Compare and Contrast the Water Environment Between Death Valley Pupfish Specie and Devil’S Hole Pupfish Specie

Total Page:16

File Type:pdf, Size:1020Kb

Compare and Contrast the Water Environment Between Death Valley Pupfish Specie and Devil’S Hole Pupfish Specie Compare and Contrast the Water environment between Death Valley Pupfish Specie and Devil’s Hole Pupfish Specie By Roy Tianran Gao 1 Table of Contents Title page 1 Abstract 3 Introduction and Background 3 Water Temperature 4 Salinity 6 Water Level 7 Conservation 10 Conclusion 11 References 12 2 ABSTRACT The two types of pupfish (Cyprinodon) in Death Valley National Park are Death Valley pupfish and Devil’s Hole pupfish. Death Valley pupfish has been existed over 10,000 years and Devil’s Hole pupfish has been existed for over 20,000 years. Both of the pupfishes are endangered species. The average number of Death Valley pupfish has decreased by about 100 since 1990s, and the number of Devil’s Hole pupfish has decreased by 400 since 1995. Comparing the water level, water temperature and the water salinity between the two species of pupfish would help to define the living requirements and reason of decreasing population. The research toward the result is based on 7 journal articles, 4 websites, and 1 book. As the result shows, Death Valley Pupfish and Devil’s Hole Pupfish live in different water environments and functioned differently. Understanding the water environment of the two types of pupfishes will help people building new habitats for pupfishes and increase their population so that would be possible to avoid the extinction of pupfishes from the earth. INTRODUCTION AND BACKGROUND Pupfish is a small killifish in the Southwest of America. There are five pupfish species in Death Valley which are Armargosa pupfish, Saratoga Pupfish, Devil’s Hole pupfish, Death Valley pupfish, and Cotton ball Marsh pupfish (National Park Service, 2008). Different types of pupfish live in different environments and have different size and functioned differently. Death Valley pupfish and Devil’s Hole pupfish are currently the two endangered species in Southwest. As Map 1 shows, Death Valley pupfish is located in Salt Creek where in the center of Death Valley between the Panamint Range and Armargosa Range so the Death Valley pupfish also called Salt Creek pupfish, and Devil’s Hole is located in Ash Meadows, Death Valley which is 3 approximately 60 kilometers from Salt Creek (National Park Service, 2008). Although the two species are not too far from each other, their climates represent differently and directly affect the living conditions of pupfish in these two species. Salt Creek Species is hot and dry, the average annual temperature is about 32 degree Celsius, and the annual precipitation is about 5 cm. Also, the elevation of Salt Creek Species is about 64 meters below the sea level (National Park Service, 2008). The Devil’s Hole Species’ annual temperature is approximately 18.5 Celsius with annual precipitation in average between 7.5 cm and 10cm (Dudley and Larson, 1976). Physically looking, the Death Valley pupfish is about 6-9 cm long (Figure 1), which is bigger than the Devil’s Hole pupfish, the Devil’s Hole pupfish is only about 2-3 cm long (Figure 4). They eat algae and other invertebrates. Most of the pupfishes live between 6 to 9 months and some of them could live over one year. Since the two species affected by different climates, the water condition in both locations are also different. In this paper, water condition will be discussed in three aspects that could affect pupfish: the water temperature, the water level, and the water salinity. WATER TEMPERATURE Because Salt Creek is hotter than Devil’s Hole, Death Valley pupfish has a better heat tolerance than Devil’s Hole pupfish. The temperature fluctuation in Salt Creek is quite large, the air temperature seasonally from below 0 C to greater than 50 C. There are some days with extreme hot or cold temperature in the water which would affect more on the pupfish (Brown and Feldmuth, 1971). Robert G. Otto and Shelby D. Gerking, who are from Arizona State University studied Death Valley pupfish with a water temperature test. There are two measurement were used in their test, the Critical Thermal Maximum (CTM) and upper lethal 4 temperature. The CTM is measuring the ability that pupfish would withstand in a high temperature, and the upper lethal temperature is telling long-term heat stress for the pupfish --- Map 1, Locations of Salt Creek and Devil’s Hole, where the species of Death Valley pupfish and Devil’s Hole pupfish at. Figure 1, Death Valley Pupfish, 6-9 cm long in Salt Creek, Death Valley. 