Six Distinctive Cyprinid Fish Species Referred to Dionda Inhabiting Segments of the Tam Pico Embayment Drainage of Mexico
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
The Etyfish Project © Christopher Scharpf and Kenneth J
CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a -
Conserving Endangered Mexican Goodeid Livebearers: the Critical Role of the Aquarium Hobbyist
Conserving Endangered Mexican Goodeid Livebearers: The Critical Role of the Aquarium Hobbyist Ameca splendens Dr. John Lyons University of Wisconsin Zoological Museum Outline 1) Who are the Goodeids? - Taxonomic definitions - Evolutionary relationships 2) Mexican Goodeid biology - Life history - Habitats 3) Mexican Goodeid status and conservation - Impacts and threats - Some dire statistics 4) How YOU, the hobbyist, can help - Captive maintenance - Involvement in ALA and GWG Lago Zirahuén, Michoacán, Mexico 1) Who are the Goodeids? A family of fishes (Goodeidae; aka “Splitfins”) in the order Cyprinodontiformes, with two subfamilies: Goodeinae Empetrichthyinae ~ 40 species (~ 87 ESU’s) 4 species (8 ESU’s) Central Mexico Southwestern USA Livebearers Egg Layers Skiffia lermae Crenichthys baileyi Current Goodeid Distribution Family ~ 16.5 million years old; subfamilies split 5-10 million years ago Durango Puerto Vallarta Mexico City In Mexico, a generalized Goodeid ancestor Fossilized Tapatia occidentalis, Barranca de Santa Rosa, Jalisco; from Pliocene Epoch, at least 2.6 million years ago gave rise to a rich modern fauna Goodeid Evolutionary Relationships Cyprinodontiformes Goodeidae (Tooth Carps): Profundulidae Family Tree Cyprinodontidae1 Fundulidae Poeciliidae Valenciidae Cyprinodontidae2 Are Goodeids and Rivulidae Poeciliids merely Nothobranchidae livebearing killies? Aplocheilidae (or vice versa)? 2) Mexican Goodeid Biology - Small (maximum size 1.5” to 7”; most ~ 2.5”) - Short-lived (mature in 1 year, max age 3-5 years) - Livebearers -
Butterfly Splitfin (Ameca Splendens) Ecological Risk Screening Summary
Butterfly Splitfin (Ameca splendens) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2013 Revised, January 2018 Web Version, 8/27/2018 Photo: Ameca splendens. Source: Getty Images. Available: https://rmpbs.pbslearningmedia.org/resource/128605480-endangered-species/butterfly-goodeid- ameca-splendens/#.Wld1X7enGUk. (January 2018). 1 1 Native Range and Status in the United States Native Range From Fuller (2018): “This species is confined to a very small area, the Río Ameca basin, on the Pacific Slope of western Mexico (Miller and Fitzsimons 1971).” From Goodeid Working Group (2018): “This species comes from the Pacific Slope and inhabits the Río Ameca and its tributary, the Río Teuchitlán in Jalisco. More habitats in the ichthyological [sic] closely connected Sayula valley have been detected quite recently.” Status in the United States From Fuller (2018): “Reported from Nevada. Records are more than 25 years old and the current status is not known to us. One individual was taken in November 1981 (museum specimen) and another in August 1983 from Rodgers Spring, Nevada (Courtenay and Deacon 1983, Deacon and Williams 1984). Others were seen and not collected (Courtenay, personal communication).” From Goodeid Working Group (2018): “Miller reported, that on 6 May 1982, this species was collected in Roger's Spring, Clark County, Nevada, (pers. comm. to Miller by P.J. Unmack) where it is now extirpated. It had been exposed there with several other exotic species (Deacon [and Williams] 1984).” From FAO (2018): “Status of the introduced species in the wild: Probably not established.” From Froese and Pauly (2018): “Raised commercially in Florida, U.S.A.” Means of Introductions in the United States From Fuller (2018): “Probably an aquarium release.” Remarks From Fuller (2018): “Synonyms and Other Names: butterfly goodeid.” 2 From Goodeid Working Group (2018): “Some hybridisation attempts have been undertaken with the Butterfly Splitfin to solve its relationship. -
