Karyological Analysis of Two Endemic Tooth-Carps, Aphanius

Total Page:16

File Type:pdf, Size:1020Kb

Karyological Analysis of Two Endemic Tooth-Carps, Aphanius TurkJZool 31(2007)69-74 ©TÜB‹TAK KaryologicalAnalysisofTwoEndemicTooth-Carps, Aphaniuspersicus and Aphaniussophiae (Pisces:Cyprinodontidae),fromSouthwestIran H.R.ESMAEILI*,Z.PIRAVARandA.H.SHIVA DepartmentofBiology,CollegeofSciences,ShirazUniversity,Shiraz-IRAN Received:16.01.2006 Abstract: Thekaryotypesof2endemictooth-carpsofIran,Aphaniuspersicus (Jenkis,1910)andAphaniussophiae (Heckel,1849), wereinvestigatedbyexaminingmetaphasechromosomesspreadsobtainedfromgillepithelialandkidneycells.Thediploid chromosomenumbersofbothspecieswere2n=48.Thekaryotypesconsistedof11pairsofsubmetacentricand13pairsof subtelocentricchromosomesin A.persicus and14submetacentricand10subtelocentricchromosomesin A.sophiae .Thearm numbersin A.persicus and A.sophiae wereNF=70andNF=76,respectively.Sexchromosomeswerecytologically indistinguishableinbothtooth-carps. KeyWords: Aphaniuspersicus,Aphaniussophiae,karyotype,chromosome,idiogram Introduction cytogeneticstudiesmayprovideacomplementarydata TheCyprinodontidaearerepresentedinIranby6 sourceformoreaccurateandpreciseidentificationof species(Coad,1988,1995,1996;Scheel,1990): thesefishes.Applicationofthistypeofstudyhasreceived Aphaniusginaonis (Holly,1929); A.mento (Heckel, considerableattentioninrecentyears(Ozouf-Costazand 1843); A.dispar (Rüppell,1828); A.vladykovi Coad, Foresti,1992;Galettietal.,2000).Fishchromosome 1988; A.sophiae (Heckel,1849);and A.persicus datahavegreatimportanceinstudiesconcerning (Jenkins,1910).Theyareverycolorfulfishandcanbe evolutionarysystematics,aquaculture,mutagenesis, keptinaquaria;hence,theymaybecomepartofthe geneticcontrolandtherapidproductionofinbredlines aquariumtrade.Threespeciesofthosetooth-carpsare (Al-Sabti,1991).Theincreasingimportanceof foundinFarsprovince,SouthwestIran.Theyare A. chromosomalstudiesonfishandlackofdataon dispar, A.sophiae and A.persicus . A.dispar isa karyotypeofIranianfishencouragedustoperformthis euryhalinefishthatapparentlyprefersbrackishwatersin firstcytogeneticalanalysis(i.e.diploidchromosome Farsprovince. A.persicus orPersiantooth-carpisan numbers,descriptionofkaryotypes,andidiograms)of2 endemicspeciesfoundintheLakeMaharlubasin.This endemictooth-carps, A.persicus and A.sophiae ,from lakeislocatedinabasininShirazvalleyatanaltitudeof SouthwestIran. about1460m.Thisisachloridelakeandfishless.The fishisfoundinitsincomingstreamsandsprings. A. Materialsandmethods sophiae isfoundintheendorheicKorRiverbasinofthis province.Tooth-carpsofIranhavebeenstudiedmainly A.persicus specimenswerecollectedfromtheBarm- ′ ′ basedontheirmorphologybuttheirmorphologyis e-Shoorspringstreamsystem(29°27 N-52°42 E,alt. conservativeand,duetomorphologicalsimilarities,their 1465m)intheLakeMaharlubasin,andthoseof A. distinctiononthisbasisisnotalwayspossible(Esmaeili sophiae werecollectedfromGhadamgahspringstream ′ ′ andShiva,2006).Theirbiologyisalsounknownand systeminKorbasin(30°15 N-52°25 E,alt.1660m)in thereislittleinformationonthesespecies.The Farsprovince,SouthwestIran,usingadipnet.Thefishes applicationofnon-morphologicalmethodssuchas weretransportedlivetothelaboratory,andkeptina *E-mail:[email protected] 69 KaryologicalAnalysisofTwoEndemicTooth-Carps, Aphaniuspersicus andAphaniussophiae (Pisces:Cyprinodontidae),fromSouthwestIran well-aeratedaquariumat20-25°Cbeforeanalysis.For from3.29to5.95µmbasedonthemeanvaluesofthe