An Updated List of Taxonomy, Distribution and Conservation Status (Teleostei: Cyprinodontoidea)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aphanius Sirhani Region: 1 Taxonomic Authority: Villwock, Scholl & Krupp, 1983 Synonyms: Common Names
Aphanius sirhani Region: 1 Taxonomic Authority: Villwock, Scholl & Krupp, 1983 Synonyms: Common Names: Order: Cyprinodontiformes Family: Cyprinodontidae Notes on taxonomy: General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: Restricted to Azraq Oasis in Jordan The species still lives in pools of the Azraq Wetland Reserve. Conservation Measures: Threats: Occurs in Azraq Wetland Reserve. Some research is going on. Water extraction for irrigation. The water level dropped to 12 m below ground from surface level and in 1992 the marshland dried up totally, because water pumping from the Azraq oasis in the last 30 years. According to Bianco pers observ in 2000 (Bianco joined the Amman IUCN Congress in 2000 and visited the Oasis and observed the species) the water area in the Oasis Reserve is very scarce, about less than one hectare, and maintained by artificially spilling of water. The species is nearly disappeared mainly as result of introduced tilapia, Sarotherodon galileus, which dominate in the Oasis. The species was maintained in the Reserve by captive breeding and tentatively reintroduced in the wild. It is now probably extinct in the wild, and for a success restocking, aliens species should be previously eradicated. Species population information: Decreasing Native - Native - Presence Presence Extinct Reintroduced Introduced Vagrant Country Distribution Confirmed Possible Country:Jordan Upper Level Habitat Preferences Score Lower Level Habitat Preferences Score 5.9 Wetlands -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
The Etyfish Project © Christopher Scharpf and Kenneth J
CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a -
Monitoring and Understanding Toxic Cyanobacteria and Cochlodinium Polykrikoides Blooms in Suffolk County
MONITORING AND UNDERSTANDING TOXIC CYANOBACTERIA AND COCHLODINIUM POLYKRIKOIDES BLOOMS IN SUFFOLK COUNTY A FINAL REPORT BY CHRISTOPHER J. GOBLER, STONY BROOK UNIVERSITY SUBMITTED SEPTEMBER 2013 REVISED MAY 2014 1 TABLE OF CONTENTS: Executive Summary……………………………………………………………pages 3- 6 Task 1. – Literature and Regulatory Review…………………………………pages 7 - 14 Task 2. –Summer monitoring of freshwater bathing beach lakes in Suffolk County. Suffolk County Bathing Beaches………………………………….…………pages 15 - 16 Task 3. Seasonal monitoring the most toxic lakes in Suffolk County…..……pages 17 - 25 Task 4. Cyanotoxin findings and final report………………………...…………..pages 26 Task 5 & 6. Assess the ability of Cochlodinium polykrikoides to form cysts; Quantify the production and densities of Cochlodinium polykrikoides cysts before, during and after blooms………………………………………………………………..………pages 27 - 57 Task 7. Assess the temperature tolerance of Cochlodinium polykrikoides….pages 58 - 61 Task 8. Assess the mechanism of toxicity of Cochlodinium polykrikoides....pages 62 - 93 Task 9. Explore the vulnerability of Suffolk County fish populations to Cochlodinium polykrikoides………………………………………………………...………pages 94 - 113 Task 10. Prepare a final report regarding Cochlodinium polykrikoides results….pages 114 2 EXECUTIVE SUMMARY This project, Monitoring and Understanding Toxic Cyanobacteria and Cochlodinium polykrikoides Blooms in Suffolk County, was funded by Suffolk County Capital Project 8224, Harmful Algal Blooms, and was initiated to address ongoing blooms of toxic cyanobacteria and Cochlodinium polykrikoides in Suffolk County waters. Cyanobacteria Cyanobacteria, also known as blue-green algae, are microscopic organisms found in both marine and fresh water environments. Under favorable conditions of sunlight, temperature, and nutrient concentrations, cyanobacteria can form massive blooms that discolor the water and often result in a scums and floating mats on the water’s surface. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Relation of Desert Pupfish Abundance to Selected Environmental Variables
Environmental Biology of Fishes (2005) 73: 97–107 Ó Springer 2005 Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin Barbara A. Martin & Michael K. Saiki U.S. Geological Survey, Biological Resources Division, Western Fisheries Research Center-Dixon Duty Station, 6924 Tremont Road, Dixon, CA 95620, U.S.A. (e-mail: [email protected]) Received 6 April 2004 Accepted 12 October 2004 Key words: species assemblages, predation, water quality, habitat requirements, ecological interactions, endangered species Synopsis We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray– Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinna and Poecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes. -