5 --- (Otto and Gerking, 1973). There result shows that the Death Valley pupfish would be able to with stand in a water temperature as high of 45.3 Celsius, and the water temperature between 35 and 40 degree Celsius is the when Death Valley pupfish active the most ( Otto and Gerking, 1973). Pupfish not be able survive in low temperature water. When the water temperatures reach 6 degree Celsius, the Death Valley pupfish tend not to activate in the water. For Devil’s Hole pupfish, there is no one has done any temperature test towards Devil’s Hole pupfish. However, Matthew Anderson and James Deacon introduced the general trend for Devil’s Hole pupfish. During the summer, the water temperature in Devil’s Hole usually between 30 and 33 Celsius, and the population of pupfish tend to increase and more activate. During the winter time, the water temperatures often reach below 5 degree Celsius, and Devil’s Hole pupfish tend to stay deeper in the water and the population tend to decrease. SALINITY Salinity is another factor that would impact pupfish. As Salt Creek is located in an enclosed basin, and there are approximately 15,000 square kilometers of salts in this basin that usually from a large drainage system, it caused the groundwater mixed with salts in this basin (National Park Service, 2008). In Salt Creek specie, the salinity of water in average is about 10- 12% (USGS, 2011). In the summer the salinity increase very high and crystallizes into salt when the water evaporate, and during the winter, salinity goes down to 5% (USGS, 2011). Because the salinity in Salt Creek is very high, the Death Valley Pupfish use their gills to take out the salt and keep the water inside of their bodies. In Devil’s Hole, salts do not influence the ground water system. The aquifer system in Devil’s Hole works differently. “The aquifers are composed predominantly of limestone and 6 dolomite which transport water freely through fractures that have been enlarged by dissolution of the carbonate minerals. The aquitards contain only minor thicknesses of soluble rocks and are composed chiefly of clastic rocks that impede the flow of ground water. Because of their geometric distribution, the aquitards function most importantly to restrict lateral ground-water flow, thus determining the boundaries of the Ash Meadows ground-water system” (Dudley and Larson, 1976). One other part that Devil’s Hole specie different from Death Valley specie is that Devil’s Hole pupfish could not use their gills to keep the salt out of their body, and the water in Devil’s Hole is all fresh water. One of the main reason that water in Devil’s Hole keeps fresh because Devil’s Hole is 609 meters above the sea level which allow its water to avoid salt effect from the salt pan. WATER LEVEL Salt Creek specie is a loop about 1000 meter long and only 8-10 cm deep in average (National Park Service, 2008). Water level in Salt Creek does not change significantly which means that the Death Valley pupfish does not influence by the local water level. However, Devils Hole as one of the oldest and the most famous pupfish habitats located in Ash Meadows, Death Valley contains the thermal water (33 C) which is the ideal water for pupfish (Anderson and Deacon, 2001). Devil’s Hole itself is a water-filled cavern cut into the side of a hill. The cavern is over 150 meters deep and the bottom has never been mapped (National Park Service, 2008). As Matthew Anderson and James Deacon argued that the change of water level would influence the population of Devil’s Hole pupfish. Adult pupfishes in Devils Hole usually occupy the upper level of the water which is about 26m and with a high density in the upper 15m deep of water because the sunlight could penetrate into the water. This is important because when the sunlight penetrates into the water, the water temperate increase and 7 it is easier for pupfish to live. The north side of the Devils Hole pool is about 130m deep and the southern side with the shallower water is about 5m deep (Szabo, Kolesar, Riggs, Winograd and Ludwig, 1994). During the winter time, when the temperature gets low, the pupfishes tend to be in the deeper water to stay warm. However, the water level during the winter tends to be lower than in the summer, and that significantly affect the population of pupfishes in Devils Hole. Figure 2, Annual minimum and maximum estimated populationsize for Devils Hole pupfish from 1972 to 1997 Figure 2 shows that during the period between 1972 and 1976, the change of annual variation in population size was the lowest. During the period between 1976 and 1988, the change of annual variation in population size was the highest and the total population of pupfish also increased significantly (Anderson and Deacon, 2001). The change of pupfish population corresponded the water level in Devil’s Hole, when the change of population stays small between 1972 and 1976, the water level remained low, when the population size increased 8 rapidly after 1976, the water level rises.