karyologicalstudiesthemodifiedmethodofUwa(1986) measurementsofbestmitoticmetaphases.Theresults wasused.Colchicinesolutionwaspreparedwith0.005g arepresentedinTable2. in20mlofphysiologicalserum.Thefishwereinjected Inthecaseof A.sophiae ,thechromosomenumber intraperitoneallywith0.02mlofcolchicinepergramof was2n=48,comprising14submetacentricand10 bodyweightusinganinsulinsyringe,andthenwereput subtelocentricchromosomes(Figure2andTable1). backintheaquariumfor4-5h.Thegillfilamentsand Differentchromosomenumbersinatotalof12.5%of kidneysofthosespecimenswerethenremovedand themetaphaseimageswererecordedrangingfrom47to placedinhypotonic0.36%KClsolutionfor45minat 50(Table1).Thetotallengthofchromosomesvaried roomtemperature(25°C).Thereafter,thesolutions from4.21to7.15µm,beinglongerthan A.persicus werecentrifugedfor10minat1000rpm,adding2-3 chromosomes.Themeasurementsusedtoclassify dropsoffreshandcoldCarnoy’sfixative(1:3,acetic chromosomesandidiogramsaregiveninTable2and acid:methanol)beforecentrifugation.Thesupernatants Figure2. werethendiscardedand5mloffreshandcoldfixative wasaddedtothesediments,whichweremixed Thearmnumbersin A.persicus andA.sophiae were thoroughlyandthenleftfor1h.Thefixationand NF=70andNF=76,respectively.Sexchromosomes centrifugationstageswererepeatedtwice.The werecytologicallyindistinguishableinbothtooth-carps. suspensionswerethentrickledontocoldslides.These slideswerestainedwith10%Giemsafor20min. Discussion Chromosomeswereobserved,selectedandphotographed byOlympuslightmicroscopewithacameramountedon Accordingtoourobservations,thediploid it.Karyotypeswerepreparedbyarrangingchromosomes chromosomenumbersofboth Aphaniuspersicus andA. inpairsbysize.Foreachchromosome,theaverage sophiae were2n=48andthisisinagreementwiththe lengthsoftheshortandlongarmsandarmratio(the chromosomenumberofotherspeciesofthisgenus. ratioofthelongarmlengthtotheshortarmlengthof Klinkhardtetal.(1995)andArkhipchuk(1999)reported chromosomes)werecalculatedandthenthe thechromosomenumberofA.sophiae tobe2n=48and chromosomeswereclassifiedaccordingtothecriteria thatof A.mento tobe2n=48(Vasil'ev,1980; givenbyLevanetal.(1964).Fundamentalnumber(NF) Klinkhardtetal.,1995;Arkhipchuk,1999).The wasexpressedastwicethenumberofatelocentric chromosomenumbersof A.dispar , A.asquamatus,A. chromosomesplusthenumberoftelocentric iberus andA.fasciatus werealso2n=48(Karbe,1961; chromosomes.TheidiogramswerepreparedinExcel GyldenholmandScheel,1974;Arkhipchuk,1999).Itcan 2003software(Microsoft). beconcludedthatthechromosomenumberinthisgenus isconserved.Thenumberofchromosomesinthese tooth-carpsisalsosimilartothatofotherspeciesof Results Cyprinodontidaesuchas Orestiasagassizii,Cyprinodon In82.5%ofthe57observedmetaphaseimages bovines and Cyprinodonmacularius (Klinkhardtetal., obtainedfromthekidneyandgillepithelialcellsof5 A. 1995;Arkhipchuk,1999).Intheorder persicus specimens,thediploidchromosomenumberwas Cyrinodontiformes,themostcommonfishspeciesthat 2n=48.Thetypicalkaryotypeconsistedof11pairsof havesofarbeencytologicallyinvestigated,suchas submetacentricand13pairsofsubtelocentric Gambusiaholbrooki,G.affinis,G.hurtadoi and chromosomes(Figure1).Differentchromosome Girardinusmetallicus;Poecilialatipinna (Poecillidae); numbersinatotalof17.5%ofthemetaphaseimages Fundulusmajalis (Fundulidae); Allotocadiazi,Ameca wererecordedrangingfrom29to46(Table1).There splendens,Goodeaatripinnis,Goodeagracilis,Hubbsina werenoadditionsinthesenumbers(>48).These