Three New Pupfish Species, Cyprinodon (Teleostei, Cyprinodontidae), from Chihuahua, México, and Arizona, USA Author(S): W
Three New Pupfish Species, Cyprinodon (Teleostei, Cyprinodontidae), from Chihuahua, México, and Arizona, USA Author(s): W. L. Minckley, Robert Rush Miller and Steven Mark Norris Source: Copeia, Vol. 2002, No. 3 (Aug. 15, 2002), pp. 687-705 Published by: American Society of Ichthyologists and Herpetologists (ASIH) Stable URL: http://www.jstor.org/stable/1448150 . Accessed: 23/07/2014 15:57 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Ichthyologists and Herpetologists (ASIH) is collaborating with JSTOR to digitize, preserve and extend access to Copeia. http://www.jstor.org This content downloaded from 128.123.44.23 on Wed, 23 Jul 2014 15:57:21 PM All use subject to JSTOR Terms and Conditions Copeia,2002(3), pp. 687-705 Three New Pupfish Species, Cyprinodon(Teleostei, Cyprinodontidae), from Chihuahua, Mexico, and Arizona, USA W. L. MINCKLEY,ROBERT RUSH MILLER,AND STEVENMARK NORRIS Three new species of Cyprinodon(Teleostei, Cyprinodontidae)are described,each long recognized as distinct. Cyprinodonpisteri occupies a varietyof systems and hab- itats in the Lago de Guzmin complex basin in northern Chihuahua,Mexico. It is distinguishedby its dusky to black dorsal fin and narrowor inconspicuousterminal bar on the caudal fin in mature males. -
ABSTRACT BOOK Keynote – Presentation
2.7.–7.7. 2017 / Olomouc, CZ ABSTRACT BOOK Keynote – Presentation IMPLICATIONS OF GLOBAL CHANGE FOR AQUATIC COMMUNITIES: DO MICRO-EVOLUTIONARY SHIFTS IN POPULATION FUNCTIONAL TRAITS MAKE A DIFFERENCE? Steven Declerk ([email protected])1 1 Netherlands Institute of Ecology, Wageningen, NL By most ecologists, species are considered as entities with fixed traits because rates of evo- lutionary adaptations are believed to be much slower than the rate of ecological dynamics. However, it is only in the latest years that an increasing number of ecologists come to re- alize that microevolutionary adaptation can take place at ecological time scales. Although microevolutionary trait shifts may seem small and insignificant in magnitude compared to the large trait changes that are documented for macro-evolutionary time scales, they may still be of considerable importance from an ecological perspective, as they may strongly determine the performance of contemporary populations and their interactions with the biotic and abiotic environment. This is especially relevant in the context of current glob- al change, with anthropogenic impacts that cause the biotic and abiotic environment of organisms to change at unprecedented rates. In this talk, I will introduce the concept of eco-evolutionary dynamics, illustrate its relevance for aquatic systems with a variety of examples and try to address the question whether such dynamics may effectively contrib- ute to a better understanding of the response of aquatic biota to anthropogenic pressures. 2 ABSTRACT BOOK / 2.7.–7.7. 2017 / OLOMOUC, CZ 3 Keynote – Presentation Keynote – Presentation SERENDIPIDY IN SCIENCE – 35 YEARS STUDYING A TROPICAL MICROBIAL NITRIFICATION IN URBAN STREAMS: FROM SINGLE LAKE CELL ACTIVITY TO ECOSYSTEM PROCESSES David Harper ([email protected])1 Stephanie N. -
Identification of Parasites of Aphanius Vladykovi from Shalamzar and Salm Lakes, Chaharmahal Va Bakhtiari Province, Iran
مجله علمی شیﻻت ایران DOI): 10.22092/ISFJ.2018.117720) سال بیست و هفت/ شماره 4 شناسائی انگلهای ماهی گورخری (Aphanius vladykovi) دریاچههای شلمزار و سلم استان چهارمحال و بختیاری 3 2* 1 مهدی رئیسی ، اسماعیل پیرعلی خیرآبادی ، پروین محسنی *[email protected] 1- گروه بهداشت و بیماریهای آبزیان، دانشکده دامپزشکی، واحد شهرکرد، دانشگاه آزاد اسﻻمی، شهرکرد، ایران 2- گروه شیﻻت، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران 3- گروه بهداشت و بیماریهای آبزیان، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران تاریخ دریافت: فروردین 1397 تاریخ پذیرش: خرداد 1397 لغات کلیدی: کپور دندان دار زاگرس )Aphanius vladykovi(، ماهی گورخری، انگلهای ماهی، Ornithodiplostomum گونههای جنس Aphanius در نقاط مختلف جهان از 1380؛ Raissy et al., 2011(. در سالهای اخیر بهدﻻیل جمله حوزه مدیترانه، جنوب شرق آسیا، نواحی شمالی مختلف