Recommended publications
  • Introductions of Threatened and Endangered Fishes (Full Statement)
    AFS Policy Statement #19: Introductions of Threatened and Endangered Fishes (Full Statement) ABSTRACT Introductions of threatened and endangered fishes are often an integral feature in their recovery programs. More than 80% of threatened and endangered fishes have recovery plans that call for introductions to establish a new population or an educational exhibit, supplement an existing population, or begin artificial propagation. Despite a large number of recent and proposed introductions, no systematic procedural policies have been developed to conduct these recovery efforts. Some introductions have been inadequately planned or poorly implemented. As a result, introductions of some rare fishes have been successful, whereas recovery for others has progressed slowly. In at least one instance, the introduced fish eliminated a population of another rare native organism. We present guidelines for introductions of endangered and threatened fishes that are intended to apply when an introduction is proposed to supplement an existing population or establish a new population. However, portions of the guidelines may be helpful in other Situations, such as establishing a hatchery stock. The guidelines are divided into three components: (1) selecting the introduction site, (2) conducting the introduction, and (3) post-introduction monitoring, reporting, and analysis. Implementation should increase success of efforts to recover rare fishes. "On 3 August 1968, we collected 30 or 40 individuals from among the inundated prickly pear and mesquite near the flooded spring, which by that time was covered with about 7 m of clear water." Peden (1973) The above quote described the collection of Amistad gambusia, Gambusia amistadensis, as its habitat was being flooded. Fortunately, most translocations of endangered fishes do not occur under such a feverish pace as did this collection of Amistad gambusia.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Deterministic Shifts in Molecular Evolution Correlate with Convergence to Annualism in Killifishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455723; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deterministic shifts in molecular evolution correlate with convergence to annualism in killifishes Andrew W. Thompson1,2, Amanda C. Black3, Yu Huang4,5,6 Qiong Shi4,5 Andrew I. Furness7, Ingo, Braasch1,2, Federico G. Hoffmann3, and Guillermo Ortí6 1Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48823, USA. 2Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA. 3Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Starkville, MS 39759, USA. 4Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, Shenzhen 518083, China. 5BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China. 6Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA. 7Department of Biological and Marine Sciences, University of Hull, UK. Corresponding author: Andrew W. Thompson, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455723; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: The repeated evolution of novel life histories correlating with ecological variables offer opportunities to test scenarios of convergence and determinism in genetic, developmental, and metabolic features. Here we leverage the diversity of aplocheiloid killifishes, a clade of teleost fishes that contains over 750 species on three continents.
    [Show full text]
  • Monitoring and Understanding Toxic Cyanobacteria and Cochlodinium Polykrikoides Blooms in Suffolk County
    MONITORING AND UNDERSTANDING TOXIC CYANOBACTERIA AND COCHLODINIUM POLYKRIKOIDES BLOOMS IN SUFFOLK COUNTY A FINAL REPORT BY CHRISTOPHER J. GOBLER, STONY BROOK UNIVERSITY SUBMITTED SEPTEMBER 2013 REVISED MAY 2014 1 TABLE OF CONTENTS: Executive Summary……………………………………………………………pages 3- 6 Task 1. – Literature and Regulatory Review…………………………………pages 7 - 14 Task 2. –Summer monitoring of freshwater bathing beach lakes in Suffolk County. Suffolk County Bathing Beaches………………………………….…………pages 15 - 16 Task 3. Seasonal monitoring the most toxic lakes in Suffolk County…..……pages 17 - 25 Task 4. Cyanotoxin findings and final report………………………...…………..pages 26 Task 5 & 6. Assess the ability of Cochlodinium polykrikoides to form cysts; Quantify the production and densities of Cochlodinium polykrikoides cysts before, during and after blooms………………………………………………………………..………pages 27 - 57 Task 7. Assess the temperature tolerance of Cochlodinium polykrikoides….pages 58 - 61 Task 8. Assess the mechanism of toxicity of Cochlodinium polykrikoides....pages 62 - 93 Task 9. Explore the vulnerability of Suffolk County fish populations to Cochlodinium polykrikoides………………………………………………………...………pages 94 - 113 Task 10. Prepare a final report regarding Cochlodinium polykrikoides results….pages 114 2 EXECUTIVE SUMMARY This project, Monitoring and Understanding Toxic Cyanobacteria and Cochlodinium polykrikoides Blooms in Suffolk County, was funded by Suffolk County Capital Project 8224, Harmful Algal Blooms, and was initiated to address ongoing blooms of toxic cyanobacteria and Cochlodinium polykrikoides in Suffolk County waters. Cyanobacteria Cyanobacteria, also known as blue-green algae, are microscopic organisms found in both marine and fresh water environments. Under favorable conditions of sunlight, temperature, and nutrient concentrations, cyanobacteria can form massive blooms that discolor the water and often result in a scums and floating mats on the water’s surface.