turneri,Hyodonfurcidenes,Skiffiabilineata,Xenotaenia variationsordeviationsfromvalueswereprobably resolanae,Xenotocaeiseni,X.melanosoma andX.variata causedbylossesduringpreparationorotherartifacts. (Goodeidae),havethediploidchromosomenumber2n= Relativelysmallchromosomeswereobservedin A. 48(Solaetal.,1990;Klinkhardtetal.,1995; persicus.Thesize(totallength)ofchromosomesvaried Arkhipchuk,1999).Yetinafewspeciesof 70 H.R.ESMAEILI,Z.PIRAVAR,A.H.SHIVA Aphaniuspersicus 0.05mm A 0.01mm B 2 Aphaniuspersicus 1 µ 0 -1 -2 -3 -4 C -5 -6 Figure1. Metaphasespreadfromgillepithelialcell(A),giemsastainedkaryotypes(B)andhaploid idiogram(C)ofA.persicus. Table1.Chromosomecomplementsof A.persicus andA.sophiae. Species No.ofmetaphaseplates No.ofchromosomes Frequency Percentage 48 47 82.5 A.persicus 57 46 5 9 31 3 5 29 2 3.5 48 35 87.5 A.sophiae 40 47 3 7.5 19 1 2.5 50 1 2.5 71 KaryologicalAnalysisofTwoEndemicTooth-Carps, Aphaniuspersicus andAphaniussophiae (Pisces:Cyprinodontidae),fromSouthwestIran Aphaniussophiae 0.01mm A Aphaniussophiae B 0.01mm 4 Aphaniussophiae 2 µ 0 -2 -4 -6 -8 C -10 Figure2. Metaphasespreadfromgillepithelialcell(A),giemsastainedkaryotypes(B)andhaploididiogram (C)ofA.sophiae. Cyprinodontiformessuchas Aphyosemionviride and ofallexistingfishformshavebeenderived(Kuda-Bukhsh Fundulopanchaxsjostedti (Aplocheilidae),and etal.,1986)buttheissuestillseemsunresolved.The AllodontichthyshubbsiandAmecasplendens (Goodeidae) discoveryof48ratherlargeacrocentricchromosomesin thediploidchromosomenumberwasreportedtovary thePacifichagfish, Eptatretusstoutii,belongingtothe from2n=26to2n=42(Klinkhardtetal.,1995; orderMyxiniformes(Taylor,1967;Vasil'ev,1980),and Arkhipchuk,1999).Itcouldbesuggestedthatthediploid theoccurrenceof48rodsinthemajorityoffishes chromosomenumber2n=48isthemodalnumberin studiedpriorto1967ledtotheideathattheprimitive cyprinodontfishes.Intheinterpretationofkaryotypic karyotypeofancestralvertebratefreshlyevolvedfrom evolutionitisoftenassumedthattheprimitivefish chrodatemightconsistof48rods.Therefore,mostof karyotypeconsistsof48rodsfromwhichthekaryotypes thesubsequentresearchersassumedthekaryotypic 72 H.R.ESMAEILI,Z.PIRAVAR,A.H.SHIVA Table2. Chromosomemeasurements(inµm)andclassificationof A.persicuseandA.sophiae chromosomes(Ch.No.:Chromosomenumber;LA: Longarm;SA:Shortarm;TL:Totallength;AR:Armratio;CT:Chromosometype;Sm:Submetacentric;St:Subtelocentric). A.persicus A.sophiae Ch.No. LA SA TL AR CT Ch.No. LA SA TL AR CT 1 4.63 1.17 5.80 3.97 St 1 5.65 1.50 7.15 3.77 St 2 4.96 0.99 5.95 5.05 St 2 5.05 1.54 6.59 3.29 St 3 4.54 1.12 5.66 4.07 St 3 5 1.72 6.72 2.91 Sm 4 4.07 0.90 4.97 4.55 St 4 4.86 1.56 6.42 3.12 St 5 3.92 0.89 4.81 4.40 St 5 4.53 1.52 6.05 2.99 Sm 6 3.58 0.84 4.42 4.26 St 6 4.23 1.67 5.9 2.53 Sm 7 3.84 0.89 4.72 4.33 St 7 4.98 1.36 6.34 3.65 St 8 4.51 0.96 4.50 4.58 St 8 4.68
Recommended publications
  • Morphological and Genetic Comparative
    Revista Mexicana de Biodiversidad 79: 373- 383, 2008 Morphological and genetic comparative analyses of populations of Zoogoneticus quitzeoensis (Cyprinodontiformes:Goodeidae) from Central Mexico, with description of a new species Análisis comparativo morfológico y genético de diferentes poblaciones de Zoogoneticus quitzeoensis (Cyprinodontiformes:Goodeidae) del Centro de México, con la descripción de una especie nueva Domínguez-Domínguez Omar1*, Pérez-Rodríguez Rodolfo1 and Doadrio Ignacio2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Fuente de las Rosas 65, Fraccionamiento