The Use of Non-Targeted Proteomics and in Vitro Bioassays As a Non

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Non-Targeted Proteomics and in Vitro Bioassays As a Non The use of non-targeted proteomics and in vitro bioassays as a non-destructive approach towards the development of biomarkers of contaminant exposure in threatened marine wildlife Author Chaousis, Steph Published 2019-10-31 Thesis Type Thesis (PhD Doctorate) School School of Environment and Sc DOI https://doi.org/10.25904/1912/1259 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/389085 Griffith Research Online https://research-repository.griffith.edu.au The use of non-targeted proteomics and in vitro bioassays as a non-destructive approach towards the development of biomarkers of contaminant exposure in threatened marine wildlife Stephanie Chaousis, BSc, Honours Supervision by Dr. Jason P van de Merwe & Prof. Frederic DL Leusch School of Environment and Science Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy on the 24th of April 2019 Abstract Biomarkers of chemical exposure and effect are an important tool for monitoring the health of threatened species that are vulnerable to the adverse effects of prolonged contaminant exposure. However, there are many challenges that have limited the discovery of new biomarkers of chemical exposure in protected species, particularly the constraint on the use of destructive methods such as in vivo experimentation. This thesis first examines the current methods of biomarker discovery as reported in the literature to identify what methods future research in this field should focus on. A systematic quantitative review of methods of non-destructive biomarker discovery in wildlife highlighted the hinderance of these limitations on current research as well as the paucity of studies harnessing in vitro techniques (Chapter 2). The use of in vitro bioassays is not uncommon in ecotoxicology, however, these assays are largely targeted at one or several known markers. Non-targeted proteomics analyses allow for the discovery of new biomarkers, which is important considering wildlife may continually be exposed to new compounds and mixtures. Therefore the application of in vitro and in vivo non- targeted proteomic analysis as a tool for biomarker discovery was examined. To do so, sea turtles were used as a model species due to their priority conservation status and their susceptibility to the adverse effects of contaminant exposure. Cell lines derived from sea turtles exposed in vitro to environmentally relevant contaminants were used as a model for the in vitro analyses. Firstly, experimental sources of variation on protein expression (time, concentration and contaminant type) were explored (Chapter 3) revealing a strong effect of exposure time on observed proteomic changes and little effect from concentration. Furthermore, potential candidate biomarkers were discovered and the relevance of this method to in vivo molecular responses was demonstrated with the observation of known in vivo markers of exposure dysregulated in response to chemical exposure. Then, the influence of biological sources of variation (tissue type) i were examined with cells derived from several tissue types exposed in vitro to contaminants (Chapter 4). Different tissue types showed a different response to contaminant exposure and known in vivo biomarkers of exposure were again observed. Furthermore, potential new biomarker candidates were identified that would be beneficial for future research in this field to explore. Finally, non-targeted proteome profiling was applied to biological samples of wild-caught animals to examine its potential in biomarker discovery (Chapter 5). The proteome of the blood plasma of three Southeast Queensland sea turtle populations exposed to different chemical profiles were compared, and distinct differences in population protein expression were observed. These differences indicated altered immune states between populations, which could be caused by contaminant and/or pathogen exposure. In conclusion, this novel method of non-targeted proteomic analysis of both in vitro and in vivo samples provides a wealth of information about how contaminants affect sea turtles at the cellular and whole organism level and is a promising avenue to enhance wildlife toxicology. However, it was discovered that it is challenging to draw correlations between in vivo and in vitro global protein expression, and furthermore that sources of experimental variation can greatly influence the outcomes. Therefore, it is vital that future studies on this area focus on reproducibility of these sensitive methods before fully utilising them for directing wildlife toxicology research. ii Statement of originality This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Signature __________________________________ Date: 24/04/2019 Stephanie Chaousis iii Statement of ethical clearance This work was conducted in accordance with animal ethics requirements approved by the Griffith University Animal Ethics Committee (ENV/13/15/AEC). Signature __________________________________ Date: 24/04/2019 Stephanie Chaousis iv Table of contents Abstract………………………………………………………………...………………...i Statement of originality………………………………………………………….……...iii Statement of ethical clearance…………………………………………………...……...iv List of tables…………………………………………………………………...…...…..vii List of figures…………………………………………………………………….....…..ix Acknowledgements……………….………………………………………...………….xii Acknowledgement of funding………………………………………………...…….…xiv Contribution of others to this thesis…………………………………....…………….