ESA Recovery Plan for the Southern DPS of Eulachon

Total Page:16

File Type:pdf, Size:1020Kb

ESA Recovery Plan for the Southern DPS of Eulachon Agenda Item I.3.a Supplemental NMFS Report 3 (Electronic Only) September 2018 Endangered Species Act Recovery Plan for the Southern Distinct Population Segment of Eulachon (Thaleichthys pacificus) Prepared by: National Marine Fisheries Service, West Coast Region U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service ESA Recovery Plan: Southern DPS Eulachon | 2 This Page Intentionally Left Blank 2017 | National Marine Fisheries Service ESA Recovery Plan: Southern DPS Eulachon | 3 Recovery Plan for Southern Distinct Population Segment of Eulachon Thaleichthys pacificus 2017 | National Marine Fisheries Service ESA Recovery Plan: Southern DPS Eulachon | 4 This Page Intentionally Left Blank 2017 | National Marine Fisheries Service ESA Recovery Plan: Southern DPS E u l a c h o n | 5 Disclaimer Endangered Species Act (ESA) recovery plans delineate such reasonable actions as may be necessary, based upon the best available scientific and commercial data available, for the conservation and survival of listed species. Plans are published by the National Marine Fisheries Service (NMFS). Recovery plans do not necessarily represent the views, official positions, or approval of any individuals or agencies involved in the plan formulation, other than NMFS. They represent the official position of NMFS only after they have been signed by the Assistant Administrator. ESA recovery plans are guidance and planning documents only; identification of an action to be implemented by any public or private party does not create a legal obligation beyond existing legal requirements. Nothing in this plan should be construed as a commitment or requirement that any Federal agency obligate or pay funds in any one fiscal year in excess of appropriations made by Congress for that fiscal year in contravention of the Anti-Deficiency Act, 31 U.S.C. 1341, or any other law or regulation. Approved recovery plans are subject to modification as dictated by new information, changes in species status, and the completion of recovery actions. LITERATURE CITATION SHOULD READ AS FOLLOWS: National Marine Fisheries Service. September 2017. Recovery Plan for the Southern Distinct Population Segment of Eulachon (Thaleichthys pacificus). National Marine Fisheries Service, West Coast Region, Protected Resources Division, Portland, OR, 97232. ADDITIONAL COPIES MAY BE OBTAINED FROM: National Marine Fisheries Service 1201 NE Lloyd Blvd., Suite 1100 Portland, OR 97232 Phone: 503.230.5400 Recovery plans can also be downloaded from the NMFS website: http://www.nmfs.wcr.gov Photo Credit: Copyright: Michele Cornelius, www.123rf.com/profile_mscornelius 2017 | National Marine Fisheries Service ESA Recovery Plan: Southern DPS E u l a c h o n | 6 Acknowledgements Eulachon Recovery Team The National Marine Fisheries Service gratefully acknowledges the contributions of the Eulachon Recovery Team, and thanks them for generously contributing their time and expertise in the development of this Recovery Plan. The National Marine Fisheries Service expresses its solemn gratitude to the late Dr. Robert (Bob) Emmett for his contributions to this Recovery Plan. Robert Anderson – National Marine Fisheries Service, West Coast Region Dr. Rick Gustafson – National Marine Fisheries Service, Northwest Fisheries Science Center Dr. Jeff Hard – National Marine Fisheries Service, Northwest Fisheries Science Center Olaf Langness – Washington Department of Fish and Wildlife Dr. Steve Munch – National Marine Fisheries Service, Southwest Fisheries Science Center Dr. Tom Wainwright – National Marine Fisheries Service (retired), Northwest Fisheries Science Center Eulachon Stakeholder Group The National Marine Fisheries Service also acknowledges the contributions of the Eulachon Stakeholder Group for their time and contributions to this Recovery Plan: Taylor Aalvik, Cowlitz Indian Tribe; John Barco, Bonneville Power Administration; Michael Belchik, Yurok Indian Tribe; Dave Bingaman, Quinault Indian Tribe; Jeff Breckel, Lower Columbia Fish Recovery Board; Bobby Brunoe, Warm Springs Indian Tribe; Joyce Casey, U.S. Army Corps of Engineers; Heather Brekke, Department of Oceans and Fisheries Canada; Cindy LeFleur, Washington Department of Fish and Wildlife; Mike McHenry, Elwha Indian Tribe; Lynn Palensky, Northwest Power and Conservation Council; Brad Pettinger, Oregon Trawl Commission; Kevin Shaffer, California Department of Fish and Wildlife; Tom Rien, Oregon Department of Fish and Wildlife; and Paul Ward, Confederation Tribes and Bands of the Yakama Nation. Recovery Plan Author Robert Anderson – National Marine Fisheries Service, West Coast Region, Protected Resources Division 2017 | National Marine Fisheries Service ESA Recovery Plan: Southern DPS E u l a c h o n | 7 Recovery Plan Development This recovery plan is the product of a collaborative process initiated by NMFS and strengthened through regional and local participation. The goal was to produce a Recovery Plan that would meet NMFS’ ESA requirements for recovery plans as well as broader needs. Throughout the recovery planning process, NMFS collaborated with the states of California, Oregon, and Washington, the Department of Fisheries and Oceans Canada, as well as with other Federal agencies, tribal and local governments, representatives of industry and environmental groups, other stakeholders, and the public. The collaborative process reflects NMFS’ belief that ESA recovery plans should be based on state, regional, tribal, local, and private conservation efforts already underway throughout the region. Local support of recovery plans by those whose activities directly affect the listed species, and whose actions will be most