The Quiet Man of Physics Who Is the Only Physicist to Have Won Two Nobel Prizes?

Total Page:16

File Type:pdf, Size:1020Kb

The Quiet Man of Physics Who Is the Only Physicist to Have Won Two Nobel Prizes? book reviews The quiet man of physics Who is the only physicist to have won two Nobel prizes? True Genius: The Life and Science of John Bardeen by Lillian Hoddeson & Vicki Daitch Joseph Henry Press: 2002. 482 pp. $27.95 P. W. Anderson BETTMANN/CORBIS John Bardeen was an extremely quiet man. An anecdote in this book avers that when he was selling his house in Summit, New Jersey, the prospective buyer was so disconcerted by Bardeen’s silence that he raised his bid by many thousands of dollars while waiting for him to speak. As an old friend of Bardeen’s, I don’t find that at all implausible. Nonetheless, this quiet man led the way in two earth-shattering developments: with Walter Brattain he devised the first working semiconductor amplifier, jump-starting the information revolution; and with two young associates, he solved the 46-year-old puzzle of superconductivity, with repercussions not just in that field but in fundamental aspects of nuclear and elementary high-energy physics. He also helped to plan the research labora- Radio days: (left to right) John Bardeen, William Shockley and Walter Brattain invented the transistor. tories of the giant Xerox Corporation, and was a friend and consultant to the founder of rose to head a group of 90 engineers and that had carried him so quickly to the transis- Sony. By the way, he is the only person ever scientists at the uncomfortable and crowded tor, Bardeen and David Pines soon formal- to have won two Nobel prizes in physics. Naval Ordinance Lab in Washington. ized the crucial interaction. By the end of Still, as Lillian Hoddeson and Vicki The drama in his life was largely com- 1956 (with a slight interruption to pick up Daitch bewail in this book, to most of the pressed into the next dozen years. A generous the Nobel Prize for the transistor), Bardeen, world he is “John who?”. They intend to start offer drew him to Bell Labs, where a group his student Bob Schrieffer and postdoc Leon remedying this situation. The second theme was being assembled under Bill Shockley Cooper had solved that problem as well. The of the book is also the source of the title: to attempt to create an amplifier based on resulting paper (Physics Review 108, 1175; they want to emphasize that it is possible to wartime advances in semiconductor science. 1957) deserves a place among the all-time be a “true genius” without being bohemian, The story of that achievement (by December classics of science. The intellectual ramifica- neurotic or particularly difficult to get along 1947) is told more fully in Hoddeson’s previ- tions of their central hypothesis — known as with — and that perhaps most geniuses do ous book Crystal Fire, written with Michael broken gauge symmetry — pervade all of not fit the popular stereotype. Riordan (Norton, 1997). But in True Genius, physics, and have underpinned at least four Of course, the biographer’s task is much Hoddeson and Daitch recount the full story other Nobel prizes to nine individuals. There harder if the subject is not eccentric in any of the personal conflict with Shockley that will doubtless be more to come. spectacular way. Even Bardeen’s precosity — ensued when the latter used his position to After that, the rest of Bardeen’s life may he entered college at 15 — did not seem to isolate and overwhelm the two original inven- seem like an anticlimax, even though it impair his ability to get on well with his peers. tors. Perhaps, it must be said, this had lasting included key roles in the creation of the A few years of indecision as to his natural benefits for later developments in semicon- Sony Corporation and the Xerox Palo Alto calling ended happily in 1933, at the age of ductors, because it drove Bardeen to work on Research Center laboratories, and high office 25, with admission to Princeton University’s advancing the science generally, while Shock- and influential advisory roles in the scientific graduate school, where he joined the fortu- ley pursued a line that eventually petered out. establishment. Two well-written and well- nate little band of extraordinary students of By 1951, Bardeen had been lured away researched chapters are devoted to scientific Eugene Wigner who founded the modern to the University of Illinois by old friend controversies in which Bardeen became quantitative theory of solids. and fellow Wigner student Fred Seitz. There embroiled in later life, in several of which it is From Princeton he went on to be admitted he not only fostered an independent semi- hard in retrospect to support his side of the into the élite Society of Fellows at Harvard, conductor-engineering group with Nick matter. He may have been quiet but he was which gave him time to attempt several of Holonyak, but built a theoretical-physics