…xv Publications during candidature………………………………….………..…….…......xv Conference presentations based on thesis………………………………..……...…....xvii Chapter 1: Introduction…………………………………………………………...……..1 1.1 Thesis objectives………………………………………….……….……..….……....7 1.2 Thesis structure…………………………………………………..…………….…....8 1.3 References……………………………………………………...……………..……10 Chapter 2: Charting a path towards non-destructive biomarkers in threatened wildlife: A systematic quantitative literature review…………………………………...……..……19 2.1 Abstract………………………………………………………………………….….20 2.2 Keywords……………………………………………………………….……….….20 2.3 Introduction……………………………………………………….…...………..….20 2.4 Methods……………………………………………………………….……………25 2.4.1 Search tools and parameters………………………………………………….…..25 2.4.2 Categorisations and exclusions…………………………………………...………26 2.4.2.1 Broad experimental categories………………………………………...……….26 2.4.2.2 Detailed experimental categories…………………………………………….…27 2.4.2.3 Classification of methods and quality of experimental design…………….…...28 2.5 Results………………………………………………………………..………...…..29 2.5.1 Search results and experimental categories…………………………………...….29 2.5.2 Classification of methods and quality of experimental design……………......….30 2.6 Discussion…………………………………………………………..…………...….32 2.6.1 Experimental categories……………………………………………..……….......32 2.6.2 Methodological categories…………………………………..…………..…….....36 2.6.2.1 Method 1: Correlation of biomarkers in destructive and non-destructive samples……………………………………………………………………………..…..36 2.6.2.2 Method 2: Correlation of multiple biomarkers in non-destructive samples only……………………………………………………………………………….….....39 2.6.2.3 Method 3: Correlation between site/treatment and detection of biomarkers in non-destructive samples……………………………………………………………......44 2.6.2.4 Method 4: Validation of methods for detection of potential non-destructive biomarkers with no contaminant correlations made…………………………..………..45 2.6.2.5 Method 5: In vitro methods using non-destructive samples……………………46 2.6.3 Future directions for non-destructive biomarker discovery in threatened wildlife………………………………………………………………………………….50 2.7 References……………………………………………………………………….…54 v Supporting information for Chapter 2...………………………..………………………66 Chapter 3: Influence of concentration and exposure duration on global protein expression of green sea turtle primary skin cells exposed to polychlorinated biphenyl (PCB) 153 and perfluorononanoic acid (PFNA)…………………………………..…...77 3.1 Abstract……………………………………………………………………………..79 3.2 Key words…………………………………………………………………………..80 3.3 Introduction……………………………………………………………………..….80 3.4 Methods………………………………………………………………………...…..84 3.4.1 Chemicals…………………………………………………………………….…..84 3.4.2 Primary cell culture………………………………………………………………85 3.4.3 Validation that exposure concentrations are not cytotoxic……………….……...85 3.4.4 24 and 48 h exposure bioassays for proteomic analysis………………………….86 3.4.5 Protein extraction…………………………………………………………………86 3.4.6 Protein quantification and digestion…………………………………………..….87 3.4.7 LC-MS/MS…………………………………………………………………….…88 3.4.8 Data analysis………………………………………………………………..….…88 3.5 Results and discussion……………………………………………..………….……91 3.5.1 Cytotoxicity results and cell morphology…………………….…………….….…91 3.5.2 Effect of concentration, exposure time and contaminant on total number of dysregulated proteins……………………………………………………………..….....93 3.5.3 Practical aspects of the methodology used for cellular bioassay proteomic analysis..………………………………………………………………………………..97 3.5.4 Effect of treatments on up and down regulation and compound-specific protein dysregulation………………………………………………………………….……..…98 3.5.5 In vitro expression of known in vivo biomarkers expressed by cells exposed to PCB153 for 24 h………………………………………………………………………101 3.6 Conclusion……………………………………………………………….....……..104 3.7 References……………………………………………………………...……...….105
Recommended publications
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • The Etyfish Project © Christopher Scharpf and Kenneth J
    CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes
    Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes by Andy Joseph Turko A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Andy Joseph Turko, October 2018 ABSTRACT COPING WITH LIFE ON LAND: PHYSIOLOGICAL, BIOCHEMICAL, AND STRUCTURAL MECHANISMS TO ENHANCE FUNCTION IN AMPHIBIOUS FISHES Andy Joseph Turko Advisor: University of Guelph, 2018 Dr. Patricia A. Wright The invasion of land by fishes was one of the most dramatic transitions in the evolutionary history of vertebrates. In this thesis, I investigated how amphibious fishes cope with increased effective gravity and the inability to feed while out of water. In response to increased body weight on land (7 d), the gill skeleton of Kryptolebias marmoratus became stiffer, and I found increased abundance of many proteins typically associated with bone and cartilage growth in mammals. Conversely, there was no change in gill stiffness in the primitive ray-finned fish Polypterus senegalus after one week out of water, but after eight months the arches were significantly shorter and smaller. A similar pattern of gill reduction occurred during the tetrapod invasion of land, and my results suggest that genetic assimilation of gill plasticity could be an underlying mechanism. I also found proliferation of a gill inter-lamellar cell mass in P. senegalus out of water (7 d) that resembled gill remodelling in several other fishes, suggesting this may be an ancestral actinopterygian trait. Next, I tested the function of a calcified sheath that I discovered surrounding the gill filaments of >100 species of killifishes and some other percomorphs.