از جمله کم آبی، آلودگی منابع آبی، رها شدن هند، سومالی و ایران یافت می شوند. از بین 23 گونه بخشی از ماهیان قزل آﻻی پرورشی به رودخانهها و ... شناخته شده، تاکنون 7 گونه و زیر گونه در ایران شناسائی جمعیت این ماهی با کاهش چشمگیری روبرو شده است شده است. جنس Aphanius متعلق به خانواده )فتح اللهی، Raissy .)1392 و همکاران )2011( کپورماهیان دنداندار1 از راسته کپوردندان ماهی شکﻻن2 آلودگیهای انگلی را نیز به عنوان یکی از علل مهم در میباشد و تنها جنس این خانواده است که به طور طبیعی کاهش جمعیت این گونه در تاﻻب گندمان ذکر کرد هاند. در آبهای ایران یافت میشود ) ,Coad and Keivany این امر با توجه به اینکه ماهی کپور دندان دار زاگرس در Keivany and Soofiani, 2004 ;2000(. در این میان فهرست گونههای در حال انقراض و محافظت شده قرار گونه کپور دنداندار زاگرس3 از اهمیت خاصی برخوردار دارد اهمیت دوچندانی مییابد )Downloaded from isfj.ir at 7:25 +0330 on Thursday September 30th 2021 [ DOI: 10.22092/ISFJ.2018.117720 ] .)Raissy et al., 2011 است. -
2201 Innal Et Al Four Aphanius Species Endemic Turkey.Indd
ACTA ZOOLOGICA BULGARICA Aquatic Ecology Acta zool. bulg., 71 (2), 2019: 211-217 Research Article Age Structure and Length-Weight Relationship for Four Species of Aphanius Nardo, 1827 (Actinopterygii: Aphaniidae) Endemic to the Lake District, Central Anatolia, Turkey Deniz Innal1*, Salim Serkan Güçlü2, Mehmet Can Ünal1, Buğrahan Doğangil1 & Daniela Giannetto3 1Department of Biology, Mehmet Akif Ersoy University, Burdur, Turkey 2Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Turkey 3Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey Abstract: Age structure and length-weight relationship are examined for four species of the genus Aphanius Nardo, 1827 endemic to the Lake District, Central Anatolia, Turkey: A. iconii Akşiray, 1948, A. saldae (Aksiray, 1955), A. sureyanus (Neu, 1937) and A. transgrediens (Ermin, 1946). Specimens were sampled by a shore seine net from Lake Eğirdir (A. iconii), Lake Salda (A. saldae), Lake Burdur (A. sureyanus) and Lake Acıgöl (A. transgrediens) during 2014-2015. A total of 1246 specimens are examined (A. iconii: n=206; A. saldae: n=525; A. sureyanus: n= 350; A. transgrediens: n=165). The maximum age for A. iconii, A. saldae and A. sureyanus was 4 years and for A. transgrediens was 5 years. The values of the b parameter of the length- weight equations for A.transgrediens, A. saldae, A. sureyanus and A. iconii populations are 3.027, 2.587, 3.221 and 2.713, respectively. A new maximum total length of 6.1 cm for A. transgrediens is reported. Key words: Anatolia; endemic species; killifish; Aphaniidae; Cyprinodontidae; length-weight relationship; age. Introduction The genus Aphanius Nardo, 1827 is native to North Aphanius iconii Akşiray, 1948, A. -
Production of Aphanius Mento (Heckel, 1843) Under Controlled Conditions
Aquaculture, Aquarium, Conservation & Legislation OPEN ACCESS International Journal of the Bioflux Society Research Article Production of Aphanius mento (Heckel, 1843) under controlled conditions 1Soner Sezen, 2Murtaza Olmez 1 Ministry of Food, Agriculture and Livestock Mediterranean Fisheries Research Production and Training, Antalya, Turkey. 2 Suleyman Demirel University Egirdir Fisheries Faculty, Isparta, Turkey. Abstract. In this study, it was aimed to determine the adaptation capability to controlled conditions, reproductive behaviors, and production of Aphanius mento caught from Kirkgoz Springs, Antalya. Fish material for broodstock were caught using fine mesh tulle net and bag net with 2.5 mm mesh size. Twenty five female and 10 male breeding fish acclimated to experimental conditions in Aquarium Department Unit of Ministry of Food, Agriculture and Livestock Mediterranean Fisheries Research Production and Training Institute were spawned by providing egg collec- tors to the tank. Aphanius mento eggs were spherical, transparent and sticky. Examination with the microscope revealed that the eggs were full of pale yellow egg yolk with 7-8 lipid droplets and had fibrous sticking filaments on the surface. The average egg diameter was 1.59±0.50 mm (n=8). Hatching were observed at 11th day at 22.5±1.0ºC water temperature whereas at 8th day at 27.0±0.45ºC. Total length of newly hatched larvae was 5.1±0.07 mm, and swimming were competed at 4th day. Average size of one-week larvae was 5.6±0.2 mm. At this stage fins were fully developed, the larvae were able to swim freely and take exogenous food. Mean length of the fish was 2.7±0.2 cm on 7th month and a ju- venile fish had an appearance of morphologically mature fish.