not self-effacing, and was quite capable of the toughest problems in his field. He finally group within the already thriving condensed- throwing his weight around in such contro- achieved a professorship at Minnesota matter physics enterprise. versies. But when the dust settled he could be University, and married Jane Maxwell after He was at last able to indulge his obses- quietly generous to his opponents, and was three years of courtship — he had the old- sion with the puzzle of superconductivity, instrumental in the later Nobel Prize awards fashioned determination to have a positive left over from his Harvard days and reacti- to Brian Josephson and probably to me. cashflow before marrying. Jane was attrac- vated in his final months at Bell. Using again To return to the genius thing. Is it possi- tive, universally beloved, patient and, happily, his obstinacy and the careful assembling and ble to be a genius when you are sometimes chatty. Soon called into war work, Bardeen critical interpretation of experimental data wrong? (Personal glamour seems to have NATURE | VOL 420 | 5 DECEMBER 2002 | www.nature.com/nature © 2002 Nature Publishing Group 463 book reviews little to do with it one way or the other, in illuminating the boundary between our science as in the arts.) Actually, few scientific knowledge and our ignorance. In the geniuses are even close to infallible, and some process, she outlines some of the major out- P. SAKUMA/AP P. can be wrongheaded indeed — look at Linus standing problems in the field and provides Pauling and vitamin C, or Julian Schwinger a balanced and insightful view of them from and cold fusion. Bardeen cracked a problem several sides. Time and again as I read this that dozens of the greatest minds of physics book I thought to myself that she had advo- had failed at — isn’t that enough? cated a particular position too strongly, only There are, almost inevitably, glitches in to find on the following page that she would the details in this book, but the authors’ offer an equally strong counterargument. admiration and affection for their subject Hough, who has experience of both earth- illuminates the biography. At the same time, quake research and public outreach, has they bring readers with varied levels of written a book that is accessible to readers expertise to a real understanding of the com- in other disciplines and to a non-technical plex workings of science as they are actually audience, but provides enough thoughtful experienced by those of us who do it. Will the commentary and perspectives to hold the Shock result: earthquakes do enormous damage book appeal to the mass market and thus attention of specialists. but are extremely difficult to predict. make a dent in the “John who?” problem? An important part of any general book I’m not convinced, but perhaps it should. ■ on earthquakes is how it treats short-term well as parallel efforts being contemplated in P. W. Anderson is in the Department of Physics, earthquake prediction — a topic that is cen- the United States, have led to the discovery of Princeton University, Princeton, tral to seismology and foremost in the minds new phenomena. In the past year, discoveries New Jersey 08544-0708, USA. of non-seismologists. In this book there is of large aseismic transients and what appears not a great deal of material on earthquake to be an entirely new type of seismic event prediction, which might disappoint readers deep under Japan are changing our views of outside the field. This de-emphasis is not fundamental earthquake processes. It is my surprising, though, given the lack of success strong expectation that the author will have Keeping your feet to date. Instead, the discussion focuses on a lot of new material to incorporate into the whether or not earthquakes are predictable second edition. ■ in a moving field even in theory (see Nature web debate; Gregory C. Beroza is in the Department of Earthshaking Science: What We http://www.nature.com/nature/debates). As Geophysics, Stanford University, Stanford, Know (and Don’t Know) about elsewhere, Hough delivers an even-handed California 94305-2215, USA. Earthquakes and up-to-date treatment of both sides of by Susan Elizabeth Hough the issue. More on earthquakes Princeton University Press: 2002. 272 pp. The book excels in its treatment of the The Mechanics of Earthquakes and $24.95, £17.95 prediction of potentially damaging strong Faulting, 2nd edn Gregory C. Beroza ground motion in the near field of an earth- by Christopher H. Scholz quake. The ability to predict strong ground Cambridge University Press, $130, £90 (hbk); Seismologists have been grouped, unfavour- motion is arguably more important than the $48, £32.95 (pbk) ably, with economists in that they are both ability to predict earthquakes.
Recommended publications
  • JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
    Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc.