Two New Species of the Genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from Central-Western Mexico
Zootaxa 4189 (1): 081–098 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4189.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:9BF8660A-4817-4EEA-853F-5856D1B8F6FA Two new species of the genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from central-western Mexico OMAR DOMÍNGUEZ-DOMÍNGUEZ1,3, DULCE MARÍA BERNAL-ZUÑIGA1 & KYLE R. PILLER2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “R” planta baja, Ciudad Universitaria, Morelia, Michoacán, México 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA 3Corresponding author. E-mail: [email protected] Abstract The subfamily Goodeinae (Goodeidae) is one of the most representative and well-studied group of fishes from central Mexico, with around 18 genera and 40 species. Recent phylogenetic studies have documented a high degree of genetic diversity and divergences among populations, suggesting that the diversity of the group may be underestimated. The spe- cies Xenotoca eiseni has had several taxonomic changes since its description. Xenotoca eiseni is considered a widespread species along the Central Pacific Coastal drainages of Mexico, inhabiting six independent drainages. Recent molecular phylogenetic studies suggest that X. eiseni is a species complex, represented by at least three independent evolutionary lineages. We carried out a meristic and morphometric study in order to evaluate the morphological differences among these genetically divergent populations and describe two new species. The new species of goodeines, Xenotoca doadrioi and X. lyonsi, are described from the Etzatlan endorheic drainage and upper Coahuayana basin respectively. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes
Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes by Andy Joseph Turko A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Andy Joseph Turko, October 2018 ABSTRACT COPING WITH LIFE ON LAND: PHYSIOLOGICAL, BIOCHEMICAL, AND STRUCTURAL MECHANISMS TO ENHANCE FUNCTION IN AMPHIBIOUS FISHES Andy Joseph Turko Advisor: University of Guelph, 2018 Dr. Patricia A. Wright The invasion of land by fishes was one of the most dramatic transitions in the evolutionary history of vertebrates. In this thesis, I investigated how amphibious fishes cope with increased effective gravity and the inability to feed while out of water. In response to increased body weight on land (7 d), the gill skeleton of Kryptolebias marmoratus became stiffer, and I found increased abundance of many proteins typically associated with bone and cartilage growth in mammals. Conversely, there was no change in gill stiffness in the primitive ray-finned fish Polypterus senegalus after one week out of water, but after eight months the arches were significantly shorter and smaller. A similar pattern of gill reduction occurred during the tetrapod invasion of land, and my results suggest that genetic assimilation of gill plasticity could be an underlying mechanism. I also found proliferation of a gill inter-lamellar cell mass in P. senegalus out of water (7 d) that resembled gill remodelling in several other fishes, suggesting this may be an ancestral actinopterygian trait. Next, I tested the function of a calcified sheath that I discovered surrounding the gill filaments of >100 species of killifishes and some other percomorphs. -
Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Northern Iowa Proceedings of the Iowa Academy of Science Volume 69 | Annual Issue Article 87 1962 Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L. Turner Wartburg College Gullermo Mendoza Grinnell College Rebecca Reiter Grinnell College Copyright © Copyright 1962 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Turner, Clarence L.; Mendoza, Gullermo; and Reiter, Rebecca (1962) "Development and Comparative Morphology of the Gonopodium of Goodeid Fishes," Proceedings of the Iowa Academy of Science: Vol. 69: No. 1 , Article 87. Available at: https://scholarworks.uni.edu/pias/vol69/iss1/87 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Turner et al.: Development and Comparative Morphology of the Gonopodium of Goode 1962] SELFINC OF H. NANA 571 Schiller, E. L. 1959c. Experimental studies on morphological variation in the cestode genus Hymenolepis. III. X-irradiation as a mechanism for facilitating analyses in H.. nana. Exp. Par. 8-427-470. Voge, M., and Heyneman, D. 1957. Development of Hymenolepis nana and Ii ymcnolepis dimi1111ta ( Cestoda: Hymenolepididae) in the inter mediate host Tribolium confusum. University of California Publications in Zoology .59:549-579. Voge, M., and Heyneman, D. 1958. Effect of high temperature on the larval development of Hymenolepis nana and Hymenolepis diminuta ( Cestoda: Cyclophyllidea). -
2016-01 Catalog of Fishes. Online Version: (2016): 72 Records
2016-01 Catalog of Fishes. Online Version: (2016): 72 records http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Genera and Species of Goodeidae W. N. Eschmeyer, R. Fricke, R. van der Laan (eds) albivallis, Crenichthys baileyi Williams [J. E.] & Wilde [G. R.] 1981:489, Fig. 7 [Southwestern Naturalist v. 25 (no. 4); ref. 8991] Preston Big Spring, White Pine County, Nevada, U.S.A. Holotype: UMMZ 203332. Paratypes: UMMZ 203333 (1, allotype); UNLV F-952 (28). •Synonym of Crenichthys baileyi (Gilbert 1893), but a valid subspecies albivallis Williams & Wilde 1981 as described -- (Fuller et al. 1999:322 [ref. 25838], Lazara 2001:71 [ref. 25711], Scoppettone & Rissler 2002:82 [ref. 25956], Scharpf 2007:27 [ref. 30398], Minckley & Marsh 2009:243 [ref. 31114], Page & Burr 2011:452 [ref. 31215]). Current status: Synonym of Crenichthys baileyi (Gilbert 1893). Goodeidae: Empetrichthyinae. Distribution: Springs in White Pine County, Nevada, U.S.A. [subspecies Albivallis]. Habitat: freshwater. atripinnis, Goodea Jordan [D. S.] 1880:299 [Proceedings of the United States National Museum v. 2 (no. 94); ref. 2382] Leon, Guanajuato, Mexico. Lectotype: USNM 23137. Paralectotypes: USNM 23137 (many). Lectotype established (as figured specimen) in caption to Pl. 114, p. 3257 in Jordan & Evermann 1900 [ref. 2446] if figured specimen is identifiable. •Valid as Goodea atripinnis Jordan 1880 -- (Espinosa Pérez et al. 1993:41 [ref. 22290], Nelson et al. 2004:107 [ref. 27807], Miller 2006:281 [ref. 28615], Scharpf 2007:28 [ref. 30398], Miranda et al. 2010:185 [ref. 31345], Page et al. 2013:104 [ref. 32708]). Current status: Valid as Goodea atripinnis Jordan 1880. Goodeidae: Goodeinae. -
Part B: for Private and Commercial Use
RESTRICTED ANIMAL LIST (PART B) §4-71-6.5 PART B: FOR PRIVATE AND COMMERCIAL USE SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Haplotaxida FAMILY Lumbricidae Lumbricus rubellus earthworm, red PHYLUM Arthropoda CLASS Crustacea ORDER Amphipoda FAMILY Gammaridae Gammarus (all species in genus) crustacean, freshwater; scud FAMILY Hyalellidae Hyalella azteca shrimps, imps (amphipod) ORDER Cladocera FAMILY Sididae Diaphanosoma (all species in genus) flea, water ORDER Cyclopoida FAMILY Cyclopidae Cyclops (all species in genus) copepod, freshwater ORDER Decapoda FAMILY Alpheidae Alpheus brevicristatus shrimp, Japan (pistol) FAMILY Palinuridae Panulirus gracilis lobster, green