affected by recovery efforts, is essential to recovery plan implementation. NMFS developed this Recovery Plan by synthesizing the best available scientific and commercial data available with input from (1) the Eulachon Recovery Team, and (2) the Eulachon Stakeholder Group. On October 20, 2016, we released the Proposed ESA Recovery Plan for the southern DPS of Eulachon (Draft Recovery Plan), and published a notice of availability in the Federal Register (81 FR 72572) requesting comments. Four comment submissions were received during the 60-day public comments period on the Draft Recovery Plan. We considered all of the public comments received on the Draft Recovery Plan in developing the final version of the Recovery Plan. 2017 | National Marine Fisheries Service ESA Recovery Plan: Southern DPS E u l a c h o n | 8 Table of Contents Disclaimer .................................................................................................................................................. 5 Acknowledgements ................................................................................................................................... 6 Eulachon Recovery Team ........................................................................................................................... 6 Eulachon Stakeholder Group ..................................................................................................................... 6 Recovery Plan Author ................................................................................................................................ 6 Recovery Plan Development ...................................................................................................................... 7 List of Tables ........................................................................................................................................... 11 List of Figures ......................................................................................................................................... 13 Abbreviations and Acronyms ................................................................................................................ 14 Terms and Definitions ........................................................................................................................... 15 EULACHON RECOVERY PLAN—EXECUTIVE SUMMARY .................................................................... 18 Introduction ............................................................................................................................................. 18 Current Status of the DPS ........................................................................................................................ 18 Abundance and Productivity ................................................................................................................... 18 Threats and Limiting Factors ................................................................................................................... 19 Eulachon Recovery—what does recovery look like, and how will we know when we are there? ......... 20 Recovery Strategy .................................................................................................................................. 22 Priority Actions ........................................................................................................................................ 22 Near-Term Research Priorities ................................................................................................................ 23 Recovery Goal, Objectives, and Delisting Criteria ............................................................................... 24 Recovery Goal ........................................................................................................................................
Recommended publications
  • A Global Assessment of Parasite Diversity in Galaxiid Fishes
    diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus.
    [Show full text]
  • BONY FISHES 602 Bony Fishes
    click for previous page BONY FISHES 602 Bony Fishes GENERAL REMARKS by K.E. Carpenter, Old Dominion University, Virginia, USA ony fishes constitute the bulk, by far, of both the diversity and total landings of marine organisms encoun- Btered in fisheries of the Western Central Atlantic.They are found in all macrofaunal marine and estuarine habitats and exhibit a lavish array of adaptations to these environments. This extreme diversity of form and taxa presents an exceptional challenge for identification. There are 30 orders and 269 families of bony fishes presented in this guide, representing all families known from the area. Each order and family presents a unique suite of taxonomic problems and relevant characters. The purpose of this preliminary section on technical terms and guide to orders and families is to serve as an introduction and initial identification guide to this taxonomic diversity. It should also serve as a general reference for those features most commonly used in identification of bony fishes throughout the remaining volumes. However, I cannot begin to introduce the many facets of fish biology relevant to understanding the diversity of fishes in a few pages. For this, the reader is directed to one of the several general texts on fish biology such as the ones by Bond (1996), Moyle and Cech (1996), and Helfman et al.(1997) listed below. A general introduction to the fisheries of bony fishes in this region is given in the introduction to these volumes. Taxonomic details relevant to a specific family are explained under each of the appropriate family sections. The classification of bony fishes continues to transform as our knowledge of their evolutionary relationships improves.