    [Show full text]
  • From the Executive Director Kathryn Sullivan to Receive Sigma Xi's Mcgovern Award
    May-June 2011 · Volume 20, Number 3 Kathryn Sullivan to From the Executive Director Receive Sigma Xi’s McGovern Award Annual Report In my report last year I challenged the membership to consider ormer astronaut the characteristics of successful associations. I suggested that we Kathryn D. emulate what successful associations do that others do not. This FSullivan, the first year as I reflect back on the previous fiscal year, I suggest that we need to go even further. U.S. woman to walk We have intangible assets that could, if converted to tangible outcomes, add to the in space, will receive value of active membership in Sigma Xi. I believe that standing up for high ethical Sigma Xi’s 2011 John standards, encouraging the earlier career scientist and networking with colleagues of diverse disciplines is still very relevant to our professional lives. Membership in Sigma P. McGovern Science Xi still represents recognition for scientific achievements, but the value comes from and Society Award. sharing with companions in zealous research. Since 1984, a highlight of Sigma Xi’s Stronger retention of members through better local programs would benefit the annual meeting has been the McGovern Society in many ways. It appears that we have continued to initiate new members in Lecture, which is made by the recipient of numbers similar to past years but retention has declined significantly. In addition, the the McGovern Medal. Recent recipients source of the new members is moving more and more to the “At-large” category and less and less through the Research/Doctoral chapters. have included oceanographer Sylvia Earle and Nobel laureates Norman Borlaug, Mario While Sigma Xi calls itself a “chapter-based” Society, we have found that only about half of our “active” members are affiliated with chapters in “good standing.” As long Molina and Roald Hoffmann.
    [Show full text]
  • Modern Physics History All 6 12:13
    The V-2 rocket is tested and used in warfare. in used and tested is rocket V-2 The Two fundamental discoveries made in the United States support military technology. Glenn Seaborg and colleagues bombard The liquid-fueled V-2 uranium in a cyclotron and rocket is tested at produce the fissionable element Peenemunde in Germany, plutonium, one of nine new under the technical elements heavier than uranium direction of the German that Seaborg would help discover. engineers Wernher von John Dunning and co-workers Braun & Walter show that uranium-235 is a Dornberger. It is first used fissionable form of uranium and in warfare in 1944. The element plutonium is develop a method to isolate this produced, and isotope. Plutonium-239 & uranium-235 is isolated. uranium-235 become essential for the atomic bomb. Carbon dating Physics The first programmable 1946 is invented. electronic digital 1946 computer is completed. The ENIAC (Electronic Numerical Integrator History and Comparator) computer, based on vacuum tubes, goes into service at the University of Pennsylvania. It is electronic, digital, and programmable -- features that are 1946-1953 still essential in modern computers. The American chemist Willard Frank Libby shows how to find the date of death of living organisms by measuring the decay of radioactive carbon-14. Radiocarbon dating is accurate back to 50,000 years ago, and is widely used by archeologists, anthropologists, and earth scientists. The transistor 1947 is invented. The American physicists John Bardeen, William Shockley & Walter Brattain invent the transistor, an electronic amplifier made from a small piece of semiconducting material. It is the forerunner of integrated circuits and memory chips.
    [Show full text]
  • John Robert Schrieffer Daniel Arovas, Greg Boebinger, and Nick Bonesteel
    John Robert Schrieffer Daniel Arovas, Greg Boebinger, and Nick Bonesteel Citation: Physics Today 73, 1, 63 (2020); doi: 10.1063/PT.3.4395 View online: https://doi.org/10.1063/PT.3.4395 View Table of Contents: https://physicstoday.scitation.org/toc/pto/73/1 Published by the American Institute of Physics ARTICLES YOU MAY BE INTERESTED IN Gaurang Bhaskar Yodh Physics Today 73, 64 (2020); https://doi.org/10.1063/PT.3.4396 Johannes Kepler’s pursuit of harmony Physics Today 73, 36 (2020); https://doi.org/10.1063/PT.3.4388 Rare earths in a nutshell Physics Today 73, 66 (2020); https://doi.org/10.1063/PT.3.4397 The sounds around us Physics Today 73, 28 (2020); https://doi.org/10.1063/PT.3.4387 Charles Kittel Physics Today 72, 73 (2019); https://doi.org/10.1063/PT.3.4326 The usefulness of GRE scores Physics Today 73, 10 (2020); https://doi.org/10.1063/PT.3.4376 OBITUARIES made when Cooper solved the problem John Robert Schrieffer of two electrons above a quiescent Fermi towering figure in theoretical con- sea. He took into account the effective at- densed-matter physics, John Robert tractive interaction mediated by phonons, ASchrieffer died on 27 July 2019 in Tal- which resulted in a bound state of elec- lahassee, Florida. He is best known for trons. Schrieffer’s focus crystallized on his crucial contributions to the theory of finding a many-electron theory that superconductivity, a problem that since could incorporate Cooper’s bound pairs, its discovery in 1911 had vexed physi- which, though not quite bosons, some- cists searching for a microscopic expla- how needed to be condensed.