    [Show full text]
  • Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Northern Iowa Proceedings of the Iowa Academy of Science Volume 69 | Annual Issue Article 87 1962 Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L. Turner Wartburg College Gullermo Mendoza Grinnell College Rebecca Reiter Grinnell College Copyright © Copyright 1962 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Turner, Clarence L.; Mendoza, Gullermo; and Reiter, Rebecca (1962) "Development and Comparative Morphology of the Gonopodium of Goodeid Fishes," Proceedings of the Iowa Academy of Science: Vol. 69: No. 1 , Article 87. Available at: https://scholarworks.uni.edu/pias/vol69/iss1/87 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Turner et al.: Development and Comparative Morphology of the Gonopodium of Goode 1962] SELFINC OF H. NANA 571 Schiller, E. L. 1959c. Experimental studies on morphological variation in the cestode genus Hymenolepis. III. X-irradiation as a mechanism for facilitating analyses in H.. nana. Exp. Par. 8-427-470. Voge, M., and Heyneman, D. 1957. Development of Hymenolepis nana and Ii ymcnolepis dimi1111ta ( Cestoda: Hymenolepididae) in the inter­ mediate host Tribolium confusum. University of California Publications in Zoology .59:549-579. Voge, M., and Heyneman, D. 1958. Effect of high temperature on the larval development of Hymenolepis nana and Hymenolepis diminuta ( Cestoda: Cyclophyllidea).
    [Show full text]
  • Karyological Analysis of Two Endemic Tooth-Carps, Aphanius
    TurkJZool 31(2007)69-74 ©TÜB‹TAK KaryologicalAnalysisofTwoEndemicTooth-Carps, Aphaniuspersicus and Aphaniussophiae (Pisces:Cyprinodontidae),fromSouthwestIran H.R.ESMAEILI*,Z.PIRAVARandA.H.SHIVA DepartmentofBiology,CollegeofSciences,ShirazUniversity,Shiraz-IRAN Received:16.01.2006 Abstract: Thekaryotypesof2endemictooth-carpsofIran,Aphaniuspersicus (Jenkis,1910)andAphaniussophiae (Heckel,1849), wereinvestigatedbyexaminingmetaphasechromosomesspreadsobtainedfromgillepithelialandkidneycells.Thediploid chromosomenumbersofbothspecieswere2n=48.Thekaryotypesconsistedof11pairsofsubmetacentricand13pairsof subtelocentricchromosomesin A.persicus and14submetacentricand10subtelocentricchromosomesin A.sophiae .Thearm numbersin A.persicus and A.sophiae wereNF=70andNF=76,respectively.Sexchromosomeswerecytologically indistinguishableinbothtooth-carps. KeyWords: Aphaniuspersicus,Aphaniussophiae,karyotype,chromosome,idiogram Introduction cytogeneticstudiesmayprovideacomplementarydata TheCyprinodontidaearerepresentedinIranby6 sourceformoreaccurateandpreciseidentificationof species(Coad,1988,1995,1996;Scheel,1990): thesefishes.Applicationofthistypeofstudyhasreceived Aphaniusginaonis (Holly,1929); A.mento (Heckel, considerableattentioninrecentyears(Ozouf-Costazand 1843); A.dispar (Rüppell,1828); A.vladykovi Coad, Foresti,1992;Galettietal.,2000).Fishchromosome 1988; A.sophiae (Heckel,1849);and A.persicus datahavegreatimportanceinstudiesconcerning (Jenkins,1910).Theyareverycolorfulfishandcanbe evolutionarysystematics,aquaculture,mutagenesis, keptinaquaria;hence,theymaybecomepartofthe
    [Show full text]
  • (Platyhelminthes) Parasitic in Mexican Aquatic Vertebrates
    Checklist of the Monogenea (Platyhelminthes) parasitic in Mexican aquatic vertebrates Berenit MENDOZA-GARFIAS Luis GARCÍA-PRIETO* Gerardo PÉREZ-PONCE DE LEÓN Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153 CP 04510, México D.F. (México) [email protected] [email protected] (*corresponding author) [email protected] Published on 29 December 2017 urn:lsid:zoobank.org:pub:34C1547A-9A79-489B-9F12-446B604AA57F Mendoza-Garfias B., García-Prieto L. & Pérez-Ponce De León G. 2017. — Checklist of the Monogenea (Platyhel- minthes) parasitic in Mexican aquatic vertebrates. Zoosystema 39 (4): 501-598. https://doi.org/10.5252/z2017n4a5 ABSTRACT 313 nominal species of monogenean parasites of aquatic vertebrates occurring in Mexico are included in this checklist; in addition, records of 54 undetermined taxa are also listed. All the monogeneans registered are associated with 363 vertebrate host taxa, and distributed in 498 localities pertaining to 29 of the 32 states of