Fuentes de Morelia, 58088 Morelia, Michoacán, México 2Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, España. *Correspondent: [email protected] Abstract. A genetic and morphometric study of populations of Zoogoneticus quitzeoensis (Bean, 1898) from the Lerma and Ameca basins and Cuitzeo, Zacapu and Chapala Lakes in Central Mexico was conducted. For the genetic analysis, 7 populations were sampled and 2 monophyletic groups were identifi ed with a genetic difference of DHKY= 3.4% (3-3.8%), one being the populations from the lower Lerma basin, Ameca and Chapala Lake, and the other populations from Zacapu and Cuitzeo Lakes. For the morphometric analysis, 4 populations were sampled and 2 morphotypes identifi ed, 1 from La Luz Spring in the lower Lerma basin and the other from Zacapu and Cuitzeo Lakes drainages. Using these 2 sources of evidence, the population from La Luz is regarded as a new species Zoogoneticus purhepechus sp. nov. _The new species differs from its sister species Zoogoneticus quitzeoensis_ in having a shorter preorbital distance (Prol/SL x = 0.056, SD = 0.01), longer dorsal fi n base length (DFL/SL x = 0.18, SD = 0.03) and 13-14 rays in the dorsal fi n.
    [Show full text]
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • The Etyfish Project © Christopher Scharpf and Kenneth J
    CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a
    [Show full text]
  • Butterfly Splitfin (Ameca Splendens) Ecological Risk Screening Summary
    Butterfly Splitfin (Ameca splendens) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2013 Revised, January 2018 Web Version, 8/27/2018 Photo: Ameca splendens. Source: Getty Images. Available: https://rmpbs.pbslearningmedia.org/resource/128605480-endangered-species/butterfly-goodeid- ameca-splendens/#.Wld1X7enGUk. (January 2018). 1 1 Native Range and Status in the United States Native Range From Fuller (2018): “This species is confined to a very small area, the Río Ameca basin, on the Pacific Slope of western Mexico (Miller and Fitzsimons 1971).” From Goodeid Working Group (2018): “This species comes from the Pacific Slope and inhabits the Río Ameca and its tributary, the Río Teuchitlán in Jalisco. More habitats in the ichthyological [sic] closely connected Sayula valley have been detected quite recently.” Status in the United States From Fuller (2018): “Reported from Nevada. Records are more than 25 years old and the current status is not known to us. One individual was taken in November 1981 (museum specimen) and another in August 1983 from Rodgers Spring, Nevada (Courtenay and Deacon 1983, Deacon and Williams 1984). Others were seen and not collected (Courtenay, personal communication).” From Goodeid Working Group (2018): “Miller reported, that on 6 May 1982, this species was collected in Roger's Spring, Clark County, Nevada, (pers. comm. to Miller by P.J. Unmack) where it is now extirpated. It had been exposed there with several other exotic species (Deacon [and Williams] 1984).” From FAO (2018): “Status of the introduced species in the wild: Probably not established.” From Froese and Pauly (2018): “Raised commercially in Florida, U.S.A.” Means of Introductions in the United States From Fuller (2018): “Probably an aquarium release.” Remarks From Fuller (2018): “Synonyms and Other Names: butterfly goodeid.” 2 From Goodeid Working Group (2018): “Some hybridisation attempts have been undertaken with the Butterfly Splitfin to solve its relationship.