    [Show full text]
  • Nobel Laureates with Their Contribution in Biomedical Engineering
    NOBEL LAUREATES WITH THEIR CONTRIBUTION IN BIOMEDICAL ENGINEERING Nobel Prizes and Biomedical Engineering In the year 1901 Wilhelm Conrad Röntgen received Nobel Prize in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him. Röntgen is considered the father of diagnostic radiology, the medical specialty which uses imaging to diagnose disease. He was the first scientist to observe and record X-rays, first finding them on November 8, 1895. Radiography was the first medical imaging technology. He had been fiddling with a set of cathode ray instruments and was surprised to find a flickering image cast by his instruments separated from them by some W. C. Röntgenn distance. He knew that the image he saw was not being cast by the cathode rays (now known as beams of electrons) as they could not penetrate air for any significant distance. After some considerable investigation, he named the new rays "X" to indicate they were unknown. In the year 1903 Niels Ryberg Finsen received Nobel Prize in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science. In beautiful but simple experiments Finsen demonstrated that the most refractive rays (he suggested as the “chemical rays”) from the sun or from an electric arc may have a stimulating effect on the tissues. If the irradiation is too strong, however, it may give rise to tissue damage, but this may to some extent be prevented by pigmentation of the skin as in the negro or in those much exposed to Niels Ryberg Finsen the sun.
    [Show full text]
  • City of Warrenville Memo
    VI. G CITY OF WARRENVILLE MEMO To: Mayor, City Council, and City Administrator Coakley From: Deputy Public Works Director Kuchler Subject: AUTHORIZATION TO BID 2019 ROAD PROJECTS Date: February 6, 2019 The purpose of this memorandum is to i.) summarize the scope of work and anticipated costs for the proposed 2019 Road Program and Warrenville Road Reconstruction Project; and ii.) request authorization from City Council to advertise for bids prior to formal approval of the Fiscal Year 2020 Budget. Scope of Work and Anticipated Costs 2019 Road Program: City staff is proposing the following streets be included in the 2019 Road Program: 1. Albert Einstein Drive 2. Arthur Compton Court 3. Emerald Green Drive 4. Emerald Green Drive E 5. Emerald Green Drive W 6. Enrico Fermi Court 7. John Bardeen Drive 8. Marie Curie Lane 9. Pierre Curie Lane 10. Stafford Place: Warren Avenue to East Dead End Based on the asset schedules contained in the City’s Capital Maintenance and Replacement Plan (CMRP), the total cost to mill and resurface the roadways listed above, with complete curb and gutter replacement and replacement of the street lighting system is anticipated to be $1,223,080 (Road Projects Fund, Account No. 02-00-49476). Construction Observation will be required for this project. The City will utilize a consultant that has provided construction observation services on several projects for the City, Engineering Resource Associates, Inc. (ERA). The anticipated construction engineering costs for the project are $75,000 (Engineering Fund, Account No. 02-00-45300). Authorization to Bid 2019 Road Projects February 6, 2019 Page 2 of 2 Warrenville Road Reconstruction Project: City staff is proposing to remove the permeable pavers in the roadway and reconstruct Warrenville Road with full-depth asphalt, and to resurface 4th Street between Warrenville Road and Main Street.