the Mexican Republic. The checklist contains updated information on their hosts, habitat, and distributional records. We revise the species list according to current schemes of KEY WORDS classification for the group. The checklist also included the published records in the last 11 years, Platyhelminthes, Mexico, since the latest list was made in 2006. We also included taxon mentioned in thesis and informal distribution, literature. As a result of our review, numerous records presented in the list published in 2006 were Actinopterygii, modified since inaccuracies and incomplete data were identified. Even though the inventory of the Elasmobranchii, Anura, monogenean fauna occurring in Mexican vertebrates is far from complete, the data contained in our Testudines.
    [Show full text]
  • Permits - Problems May in Vienna - Goodeid Weekend 17 1
    May in Vienna - Goodeid Weekend 17 Collecting and shipping Goodeids from Mexico to Europe. Procedures - Permits - Problems May in Vienna - Goodeid Weekend 17 1. My attempt with protected fish 2. Paperwork for protected fish 3. Attempt and Paperwork for not protected fish 4. Summary: Problems and Challenges How difficult is it really? NORMA Oficial Mexicana NOM-059- SEMARNAT-2010, Protección ambiental- Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Listade especies en riesgo. Protected Not protected Allodontichthys hubbsi Allodontichthys zonistius Allodontichthys polylepis Alloophorus robustus Allodontichthys tamazulae Allotoca maculata Allotoca catarinae Allotoca meeki Allotoca diazi Allotoca zacapuensis Allotoca dugesii Chapalichthys encaustus Allotoca goslinei Chapalichthys pardalis Ameca splendens Chapalichthys peraticus Ataeniobius toweri Girardinichthys multiradiatus Characodon audax Goodea atripinnis Characodon lateralis Goodea gracilis Girardinichthys viviparus Ilyodon cortesae Hubbsina turneri Ilyodon whitei Ilyodon furcidens Xenotaenia resolanae Neoophorus regalis Xenotoca doadrioi Neotoca bilineata Xenotoca lyonsi Skiffia francesae Xenotoca variata Skiffia lermae Zoogoneticus purhepechus Skiffia multipunctata Xenoophorus captivus Xenotoca eiseni Xenotoca melanosoma Zoogoneticus quitzeoensis Zoogoneticus tequila Dear Undersecretary of Management for Environmental Protection! My name ist Michael Koeck, I am curator in the Haus des Meeres Zoo in
    [Show full text]
  • Issue Full File
    Ege Journal of Fisheries and Aquatic Sciences Scope of the Journal References Ege Journal of Fisheries and Aquatic Sciences (EgeJFAS) is an open access, Full references should be provided in accordance with the style of EgeJFAS. international, peer-reviewed journal publishing original research articles, short The in-text citation to the references should be formatted as name(s) of the communications, technical notes, reports and reviews in all aspects of fisheries author(s) and the year of publication: (Kocataş, 1978 or Geldiay and Ergen, and aquatic sciences including biology, ecology, biogeography, inland, marine 1972-in Turkish article ‘Geldiay ve Ergen, 1972). For citations with more than and crustacean aquaculture, fish nutrition, disease and treatment, capture two authors, only the first author’s name should be given, followed by “et al.” –in fisheries, fishing technology, management and economics, seafood Turkish article ‘vd.’- and the date. If the cited reference is the subject of a processing, chemistry, microbiology, algal biotechnology, protection of sentence, only the date should be given in parentheses, i.e., Kocataş (1978), organisms living in marine, brackish and freshwater habitats, pollution studies. Geldiay et al. (1971). References should be listed alphabetically at the end of the text, and journal names should be written in full and in italics. Ege Journal of Fisheries and Aquatic Sciences (EgeJFAS) is published quarterly by Ege University Faculty of Fisheries since 1984. The citation of journals, books, multi-author books and articles published online should conform to the following examples: Submission of Manuscripts Journal Articles Please read these instructions carefully and follow them strictly to ensure that Öztürk, B., 2010.