spiny Panulirus (all species in genus lobster, spiny except Panulirus argus, P. longipes femoristriga, P. pencillatus) FAMILY Pandalidae Pandalus platyceros shrimp, giant (prawn) FAMILY Penaeidae Penaeus indicus shrimp, penaeid 49 RESTRICTED ANIMAL LIST (Part B) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Penaeus californiensis shrimp, penaeid Penaeus japonicus shrimp, wheel (ginger) Penaeus monodon shrimp, jumbo tiger Penaeus orientalis (chinensis) shrimp, penaeid Penaeus plebjius shrimp, penaeid Penaeus schmitti shrimp, penaeid Penaeus semisulcatus shrimp, penaeid Penaeus setiferus shrimp, white Penaeus stylirostris shrimp, penaeid Penaeus vannamei shrimp, penaeid ORDER Isopoda FAMILY Asellidae Asellus (all species in genus) crustacean, freshwater ORDER Podocopina FAMILY Cyprididae Cypris (all species in genus) ostracod, freshwater CLASS Insecta -
Conservation of Freshwater Live-Bearing Fishes: Development
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 7-6-2018 Conservation of Freshwater Live-bearing Fishes: Development of Germplasm Repositories for Goodeids Yue Liu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Aquaculture and Fisheries Commons, Biotechnology Commons, and the Cell Biology Commons Recommended Citation Liu, Yue, "Conservation of Freshwater Live-bearing Fishes: Development of Germplasm Repositories for Goodeids" (2018). LSU Doctoral Dissertations. 4675. https://digitalcommons.lsu.edu/gradschool_dissertations/4675 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CONSERVATION OF FRESHWATER LIVE-BEARING FISHES: DEVELOPMENT OF GERMPLASM REPOSITORIES FOR GOODEIDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Renewable Natural Resources by Yue Liu B.S., Jiujiang University, 2010 M.Agric., Shanghai Ocean University, 2013 August 2018 For my maternal grandparents, Wenzhi Zhang and Xianrang Zhang, who raised me up in my childhood For my parents, who support me with all their love For Youjin and Jenna, who are the meaning of my life ii Acknowledgments I want to thank my advisor Dr. Terrence Tiersch, who has been the most important person in my PhD study. -
Karyological Analysis of Two Endemic Tooth-Carps, Aphanius
TurkJZool 31(2007)69-74 ©TÜB‹TAK KaryologicalAnalysisofTwoEndemicTooth-Carps, Aphaniuspersicus and Aphaniussophiae (Pisces:Cyprinodontidae),fromSouthwestIran H.R.ESMAEILI*,Z.PIRAVARandA.H.SHIVA DepartmentofBiology,CollegeofSciences,ShirazUniversity,Shiraz-IRAN Received:16.01.2006 Abstract: Thekaryotypesof2endemictooth-carpsofIran,Aphaniuspersicus (Jenkis,1910)andAphaniussophiae (Heckel,1849), wereinvestigatedbyexaminingmetaphasechromosomesspreadsobtainedfromgillepithelialandkidneycells.Thediploid chromosomenumbersofbothspecieswere2n=48.Thekaryotypesconsistedof11pairsofsubmetacentricand13pairsof subtelocentricchromosomesin A.persicus and14submetacentricand10subtelocentricchromosomesin A.sophiae .Thearm numbersin A.persicus and A.sophiae wereNF=70andNF=76,respectively.Sexchromosomeswerecytologically indistinguishableinbothtooth-carps. KeyWords: Aphaniuspersicus,Aphaniussophiae,karyotype,chromosome,idiogram Introduction cytogeneticstudiesmayprovideacomplementarydata TheCyprinodontidaearerepresentedinIranby6 sourceformoreaccurateandpreciseidentificationof species(Coad,1988,1995,1996;Scheel,1990): thesefishes.Applicationofthistypeofstudyhasreceived Aphaniusginaonis (Holly,1929); A.mento (Heckel, considerableattentioninrecentyears(Ozouf-Costazand 1843); A.dispar (Rüppell,1828); A.vladykovi Coad, Foresti,1992;Galettietal.,2000).Fishchromosome 1988; A.sophiae (Heckel,1849);and A.persicus datahavegreatimportanceinstudiesconcerning (Jenkins,1910).Theyareverycolorfulfishandcanbe evolutionarysystematics,aquaculture,mutagenesis, keptinaquaria;hence,theymaybecomepartofthe