    [Show full text]
  • PASS Scripta Varia 21
    22_TOWNES (G-L)chiuso_137-148.QXD_Layout 1 01/08/11 10:09 Pagina 137 The Scientific Legacy of the 20th Century Pontifical Academy of Sciences, Acta 21, Vatican City 2011 www.pas.va/content/dam/accademia/pdf/acta21/acta21-townes.pdf The Laser and How it Happened Charles H. Townes I’m going to discuss the history of the laser and my own personal partici- pation in it. It will be a very personal story. On the other hand, I want to use it as an illustration of how science develops, how new ideas occur, and so on. I think there are some important issues there that we need to recognize clearly. How do new discoveries really happen? Well, some of them completely by accident. For example, I was at Bell Telephone Laboratories when the transistor was discovered and how? Walter Brattain was making measure- ments of copper oxide on copper, making electrical measurements, and he got some puzzling things he didn’t understand, so he went to John Bardeen, a theorist, and said, ‘What in the world is going on here?’ John Bardeen studied it a little bit and said, ‘Hey, you’ve got amplification, wow!’. Well, their boss was Bill Shockley, and Bill Shockley immediately jumped into the business and added a little bit. They published separate papers but got the Nobel Prize together for discovering the transistor by accident. Another accidental discovery of importance was of a former student of mine, Arno Penzias. I’d assigned him the job of looking for hydrogen in outer space using radio frequencies.
    [Show full text]
  • Download Chapter 181KB
    Memorial Tributes: Volume 6 2 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 6 JOHN BARDEEN 3 John Bardeen 1908-1991 By Nick Holonyak, Jr. IN JOHN BARDEEN'S own words: In any field there are golden ages during which advances are made at a rapid pace. In solid-state physics, three stand out. One, the early years of the present century, followed the discoveries of x rays, the electron, Planck's quantum of energy, and the nuclear atom—the discoveries that ushered in the atomic era. The Drude-Lorentz electron theory of metals and Einstein's applications of the quantum principle to lattice vibrations in solids and to the photoelectric effect date from this period. Von Laue's suggestion in 1912 that a crystal lattice should act as a diffraction grating for x rays and research of the W. H. and W. L. Bragg [sic] opened up the vast field of x-ray structure determination. The foundations of the field were firmly established during a second very active period, from about 1928 until the mid-thirties, which followed the discovery of quantum mechanics. Many of the world's leading theorists were involved in this effort. The Bloch theory, based on the one-electron model, introduced the concept of energy bands and showed why solids, depending on the electronic structure, may be metals, insulators, or semiconductors. The fundamentals of the theory of transport of electricity and of heat in solids were established. In these same years, the importance for many crystal properties of the role of imperfections in the crystal lattice, such as vacant lattice sites, dislocations, and impurity atoms was beginning to be recognized.
    [Show full text]
  • Nobel Prizes in Physics Closely Connected with the Physics of Solids
    Nobel Prizes in Physics Closely Connected with the Physics of Solids 1901 Wilhelm Conrad Röntgen, Munich, for the discovery of the remarkable rays subsequently named after him 1909 Guglielmo Marconi, London, and Ferdinand Braun, Strassburg, for their contributions to the development of wireless telegraphy 1913 Heike Kamerlingh Onnes, Leiden, for his investigations on the properties of matter at low temperatures which lead, inter alia, to the production of liquid helium 1914 Max von Laue, Frankfort/Main, for his discovery of the diffraction of X-rays by crystals 1915 William Henry Bragg, London, and William Lawrence Bragg, Manchester, for their analysis of crystal structure by means of X-rays 1918 Max Planck, Berlin, in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta 1920 Charles Edouard Guillaume, Sèvres, in recognition of the service he has rendered to precise measurements in Physics by his discovery of anoma- lies in nickel steel alloys 1921 Albert Einstein, Berlin, for services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect 1923 Robert Andrews Millikan, Pasadena, California, for his work on the ele- mentary charge of electricity and on the photo-electric effect 1924 Manne Siegbahn, Uppsala, for his discoveries and researches in the field of X-ray spectroscopy 1926 Jean Baptiste Perrin, Paris, for his work on the discontinuous structure of matter, and especially for his discovery of sedimentation equilibrium 1928 Owen Willans Richardson, London, for his work on the thermionic phe- nomenon and especially for his discovery of the law named after him 1929 Louis Victor de Broglie, Paris, for his discovery of the wave nature of electrons 1930 Venkata Raman, Calcutta, for his work on the scattering of light and for the discovery of the effect named after him © Springer International Publishing Switzerland 2015 199 R.P.
