………….38 3.2.3.1 - Full threshold, Fastpac and SITA………………………….38 3.2.3.2 - 30-2, 24-2 and 10-2 stimulus distributions…………………41 3.3 - Interpretation of results……………………………………………...42 3.3.1 -
Optic Nerve Hypoplasia Plus: a New Way of Looking at Septo-Optic Dysplasia
Optic Nerve Hypoplasia Plus: A New Way of Looking at Septo-Optic Dysplasia Item Type text; Electronic Thesis Authors Mohan, Prithvi Mrinalini Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 22:50:06 Item License http://rightsstatements.org/vocab/InC/1.0/ Link to Item http://hdl.handle.net/10150/625105 OPTIC NERVE HYPOPLASIA PLUS: A NEW WAY OF LOOKING AT SEPTO-OPTIC DYSPLASIA By PRITHVI MRINALINI MOHAN ____________________ A Thesis Submitted to The Honors College In Partial Fulfillment of the Bachelors degree With Honors in Physiology THE UNIVERSITY OF ARIZONA M A Y 2 0 1 7 Approved by: ____________________________ Dr. Vinodh Narayanan Center for Rare Childhood Disorders Abstract Septo-optic dysplasia (SOD) is a rare congenital disorder that affects 1/10,000 live births. At its core, SOD is a disorder resulting from improper embryological development of mid-line brain structures. To date, there is no comprehensive understanding of the etiology of SOD. Currently, SOD is diagnosed based on the presence of at least two of the following three factors: (i) optic nerve hypoplasia (ii) improper pituitary gland development and endocrine dysfunction and (iii) mid-line brain defects, including agenesis of the septum pellucidum and/or corpus callosum. A literature review of existing research on the disorder was conducted. The medical history and genetic data of 6 patients diagnosed with SOD were reviewed to find damaging variants.