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • History of Fishes - Structural Patterns and Trends in Diversification
    History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external
    [Show full text]
  • Euteleostei: Aulopiformes) and the Timing of Deep-Sea Adaptations ⇑ Matthew P
    Molecular Phylogenetics and Evolution 57 (2010) 1194–1208 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Estimating divergence times of lizardfishes and their allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations ⇑ Matthew P. Davis a, , Christopher Fielitz b a Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA b Department of Biology, Emory & Henry College, Emory, VA 24327, USA article info abstract Article history: The divergence times of lizardfishes (Euteleostei: Aulopiformes) are estimated utilizing a Bayesian Received 18 May 2010 approach in combination with knowledge of the fossil record of teleosts and a taxonomic review of fossil Revised 1 September 2010 aulopiform taxa. These results are integrated with a study of character evolution regarding deep-sea evo- Accepted 7 September 2010 lutionary adaptations in the clade, including simultaneous hermaphroditism and tubular eyes. Diver- Available online 18 September 2010 gence time estimations recover that the stem species of the lizardfishes arose during the Early Cretaceous/Late Jurassic in a marine environment with separate sexes, and laterally directed, round eyes. Keywords: Tubular eyes have arisen independently at different times in three deep-sea pelagic predatory aulopiform Phylogenetics lineages. Simultaneous hermaphroditism evolved a single time in the stem species of the suborder Character evolution Deep-sea Alepisauroidei, the clade of deep-sea aulopiforms during the Early Cretaceous. This result indicates the Euteleostei oldest known evolutionary event of simultaneous hermaphroditism in vertebrates, with the Alepisauroidei Hermaphroditism being the largest vertebrate clade with this reproductive strategy. Divergence times Ó 2010 Elsevier Inc.
    [Show full text]
  • SWFSC Archive
    Stomiiformes Chapter 4 Order Stomiiformes Number of suborders (2) Gonostomatoidei; Phosichthyoidei (= Photichthyoidei, Stomioidei). Stomiiform monophyly was demonstrated by Fink and Weitzman (1982); relationships within the order are not settled, e.g., Harold and Weitzman (1996). Number of families 4 (or 5: Harold [1998] suggested that Diplophos, Manducus, and Triplophos do not belong in Gonostomatidae, and Nelson [2006] provi sionally placed them in a separate family, Diplophidae). Number of genera 53 Number of species approx. 391 GENERAL LIFE HISTORY REF Distribution All oceans. Relative abundance Rare to very abundant, depending on taxon. Adult habitat Small to medium size (to ca. 10-40 cm) inhabitants of epi-, meso-, and bathypelagic zones, some are vertical migrators. EARLY LIFE HISTORY Mode of reproduction All species known or assumed to be oviparous with planktonic eggs and larvae. Knowledge of ELH Eggs known for 9 genera, larvae known for 38 genera. ELH Characters: Eggs: spherical, ca. 0.6-3.6 mm in diameter, commonly with double membrane, yolk segmented, with 0-1 oil globule ca. 0.1-0.4 mm in di ameter, perivitelline space narrow to wide. Larvae: slender and elongate initially but some become deep-bodied (primarily some sternoptychids and stomiids); preanal length ranges from approx. 30%BL to > 70% BL, most commonly > about half BL, some taxa with trailing gut that can be > 100% BL; eyes strongly ellipti cal to round, most commonly elliptical, stalked in some species; spines lacking on head and pectoral girdle except in some sternoptychids; myo- meres range from 29-164, most commonly approx. mid-30's to mid- 60's; photophores form during postflexion and/or transformation stage; pigmentation absent to heavy, most commonly light.