    [Show full text]
  • Phylogeny and Taxonomy of the Genus Ilyodon Eigenmann, 1907 (Teleostei: Goodeidae), Based on Mitochondrial and Nuclear DNA Sequences
    Accepted: 19 March 2017 DOI: 10.1111/jzs.12175 ORIGINAL ARTICLE Phylogeny and taxonomy of the genus Ilyodon Eigenmann, 1907 (Teleostei: Goodeidae), based on mitochondrial and nuclear DNA sequences Rosa Gabriela Beltran-L opez 1,2 | Omar Domınguez-Domınguez3 | Jose Antonio Guerrero4 | Diushi Keri Corona-Santiago5 | Humberto Mejıa-Mojica2 | Ignacio Doadrio5 1Programa Institucional de Doctorado en Ciencias Biologicas, Facultad de Biologıa, Abstract Universidad Michoacana de San Nicolas de Taxonomy of the live-bearing fish of the genus Ilyodon Eigenmann, 1907 (Goodei- Hidalgo, Morelia, Michoacan, Mexico dae), in Mexico, is controversial, with morphology and mitochondrial genetic analy- 2Laboratorio de Ictiologıa, Centro de Investigaciones Biologicas, Universidad ses in disagreement about the number of valid species. The present study Autonoma del Estado de Morelos, accumulated a comprehensive DNA sequences dataset of 98 individuals of all Ilyo- Cuernavaca, Morelos, Mexico 3Laboratorio de Biologıa Acuatica, Facultad don species and mitochondrial and nuclear loci to reconstruct the evolutionary his- de Biologıa, Universidad Michoacana de San tory of the genus. Phylogenetic inference produced five clades, one with two sub- Nicolas de Hidalgo, Morelia, Michoacan, Mexico clades, and one clade including three recognized species. Genetic distances in mito- 4Facultad de Ciencias Biologicas, chondrial genes (cytb: 0.5%–2.1%; coxI: 0.5%–1.1% and d-loop: 2.3%–10.2%) were Universidad Autonoma del Estado de relatively high among main clades, while, as expected, nuclear genes showed low Morelos, Cuernavaca, Morelos, Mexico – 5Departamento de Biodiversidad y Biologıa variation (0.0% 0.2%), with geographic concordance and few shared haplotypes Evolutiva, Museo Nacional de Ciencias among river basins.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes
    Coping with Life on Land: Physiological, Biochemical, and Structural Mechanisms to Enhance Function in Amphibious Fishes by Andy Joseph Turko A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Andy Joseph Turko, October 2018 ABSTRACT COPING WITH LIFE ON LAND: PHYSIOLOGICAL, BIOCHEMICAL, AND STRUCTURAL MECHANISMS TO ENHANCE FUNCTION IN AMPHIBIOUS FISHES Andy Joseph Turko Advisor: University of Guelph, 2018 Dr. Patricia A. Wright The invasion of land by fishes was one of the most dramatic transitions in the evolutionary history of vertebrates. In this thesis, I investigated how amphibious fishes cope with increased effective gravity and the inability to feed while out of water. In response to increased body weight on land (7 d), the gill skeleton of Kryptolebias marmoratus became stiffer, and I found increased abundance of many proteins typically associated with bone and cartilage growth in mammals. Conversely, there was no change in gill stiffness in the primitive ray-finned fish Polypterus senegalus after one week out of water, but after eight months the arches were significantly shorter and smaller. A similar pattern of gill reduction occurred during the tetrapod invasion of land, and my results suggest that genetic assimilation of gill plasticity could be an underlying mechanism. I also found proliferation of a gill inter-lamellar cell mass in P. senegalus out of water (7 d) that resembled gill remodelling in several other fishes, suggesting this may be an ancestral actinopterygian trait. Next, I tested the function of a calcified sheath that I discovered surrounding the gill filaments of >100 species of killifishes and some other percomorphs.
    [Show full text]
  • The Extinction of the Catarina Pupfish Megupsilon Aporus and the Implications for the Conservation of Freshwater Fish in Mexico
    The extinction of the Catarina pupfish Megupsilon aporus and the implications for the conservation of freshwater fish in Mexico A RCADIO V ALDÉS G ONZÁLEZ,LOURDES M ARTÍNEZ E STÉVEZ M A .ELENA Á NGELES V ILLEDA and G ERARDO C EBALLOS Abstract Extinctions are occurring at an unprecedented ; Régnier et al., ). Since the start of the st century it rate as a consequence of human activities. Vertebrates con- has become clear that population depletion and extinction stitute the best-known group of animals, and thus the group of both freshwater and marine fishes is a severe and wide- for which there are more accurate estimates of extinctions. spread problem (e.g. Ricciardi & Rasmussen, ; Myers Among them, freshwater fishes are particularly threatened &Worm,; Olden et al., ; Burkhead, ). and many species are declining. Here we report the extinc- Extinction of freshwater fishes has been relatively well tion of an endemic freshwater fish of Mexico, the Catarina documented in North America (e.g. Miller et al., ; pupfish Megupsilon aporus, the sole species of the genus Burkhead, ). A compilation of the conservation status Megupsilon. We present a synopsis of the discovery and de- of freshwater fishes in Mexico has revealed that species scription of the species, the threats to, and degradation of, its have become extinct in the wild or have been extirpated habitat, and the efforts to maintain the species in captivity from the country, and . (% of all species in before it became extinct in . The loss of the Catarina Mexico) are facing extinction (IUCN, ; Ceballos et al., pupfish has evolutionary and ecological implications, and b; Table ).