    [Show full text]
  • The Mystery of the Banded Killifish Fundulus Diaphanus Population Explosion: Where Did They All Come From?
    The Mystery of the Banded KillifishFundulus ( diaphanus) Population Explosion: Where Did They All Come from? Philip W. Willink, Jeremy S. Tiemann, Joshua L. Sherwood, Eric R. Larson, Abe Otten, Brian Zimmerman 3 American Currents Vol. 44, No. 4 THE MYSTERY OF THE BANDED KILLIFISH FUNDULUS DIAPHANUS POPULATION EXPLOSION: WHERE DID THEY ALL COME FROM? Philip W. Willink, Jeremy S. Tiemann, Joshua L. Sherwood, La Grange Park, IL Illinois Natural History Survey Illinois Natural History Survey Eric R. Larson, Abe Otten, Brian Zimmerman University of Illinois at Scott Community The Ohio State University Urbana-Champaign College Stream and River Ecology Lab Banded Killifish Fundulus diaphanus are no strangers to NAN- and have not been seen since, they were only known from a hand- FAers. Over the past several years, there have been multiple arti- ful of inland lakes in the far northeastern corner the state (Fig. 1). cles in American Currents covering their distribution (Hatch 2015; Even there, population numbers were low. Schmidt 2016a, 2018; Olson and Schmidt 2018; Li 2019), stocking So it was with great excitement that in the early 2000s Illinois to restore populations (Bland 2013; Schmidt 2014), and appear- ichthyologists started to find more and more presumed Western ance in a hatchery (Schmidt 2016b). Their range extends from the Banded Killifish in Lake Michigan (Willink et al. 2018). They Canadian Maritime provinces south along the Atlantic coast to were even showing up in downtown Chicago (Willink 2011). It the Carolinas, as well as westward through the Great Lakes region was hoped that this range expansion was evidence of an uncom- to the upper Mississippi watershed.
    [Show full text]
  • … Is Edwin I Usually Go by Phil Last Name Pister -- P I S T E R -- Pronounced ‘Piece Ster’
    Oral History Cover Sheet Name: Edwin “Phil” Pister Date of Interview: June 9, 2005 Location of Interview: NCTC Interviewer: Mark Madison Approximate years worked for Fish and Wildlife Service: Offices and Field Stations Worked, Positions Held: worked for California Department of Fish and Game Most Important Projects: Owens pupfish litigation; Desert Fishes Council Colleagues and Mentors: Starker Leopold; Robert Rush Miller; Carl Hobbs; Ray Arnett; Chuck Meacham; Jim McBroom; Nat Reed Most Important Issues: Owens pupfish/devils hole water litigation; conservation of native fishes; conservation of desert ecosystems Brief Summary of Interview: early years in school; being in Starker Leopold’s class; reading early copy of Sand County Almanac; working on Convict Creek Experiment Station for FWS; writing FWS Bulletin 103; riffed during Eisenhower Administration; working for California Fish and Game; working on the Owens pupfish with Robert Rush Miller and Carl Hubbs; setting up the Desert Fishes Council; involvement in the litigation (Supreme Court) of the Devils Hole pupfish / environmental resources / water rights case; publishing bias in federal work; being upbeat when talking to students of conservation issues; working with native fishes vs exotics (California golden trout vs browns and rainbows); bifurcation of wildlife/fish in federal and/or state agencies; importance of the pupfish court case/legislation. 1 E”P”P -- … is Edwin I usually go by Phil last name Pister -- P I S T E R -- pronounced ‘piece ster’. MM -- Great. Phil, why don’t you tell us a little about your educational background. E”P”P -- Okay. Well, first off, I was born in the Central Valley of California; went through schools there.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Relation of Desert Pupfish Abundance to Selected Environmental Variables
    Environmental Biology of Fishes (2005) 73: 97–107 Ó Springer 2005 Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin Barbara A. Martin & Michael K. Saiki U.S. Geological Survey, Biological Resources Division, Western Fisheries Research Center-Dixon Duty Station, 6924 Tremont Road, Dixon, CA 95620, U.S.A. (e-mail: [email protected]) Received 6 April 2004 Accepted 12 October 2004 Key words: species assemblages, predation, water quality, habitat requirements, ecological interactions, endangered species Synopsis We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray– Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinna and Poecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes.