    [Show full text]
  • Field Identification Guide to the Living Marine Resources in Kenya
    Guide to Orders and Families 81 lateral line scales above scales before dorsal fin outer margin smooth outer margin toothed (predorsal scales) lateral–line 114 scales cycloid ctenoidِّ scales circumpeduncular Schematic examples lateral line of typical scales scales below Common scale counts adipose fin finlets soft rays (segmented, spinyunbranched) rays or spines usually branched) (unsegmented, always Example of a continuous Accessory dorsal and anal dorsal fin of a spiny–rayed fish fins: adipose fin and finlets rounded truncate emarginate lunate side front side front from the dorsal and pointed and separated forked pointed soft rays (branched, spines (solid) segments, 2 halves) anal fins Construction Most common types of fin rays of caudal fins 82 Bony Fishes GUIDE TO ORDERS AND FAMILIES Order ELOPIFORMES – Tarpons and allies Fin spines absent; a single dorsal fin located above middle of body; pelvic fins in abdominal position; lateral line present; 23–25 branchiostegal rays; upper jaw extending past eye; tip of snout not overhanging mouth; colour silvery. ELOPIDAE Page 121 very small scales Ladyfishes To 90 cm. Coastal marine waters and estuaries; pelagic. A single species included in the Guide to Species.underside of head large mouth gular plate MEGALOPIDAE Page 121 last ray long Tarpons large scales To 55 cm. Coastal marine waters and estuaries; pelagic. A single species included in the Guide to Species.underside of head gular plate Order ALBULIFORMES – Bonefishes Fin spines absent; a single dorsal fin located above middle of body; pelvic fins in abdominal position; lateral line present; 6–16 branchiostegal rays; upper jaw not extending as far as front of eye; tip of snout overhanging mouth; colour silvery.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • Phylogenetic Perspectives in the Evolution of Parental Care in Ray-Finned Fishes
    Evolution, 59(7), 2005, pp. 1570±1578 PHYLOGENETIC PERSPECTIVES IN THE EVOLUTION OF PARENTAL CARE IN RAY-FINNED FISHES JUDITH E. MANK,1,2 DANIEL E. L. PROMISLOW,1 AND JOHN C. AVISE1 1Department of Genetics, University of Georgia, Athens, Georgia 30602 2E-mail: [email protected] Abstract. Among major vertebrate groups, ray-®nned ®shes (Actinopterygii) collectively display a nearly unrivaled diversity of parental care activities. This fact, coupled with a growing body of phylogenetic data for Actinopterygii, makes these ®shes a logical model system for analyzing the evolutionary histories of alternative parental care modes and associated reproductive behaviors. From an extensive literature review, we constructed a supertree for ray-®nned ®shes and used its phylogenetic topology to investigate the evolution of several key reproductive states including type of parental care (maternal, paternal, or biparental), internal versus external fertilization, internal versus external gestation, nest construction behavior, and presence versus absence of sexual dichromatism (as an indicator of sexual selection). Using a comparative phylogenetic approach, we critically evaluate several hypotheses regarding evolutionary pathways toward parental care. Results from maximum parsimony reconstructions indicate that all forms of parental care, including paternal, biparental, and maternal (both external and internal to the female reproductive tract) have arisen repeatedly and independently during ray-®nned ®sh evolution. The most common evolutionary transitions were from external fertilization directly to paternal care and from external fertilization to maternal care via the intermediate step of internal fertilization. We also used maximum likelihood phylogenetic methods to test for statistical correlations and contingencies in the evolution of pairs of reproductive traits.
    [Show full text]
  • Marine Ecology Progress Series 503:23
    The following supplement accompanies the article 1 Species composition and acoustic signatures of mesopelagic organisms in a subtropical convergence zone, the New Zealand Chatham Rise Stéphane Gauthier1, 2,*, Johannes Oeffner1, Richard L. O’Driscoll1 1National Institute of Water and Atmospheric Research, Private Bag 14-901, Kilbirnie, Wellington, New Zealand 2Fisheries and Oceans Canada, Institute of Ocean Sciences, PO Box 6000, Sidney, British Columbia V8L 4B2, Canada *Corresponding author: [email protected] Marine Ecology Progress Series: 503: 23–40 (2014) Supplement. Additional data Table S1. Species occurrence (Occ.) in number of tows, and abundance in weight (Wt) and number (No.) in successful mid - water trawls. Trawls are separated by voyage and type (daytime mark identification trawls ID, and nighttime oblique tows) Name Order May−June 2008 ID Nov 2011 ID Nov 2011 Oblique Occ. Wt (g) No. Occ. Wt (g) No. Occ. Wt (g) No. Acanthephyra pelagica Decapoda − − − − − − 3 9 3 Acanthephyra quadrispinosa Decapoda − − − − − − 1 7 1 Acanthephyra spp. Decapoda − − − − − − 3 17 4 Agrostichthys parkeri Lampriformes 1 8 1 − − − 3 1813 3 Alainopasiphaea australis Decapoda − − − 3 273 356 14 287 366 Allocyttus niger Zeiformes − − − − − − 1 600 1 Amphipod (unspecified) Amphipoda − − − 1 3 4 8 34 17 Anoplogaster cornuta Beryciformes − − − − − − 1 25 1 Apristurus spp. Carcharhiniformes − − − − − − 1 900 1 Argentina elongata Argentiniformes − − − − − − 4 541 6 Argyropelecus gigas Stomiiformes 2 20 2 2 38 5 8 165 12 Argyropelecus hemigymnus Stomiiformes 4 12 6 1 1 1 1 19 2 Astronesthes spp. Stomiiformes − − − 1 3 3 3 103 3 Atolla wyvillei Coronatae − − − − − − 4 83 7 Bathophilus ater Stomiiformes 1 12 1 − − − − − − Bathylagus spp.