    [Show full text]
  • Nobel Laureates
    NOBEL LAUREATES ALUMNI EDWARD DOISY JOHN ROBERT SCHRIEFFER (1892–1986) shared the Nobel Prize in medicine and physiology in (1931– ) shared the 1972 Nobel Prize in physics with faculty 1943. Doisy discovered the chemical nature of vitamin K. His work member John Bardeen and postdoctoral fellow Leon Cooper for The involvedcampus synthesis, isolation, and characterization of the K vitamins. their work at the U of I on the theory of superconductivity. Schrieffer Doisy received two U of I degrees: a Bachelor of Arts (1914) and a received a Master of Science in 1954 and a Ph.D. in 1957 from the boastsMaster two of Science (1916). University and served on the physics faculty from 1959 to 1962. National Historic VINCENT DU VIGNEAUD PHILLIP A. SHARP Landmarks:(1901–1978) the won the Nobel Prize in chemistry in 1955 for his (1944– ) shared the 1993 Nobel Prize in medicine and physiology work on “biochemically important sulfur compounds, especially for the discovery of split genes, which proved that genes can be Astronomical for achieving the first synthesis of a polypeptide hormone.” Du composed of several separate segments. Sharp received a Ph.D. in ObservatoryVigneaud received a Bachelor of Science (1923) and a Master of chemistry from the U of I in 1969. Science (1924) from the U of I. He served on the University faculty HAMILTON SMITH and fromthe Morrow1929 to 1932. (1931– ) shared the 1978 Nobel Prize in medicine and physiology Plots. A number ROBERT HOLLEY for “the discovery of restriction enzymes and their application to of buildings(1922–1993) have won the Nobel Prize in medicine and physiology in problems of molecular genetics.” Smith graduated from University 1968 for his work determining the precise structure of nucleic acids.
    [Show full text]
  • The Reason for Beam Cooling: Some of the Physics That Cooling Allows
    The Reason for Beam Cooling: Some of the Physics that Cooling Allows Eagle Ridge, Galena, Il. USA September 18 - 23, 2005 Walter Oelert IKP – Forschungszentrum Jülich Ruhr – Universität Bochum CERN obvious: cooling and control of cooling is the essential reason for our existence, gives us the opportunity to do and talk about physics that cooling allows • 1961 – 1970 • 1901 – 1910 1961 – Robert Hofstadter (USA) 1901 – Wilhelm Conrad R¨ontgen (Deutschland) 1902 – Hendrik Antoon Lorentz (Niederlande) und Rudolf M¨ossbauer (Deutschland) Pieter (Niederlande) 1962 – Lev Landau (UdSSR) 1903 – Antoine Henri Becquerel (Frankreich) 1963 – Eugene Wigner (USA) und Marie Curie (Frankreich) Pierre Curie (Frankreich) Maria Goeppert-Mayer (USA) und J. Hans D. Jensen (Deutschland) 1904 – John William Strutt (Großbritannien und Nordirland) 1964 – Charles H. Townes (USA) , 1905 – Philipp Lenard (Deutschland) Nikolai Gennadijewitsch Bassow (UdSSR) und 1906 – Joseph John Thomson (Großbritannien-und-Nordirland) Alexander Michailowitsch Prochorow (UdSSR) und 1907 – Albert Abraham Michelson (USA) 1965 – Richard Feynman (USA), Julian Schwinger (USA) Shinichiro Tomonaga (Japan) 1908 – Gabriel Lippmann (Frankreich) 1966 – Alfred Kastler (Frankreich) 1909 – Ferdinand Braun (Deutschland) und Guglielmo Marconi (Italien) 1967 – Hans Bethe (USA) 1910 – Johannes Diderik van der Waals (Niederlande) 1968 – Luis W. Alvarez (USA) 1969 – Murray Gell-Mann (USA) 1970 – Hannes AlfvAn¨ (Schweden) • 1911 – 1920 Louis N¨oel (Frankreich) 1911 – Wilhelm Wien (Deutschland) 1912 – Gustaf
    [Show full text]
  • 24 August 2013 Seminar Held
    PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening.
    [Show full text]