    [Show full text]
  • Cyprinodon Nevadensis Mionectes Ash Meadows Amargosa Pupfish
    Ash Meadows Amargosa pupfsh Cyprinodon nevadensis mionectes WAP 2012 species due to impacts from introduced detrimental aquatc species, habitat degradaton, and federal endangered status. Agency Status NV Natural Heritage G2T2S2 USFWS LE BLM-NV Sensitve State Prot Threatened Fish NAC 503.065.3 CCVI Presumed Stable TREND: Trend is stable to increasing with contnued on-going restoraton actvites. DISTRIBUTION: Springs and associated springbrooks, outlow stream systems and terminal marshes within Ash Meadows Natonal Wildlife Refuge, Nye Co., NV. GENERAL HABITAT AND LIFE HISTORY: This species is isolated to warm springs and outlows in Ash Meadows NWR including Point of Rocks, Crystal Springs, and the Carson Slough drainage. Pupfshes feed generally on substrate; feeding territories are ofen defended by pupfshes. Diet consists of mainly algae and detritus however, aquatc insects, crustaceans, snails and eggs are also consumed. Spawning actvity is typically from February to September and in some cases year round. Males defend territories vigorously during breeding season (Soltz and Naiman 1978). In warm springs, fsh may reach sexual maturity in 4-6 weeks. Reproducton variable: in springs, pupfsh breed throughout the year, may have 8-10 generatons/year; in streams, breeds in spring and summer, 2-3 generatons/year (Moyle 1976). In springs, males establish territories over sites suitable for ovipositon. Short generaton tme allows small populatons to be viable. Young adults typically comprise most of the biomass of a populaton. Compared to other C. nevadensis subspecies, this pupfsh has a short deep body and long head with typically low fn ray and scale counts (Soltz and Naiman 1978). CONSERVATION CHALLENGES: Being previously threatened by agricultural use of the area (loss and degradaton of habitat resultng from water diversion and pumping) and by impending residental development, the TNC purchased property, which later became the Ash Meadows NWR.
    [Show full text]
  • Recovery Plan Endangered and Species Nevada
    RECOVERYPLAN FOR THE ENDANGEREDAND THREATENED SPECIES OF&H MEADOWS, NEVADA Prepared by Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada RECOVERY PLAN FOR THE ENDANGERED AND THREATENED SPECIES OF ASH MEADOWS, NEVADA Prepared By Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada for the U.S. Fish and Wildlife Service Portland, Oregon ~FP2 3 ‘:XN Date This plan covers the following federally listed species in Ash Meadows, Nevada and California: Devil’s Hole pupfish, Warm Springs pupfish, Ash Meadows Arnargosa pupfish, Ash Meadows speckled dace, Ash Meadows naucorid, Ash Meadows blazing star, Ash Meadows ivesia, Ainargosa niterwort, Spring-loving centaury, Ash Meadows sunray, Ash Meadows inilk-vetch, and Ash Meadows guxnplant. THIS IS THE COMPLETED ASH MEADOWS SPECIES RECOVERY PLAN. IT HAS BEEN APPROVED BY THE U.S. FISH AND WILDLIFE SERVICE. IT DOES NOT NECESSARILY REPRESENT OFFICIAL POSITIONS OR APPROVALS OF COOPERATING AGENCIES (AND IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF ALL INDIVIDUALS) WHO PLAYED THE KEY ROLE IN PREPARING THIS PLAN. THIS PLAN IS SUBJECT TO MODIFICATION AS DICTATED BY NEW FINDINGS AND CHANGES IN SPECIES STATUS, AND COMPLETION OF TASKS DESCRIBED IN THE PLAN. GOALS AND OBJECTIVES WILL BE ATTAINED AND FUNDS EXPENDED CONTINGENT UPON APPROPRIATIONS, PRIORITIES, AND OTHER BUDGETARY CONSTRAINTS. LITERATURE CITATION SHOULD READ AS FOLLOWS U.S. Fish and Wildlife Service. 1990. Recovery plan for the endangered and threatened species of Ash Meadows, Nevada. U.S. Fish and Wildlife Service, Portland, Oregon. 123 pp. Additional copies may be obtained from Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301-492-6403 1-800-582-3421 : ACKNOWLEDGMENTS: This plan results from the efforts of many who spent considerable time and energy to prevent the destruction of Ash Meadows and the extinction of its diverse endemic biota.