    [Show full text]
  • Checklist of Kansas Fishes
    CHECKLIST OF KANSAS FISHES From "A Checklist of the Vertebrate Animals of Kansas", second edition, 1999, by George Potts, Joseph Collins and Kate Shaw (Species marked with an asterisk * are extirpated from the wild in Kansas.) 142 Species REFERENCE: Fishes in Kansas, 2nd edition, 1995 By Frank Cross and Joseph Collins, KU Press Order of Lampreys (Petromyzontiformes) Family Petromyzontidae Chestnut Lamprey - Ichthyomyzon castaneus Order of Sturgeons and Paddlefish (Acipenseriformes) Family Acipenseridae Lake Sturgeon - Acipenser fulvescens Pallid Sturgeon - Scaphirhynchus albus Shovelnose Sturgeon - Scaphirhynchus platorynchus Family Polyodontidae Paddlefish - Polyodon spathula Order of Gars (Semionotiformes) Family Lepisosteidae Spotted Gar - Lepisosteus oculatus Longnose Gar - Lepisosteus osseus Shortnose Gar - Lepisosteus platostomus Order of Bowfins (Amiiformes) Family Amiidae Bowfin - Amia calva Order of Bony-tongued fishes (Osteoglossiformes) Family Hiodontidae Goldeye - Hiodon alosoides * Mooneye - Hiodon tergisus Order of Eels (Anguilliformes) Family Anguillidae American Eel - Anguilla rostrata Order of Herrings (Clupeiformes) Family Clupeidae Skipjack Herring - Alosa chrysochloris Gizzard Shad - Dorosoma cepedianum Threadfin Shad - Dorosoma petenense Page 1 of 5 Order of Carp-like fishes (Cypriniformes) Family Cyprinidae Central Stoneroller - Campostoma anomalum Goldfish - Carassius auratus Grass Carp - Ctenopharyngodon idella Bluntface Shiner - Cyprinella camura Red Shiner - Cyprinella lutrensis Spotfin Shiner - Cyprinella spiloptera
    [Show full text]
  • Te Arawa Species Report Koaro
    Taonga and mahinga kai of the Te Arawa lakes: a review of current knowledge - Koaro NIWA Client Report: HAM2007-022 July 2007 NIWA Project: TACF062 Taonga and mahinga kai of the Te Arawa lakes: a review of current knowledge - Koaro Dave Rowe Ian Kusabs Prepared for Te Arawa Lakes Trust NIWA Client Report: HAM2007-022 July 2007 NIWA Project: TACF062 National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand Phone +64-7-856 7026, Fax +64-7-856 0151 www.niwa.co.nz All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Contents Acknowledgements iv 1. Introduction 1 2. Origin of k ōaro in the Te Arawa lakes 2 3. Kōaro in the Te Arawa lakes - past and present 6 4. Life history, distribution, movements and habitats 11 5. Prey species, predators and parasites 16 6. Age, growth, fecundity, maturation and population structure 18 7. Environmental tolerances 19 8. Factors affecting k ōaro population size in lakes 20 9. Protection and restoration issues and options 22 10. Critical knowledge gaps 23 11. References 25 Reviewed by: Approved for release by: E. Williams D. Roper Formatting checked Acknowledgements We are grateful for the contributions from the following people: Roku Mihinui and Hera Smith, Te Arawa Lakes Trust.
    [Show full text]