Molts and Plumages of Ducks (Anatinae) Author(S): Peter Pyle Source: Waterbirds, 28(2):208-219

Total Page:16

File Type:pdf, Size:1020Kb

Molts and Plumages of Ducks (Anatinae) Author(S): Peter Pyle Source: Waterbirds, 28(2):208-219 Molts and Plumages of Ducks (Anatinae) Author(s): Peter Pyle Source: Waterbirds, 28(2):208-219. 2005. Published By: The Waterbird Society DOI: http://dx.doi.org/10.1675/1524-4695(2005)028[0208:MAPODA]2.0.CO;2 URL: http://www.bioone.org/doi/ full/10.1675/1524-4695%282005%29028%5B0208%3AMAPODA%5D2.0.CO %3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Molts and Plumages of Ducks (Anatinae) PETER PYLE The Institute for Bird Populations, P.O. Box 1436, Point Reyes Station, CA 94956, USA Internet: [email protected] Abstract.—Ducks are unusual in that males of many species acquire brightly pigmented plumages in autumn rather than in spring. This has led to confusion in defining molts and plumages, using both traditional European terminology and that proposed by Humphrey and Parkes (1959). To investigate molt patterns in waterfowl relative to molt and plumage nomenclature, 2,227 specimens of ducks and geese were examined. Both the “first prebasic” (“post-juvenile” using traditional European terminology) and the “definitive prebasic” (“adult post-breeding”) body molts in most ducks, the latter producing the cryptic spring (female) and summer (male) plumages preceding the wing molt, are considerably more variable and less extensive than reported. By contrast, the “definitive prealter- nate” (“adult pre-breeding”) body molt of most ducks, which follows the wing molt and produces the brightly col- ored plumages of males, is complete or virtually so. Based upon presumed homologies with the molts of geese, the wing molt and ensuing complete body molt of ducks are better considered the prebasic rather than the prealternate molt and, thus, the bright feathering of male ducks should be considered the basic plumage. The incomplete and ephemeral cryptic plumages, attained by some ducks in spring and summer, may have evolved more recently in spe- cies that benefit from camouflage at this time, and should be considered alternate plumages. The molts and plum- ages of the adult Ruddy Duck (Oxyura jamaicensis) appear to be homologous with those of other Anatine ducks, with a slight temporal shift in the hormonal cycles that control pigment deposition (as opposed to differences in molt patterns) explaining the differences in plumage-coloration patterns in males. Because feather pigment-deposition patterns are controlled by various factors related to seasonal and reproductive phenomena, which differ consider- ably both among and within taxa, plumage color should not be a critical factor in attempts to define homologous molts and plumages. Received 25 July 2004, accepted 12 January 2005. Key words.—Anas, Anser, duck, molt terminology, Melanitta, Oxyura jamaicensis, plumage, Ruddy Duck, scoter. Waterbirds 28(2): 208-219, 2005 Among birds, many ducks (Subfamily “summer plumage,” which occurs primarily Anatinae) are unusual in that brightly pig- in winter. Variations of this interpretation mented plumages of males are acquired in have persisted in the literature (Schiøler autumn rather than spring. In boreal spe- 1921; Witherby et al. 1939; Dement’ev and cies, feathers of the wing tracts (including Gladkov 1952; Oberholser 1974; Cramp and the primaries, secondaries, and wing co- Simmons 1977; Marchant and Higgins 1990; verts) are replaced synchronously in the late but see Sutton 1932; Stresemann 1948). summer or early autumn, in between two Consequently, the bright plumages acquired separate molts of body-feather tracts (Cramp in autumn have been referred to as “nuptial” and Simmons 1977; Hohman et al. 1992; or “breeding,” and the cryptic summer Bellrose and Holm 1994). In Anas, Aythya, plumages acquired in spring and summer as and Somateria, the body molt prior to the “eclipsed” or “non-breeding,” despite confu- wing molt occurs in the early spring in fe- sion resulting from the fact that females of males and in the summer in males, often these genera nest in “non-breeding” plum- producing a cryptic plumage that provides age (cf. Cramp and Simmons 1977). camouflage for females during nesting and Humphrey and Parkes (1959) cited such for both sexes during the flightless period confusion in support of their revised molt and