    [Show full text]
  • Gene Expression After Freshwater Transfer in Gills and Opercular Epithelia of Killifish: Insight Into Divergent Mechanisms of Ion Transport Graham R
    The Journal of Experimental Biology 208, 2719-2729 2719 Published by The Company of Biologists 2005 doi:10.1242/jeb.01688 Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport Graham R. Scott1,*, James B. Claiborne2, Susan L. Edwards2,3, Patricia M. Schulte1 and Chris M. Wood4 1Department of Zoology, University of British Columbia, Vancouver BC, Canada V6T 1Z4, 2Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA, 3Department of Physiology and Pharmacology, James Cook University, Cairns, QLD 4879, Australia and 4Department of Biology, McMaster University, Hamilton ON, Canada L8S 4K1 *Author for correspondence (e-mail: [email protected]) Accepted 17 May 2005 Summary We have explored the molecular basis for differences in epithelium, NHE2 was not expressed; furthermore, physiological function between the gills and opercular Na+,K+-ATPase activity was unchanged after transfer to epithelium of the euryhaline killifish Fundulus freshwater, CA2 mRNA levels decreased, and NHE3 levels heteroclitus. These tissues are functionally similar in increased. Consistent with their functional similarities in seawater, but in freshwater the gills actively absorb Na+ seawater, killifish gills and opercular epithelium expressed – + + + + – but not Cl , whereas the opercular epithelium actively Na ,K -ATPase α1a, Na ,K ,2Cl cotransporter 1 absorbs Cl– but not Na+. These differences in freshwater (NKCC1), cystic fibrosis transmembrane conductance physiology are likely due to differences in absolute levels regulator (CFTR) Cl– channel and the signalling protein of gene expression (measured using real-time PCR), as 14-3-3a at similar absolute levels. Furthermore, NKCC1 several proteins important for Na+ transport, namely and CFTR were suppressed equally in each tissue after Na+,H+-exchanger 2 (NHE2), carbonic anhydrase 2 (CA2), freshwater transfer, and 14-3-3a mRNA increased in both.
    [Show full text]
  • Summer 2014 Application and Technology News for Environmental Professionals Houseboating Lake Powell for Science
    SUMMER 2014 APPLICATION AND TECHNOLOGY NEWS FOR ENVIRONMENTAL PROFESSIONALS HOUSEBOATING LAKE POWELL FOR SCIENCE Deserted Island Long-term Impacts on Abandoned Kiska Island Hippo Pools Robots Disguised as Crocs Go Where Humans Can’t Susquehanna Basin Monitoring Streams in Marcellus Shale Country fondriest.com discount code: EM1407 CONTENTS ENVIRONMENTAL MONITOR | SUMMER 2014 03 Web Exclusives 04 In the News 06 Featured Photo 08 Environmental Education 10 Tracking Leatherbacks 12 UConn Weather Record 15 Product Innovation 16 Shrinking Lake Waiau 18 Lake Lacawac 20 Devils Hole Pupfish 22 Mekong Hotspots 24 Desert Carbon Sponges 26 Salt Lake Wetlands 28 Susquehanna Basin 31 New Data Buoys 32 Land Cover Database environmental monitoring products FONDRIEST fondriest.com 10 CO Infographic 34 2 36 Kiska Island 38 Hippo Pools WELCOME... STAFF Monitoring Gear Welcome to the Summer 2014 edition of the Environmental Monitor. It’s the season when Steve Fondriest, President 40 [email protected] 28 thousands of vacationers flock to the bright, blue waters and red rock canyons of Lake 42 Lake Powell Paul Nieberding, General Manager Powell, where the houseboat is the vessel of choice for discerning leisure-seekers and [email protected] SmartPhones4Water environmental scientists alike. Our cover story reports on a crew of USGS scientists who 44 Jeff Gillies, Editor set one up as a mobile lab for a two-week water quality survey to learn more about the Walleye Tagging [email protected] 46 reservoir’s mercury contamination problem. Daniel Kelly, Staff Writer 48 Great Lakes Research [email protected] We’ve also got a look at the Susquehanna River Basin Commission’s extensive stream Playa Lakes Alex Card, Staff Writer 51 monitoring network that tracks water quality in dozens of headwaters that flow amid [email protected] drilling sites in the Marcellus shale region of Pennsylvania.
    [Show full text]