    [Show full text]
  • Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Northern Iowa Proceedings of the Iowa Academy of Science Volume 69 | Annual Issue Article 87 1962 Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L. Turner Wartburg College Gullermo Mendoza Grinnell College Rebecca Reiter Grinnell College Copyright © Copyright 1962 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Turner, Clarence L.; Mendoza, Gullermo; and Reiter, Rebecca (1962) "Development and Comparative Morphology of the Gonopodium of Goodeid Fishes," Proceedings of the Iowa Academy of Science: Vol. 69: No. 1 , Article 87. Available at: https://scholarworks.uni.edu/pias/vol69/iss1/87 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Turner et al.: Development and Comparative Morphology of the Gonopodium of Goode 1962] SELFINC OF H. NANA 571 Schiller, E. L. 1959c. Experimental studies on morphological variation in the cestode genus Hymenolepis. III. X-irradiation as a mechanism for facilitating analyses in H.. nana. Exp. Par. 8-427-470. Voge, M., and Heyneman, D. 1957. Development of Hymenolepis nana and Ii ymcnolepis dimi1111ta ( Cestoda: Hymenolepididae) in the inter­ mediate host Tribolium confusum. University of California Publications in Zoology .59:549-579. Voge, M., and Heyneman, D. 1958. Effect of high temperature on the larval development of Hymenolepis nana and Hymenolepis diminuta ( Cestoda: Cyclophyllidea).
    [Show full text]
  • Identification of Parasites of Aphanius Vladykovi from Shalamzar and Salm Lakes, Chaharmahal Va Bakhtiari Province, Iran
    مجله علمی شیﻻت ایران DOI): 10.22092/ISFJ.2018.117720) سال بیست و هفت/ شماره 4 شناسائی انگلهای ماهی گورخری (Aphanius vladykovi) دریاچههای شلمزار و سلم استان چهارمحال و بختیاری 3 2* 1 مهدی رئیسی ، اسماعیل پیرعلی خیرآبادی ، پروین محسنی *[email protected] 1- گروه بهداشت و بیماریهای آبزیان، دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسﻻمی، شهرکرد، ایران 2- گروه شیﻻت، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران 3- گروه بهداشت و بیماریهای آبزیان، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران تاریخ دریافت: فروردین 1397 تاریخ پذیرش: خرداد 1397 لغات کلیدی: کپور دندان دار زاگرس )Aphanius vladykovi(، ماهی گورخری، انگلهای ماهی، Ornithodiplostomum گونههای جنس Aphanius در نقاط مختلف جهان از 1380؛ Raissy et al., 2011(. در سالهای اخیر بهدﻻیل جمله حوزه مدیترانه، جنوب شرق آسیا، نواحی شمالی مختلف از جمله کم آبی، آلودگی منابع آبی، رها شدن هند، سومالی و ایران یافت می شوند. از بین 23 گونه بخشی از ماهیان قزل آﻻی پرورشی به رودخانهها و ... شناخته شده، تاکنون 7 گونه و زیر گونه در ایران شناسائی جمعیت این ماهی با کاهش چشمگیری روبرو شده است شده است. جنس Aphanius متعلق به خانواده )فتح اللهی، Raissy .)1392 و همکاران )2011( کپورماهیان دنداندار1 از راسته کپوردندان ماهی شکﻻن2 آلودگیهای انگلی را نیز به عنوان یکی از علل مهم در میباشد و تنها جنس این خانواده است که به طور طبیعی کاهش جمعیت این گونه در تاﻻب گندمان ذکر کرد هاند. در آبهای ایران یافت میشود ) ,Coad and Keivany این امر با توجه به اینکه ماهی کپور دندان دار زاگرس در Keivany and Soofiani, 2004 ;2000(. در این میان فهرست گونههای در حال انقراض و محافظت شده قرار گونه کپور دنداندار زاگرس3 از اهمیت خاصی برخوردار دارد اهمیت دوچندانی مییابد )Downloaded from isfj.ir at 7:25 +0330 on Thursday September 30th 2021 [ DOI: 10.22092/ISFJ.2018.117720 ] .)Raissy et al., 2011 است.