    [Show full text]
  • Conservation Status of Imperiled North American Freshwater And
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Distribución Gratuita. Prohibida Su Venta Distribución Gratuita
    DISTRIBUCIÓN GRATUITA. PROHIBIDA SU VENTA DISTRIBUCIÓN GRATUITA. PROHIBIDA SU VENTA DISTRIBUCIÓN GRATUITA. PROHIBIDA SU VENTA Primera edición, 2017 OBRA COMPLETA: ibsn 978-607-8328-92-5 VOLUMEN II: ibsn 978-607-8328-94-9 Coordinación y seguimiento general: Corrección de estilo: Andrea Cruz Angón1 Juana Moreno Armendáriz Antonio Ordorica Hermosillo2 Jessica Valero Padilla Diseño y formación: Erika Daniela Melgarejo1 Claudia Verónica Gómez Hernández Cuidado de la edición: Claudia Verónica Gómez Hernández Jessica Valero Padilla Erika Daniela Melgarejo1 Karla Carolina Nájera Cordero1 Jorge Cruz Medina1 Cartografía: Enrique Plascencia Hernández2 D.R. © 2017 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad Liga Periférico – Insurgentes Sur 4903 Parques del Pedregal, Tlalpan, C.P. 14010 México,Ciudad de México. <http://www.conabio. gob.mx> D.R. © 2017 Secretaría de Medio Ambiente y Desarrollo Territorial Av. Circunvalación Agustín Yañez 2343, colonia Moderna, C.P. 44130, Guadalajara, Jalisco. <http://semadet.jalisco.gob.mx/> 1conabio, Comisión Nacional para el Conocimiento y Uso de la Biodiverdad,2 semadet, Secretaría de Medio Ambiente y Desarrollo Territorial Salvo en aquellas contribuciones que reflejan el trabajo y quehacer de las instituciones y organizaciones parti- cipantes, el contenido de las contribuciones es de exclusiva responsabilidad de los autores. Impreso en México/Printed in Mexico DISTRIBUCIÓN GRATUITA. PROHIBIDA SU VENTA DISTRIBUCIÓN GRATUITA. PROHIBIDA SU VENTA DISTRIBUCIÓN GRATUITA. PROHIBIDA SU VENTA Mensaje Una de cada tres especies de mamíferos y una de cada dos especies de aves de la fauna total de México se encuentran en Jalisco. Lo cual, siendo nuestro país el cuarto a escala mundial en biodiversidad, representa un gran compromiso en el ámbito medioambiental.
    [Show full text]
  • Six Distinctive Cyprinid Fish Species Referred to Dionda Inhabiting Segments of the Tam Pico Embayment Drainage of Mexico
    a i? SIX DISTINCTIVE CYPRINID FISH SPECIES REFERRED TO DIONDA INHABITING SEGMENTS OF THE TAM PICO EMBAYMENT DRAINAGE OF MEXICO Carl L. Hubbs and Robert Rush Miller Life colors of freshly caught adults of three Mexican species of Dionda, photographed under water by Robert Rush Miller. Upper pair, D. catostomops (above) and D. rasconis, from Rio Tamasopo near Tamasopo, 7 February 1974. Lower pair, D. dichroma: male (above) and female, from Rio Verde near Rioverde, 13 February 1970. Six distinctive Cyprinid fish species referred to Dionda inhabiting segments of the Tampico Embayment drainage of Mexico Carl L. Hubbs and Robert Rush Miller SAN DIEGO SOC. NAT. HIST. TRANS. 18(17):267-336, 2 SEPTEMBER 1977 ABSTRACT.—Six sharply differentiated species of Cyprinidae that seem to be referable to the genus Dionda inhabit the drainage basin of the Rio Panuco of eastern Mexico. One also occupies five minor stream systems intervening between Rio Panuco and the abrupt physio- graphic and faunal break north of Veracruz. These species contribute to the diverse and highly endemic character of the moderately rich fish fauna of the Rio Panuco stream complex. Three of the six species have been named recently, and two, D. catostomops and D. dichroma, are described as new. The six species constitute three allopatric, physiographically separated pairs. RESUMEN.—Seis especies bien diferenciadas de Cyprinidae, que se pueden referir al genero Dionda, habitan la cuenca del Rio Pfinuco en el este de Mexico. Una de las especies ocupa ademas cinco cuencas pequelias situadas entre el Rio Panuco y la fractura fisiografica y faunistica que se presenta en el norte de Veracruz.
    [Show full text]