    [Show full text]
  • Molecular Systematics of Characodon: Phylogeny Based on a Nuclear Locus Joshua Mccausland University of North Georgia
    University of North Georgia Nighthawks Open Institutional Repository Honors Theses Honors Program 1-2014 Molecular systematics of Characodon: Phylogeny based on a nuclear locus Joshua McCausland University of North Georgia Follow this and additional works at: https://digitalcommons.northgeorgia.edu/honors_theses Part of the Biology Commons Recommended Citation McCausland, Joshua, "Molecular systematics of Characodon: Phylogeny based on a nuclear locus" (2014). Honors Theses. 2. https://digitalcommons.northgeorgia.edu/honors_theses/2 This Honors Thesis is brought to you for free and open access by the Honors Program at Nighthawks Open Institutional Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of Nighthawks Open Institutional Repository. Joshua McCausland Molecular systematics of Characodon: Phylogeny based on a nuclear locus A Thesis Presented to the Honors Faculty of the University of North Georgia by Joshua McCausland Dahlonega, GA January 2014 Characodon Systematics Accepted by the Honors Faculty of the University of North Georgia in partial fulfillment of the requirements for the title of Honors Program Graduate Thesis Committee: Characodon Systematics Abstract Characodon is a genus of livebearing fishes whose two extant species (C. lateralis and C. audax) inhabit localities along the Río Mezquital of Durango, Mexico. This lineage of Goodeidae (Cyprinodontiformes) is critical to study because of its biogeographic and phylogenetic positions within the group, and both species are of conservation concern. A recent mitochondrial DNA analysis contradicts the published taxonomy, and suggests that Characodon has diverged into northern and southern populations. This, coupled with the observation that the morphological characteristics used in the original species descriptions might be flawed, has led me to study the phylogenetic relationships among populations using a third kind of evidence, nuclear DNA.
    [Show full text]
  • Part B: for Private and Commercial Use
    RESTRICTED ANIMAL LIST (PART B) §4-71-6.5 PART B: FOR PRIVATE AND COMMERCIAL USE SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Haplotaxida FAMILY Lumbricidae Lumbricus rubellus earthworm, red PHYLUM Arthropoda CLASS Crustacea ORDER Amphipoda FAMILY Gammaridae Gammarus (all species in genus) crustacean, freshwater; scud FAMILY Hyalellidae Hyalella azteca shrimps, imps (amphipod) ORDER Cladocera FAMILY Sididae Diaphanosoma (all species in genus) flea, water ORDER Cyclopoida FAMILY Cyclopidae Cyclops (all species in genus) copepod, freshwater ORDER Decapoda FAMILY Alpheidae Alpheus brevicristatus shrimp, Japan (pistol) FAMILY Palinuridae Panulirus gracilis lobster, green spiny Panulirus (all species in genus lobster, spiny except Panulirus argus, P. longipes femoristriga, P. pencillatus) FAMILY Pandalidae Pandalus platyceros shrimp, giant (prawn) FAMILY Penaeidae Penaeus indicus shrimp, penaeid 49 RESTRICTED ANIMAL LIST (Part B) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Penaeus californiensis shrimp, penaeid Penaeus japonicus shrimp, wheel (ginger) Penaeus monodon shrimp, jumbo tiger Penaeus orientalis (chinensis) shrimp, penaeid Penaeus plebjius shrimp, penaeid Penaeus schmitti shrimp, penaeid Penaeus semisulcatus shrimp, penaeid Penaeus setiferus shrimp, white Penaeus stylirostris shrimp, penaeid Penaeus vannamei shrimp, penaeid ORDER Isopoda FAMILY Asellidae Asellus (all species in genus) crustacean, freshwater ORDER Podocopina FAMILY Cyprididae Cypris (all species in genus) ostracod, freshwater CLASS Insecta
    [Show full text]