accompanying wing molt (Hohman et al. plumage nomenclature, which excluded 1992). Jackson (1915) first suggested that terms correlated with “seasonal, reproductive, this summer body molt in males be aligned developmental, or other phenomena” within with the wing molt to form the complete an- the annual cycle. The “Humphrey-Parkes” (H- nual molt. Because the body feathering pro- P) system attempts to recognize homologous duced by this molt was cryptic, Jackson molts across taxa by defining a “molt cycle” considered it the “winter plumage,” followed (usually a year in boreal species) during which by a partial molt into the brightly pigmented a single complete or near-complete molt oc- 208 MOLTS AND PLUMAGES OF DUCKS 209 curs and is termed the “prebasic molt.” Addi- Despite an extensive literature, gaps re- tional, less-complete inserted molts, defined main in our understanding of the precise tim- by the shedding of feathers more than once ing and extent of molts in ducks (Hohman et within the molt cycle, are termed “prealter- al. 1992). Palmer (1976) described the first nate molts,” and if more than one inserted prebasic (post-juvenile) molt as involving molt occurs, the second inserted molt (de- most or all body feathers; however, the few fined by the replacement of feathers three studies that have critically examined this molt times within the molt cycle) is termed the either have involved captive ducks subjected “presupplemental molt.” Regarding molts in to non-natural feeding and lighting regimes adult ducks, Humphrey and Parkes con- that likely affected molts (Weller 1957, 1970), curred with previous opinion that the spring/ or have found it at most to include only a few summer body molt should be aligned with the feathers of the head or underparts (Mendall wing molt, terming this the complete prebasic 1958; Oring 1968; Bellrose and Holm 1994). (“post-breeding” of traditional European ter- Furthermore, studies such as that of Hoch- minology) molt resulting in “basic plumage,” baum (1944) have suggested that the sum- followed by the partial prealternate (“pre- mer body molt in certain adult ducks, breeding”) molt in autumn resulting in “alter- defined as part of the prebasic or post-breed- nate plumage.” Humphrey and Parkes rea- ing molt, might be limited to a small propor- soned that the bright plumage stage in males tion of feathers or be lacking altogether, such has evolved more recently, and should be con- that males molted directly from one bright sidered the alternate plumage to conform to plumage to the next, without a more cryptic nomenclature in other birds that have bright summer plumage. Humphrey and Parkes seasonal plumages. (1959) and Palmer (1976) acknowledged Palmer (1972) further elaborated upon Hochbaum’s (and other similar) findings, H-P molt and plumage terminology in ducks but did not discuss the discrepancy in H-P ter- and subsequently (Palmer 1976) applied it to minology that results from the replacement the molts and plumages of all North Ameri- of alternate with alternate feathering without can species. Palmer defined duck molts in an intervening basic plumage. the first cycle as consisting of a partial “first To investigate molt phenology in ducks prebasic” (“post-juvenile”) molt of all or relative to molt and plumage terminology, most body feathers in late summer, followed 2,227 specimens of North American ducks rapidly by another partial “first prealternate” and geese (Anserinae), the latter widely con- (“first pre-breeding”) molt of all body feath- sidered ancestral to ducks (Delacour and ers in autumn and winter, resulting in bright Mayr 1945; Palmer 1976), were examined. first-winter plumages in males. The Ruddy The objectives were: (1) to confirm the tim- Duck (Oxyura jamaicensis) differs from other ing and determine the extent of each molt in North American species in that adult males ducks; and (2) to attempt tracing the evolu- acquire bright plumage during a prealter- tion of homologous molts from Anserinae nate molt in spring rather than in autumn, (which lack additional inserted molts) to and the complete prebasic molt consists of Anatinae in order to properly apply molt ter- the wings followed by the body molt in early minology to ducks. autumn (Palmer 1976). The H-P molt and plumage terminology for ducks described by METHODS Palmer (1972, 1976) has been widely accept- Specimens of geese and ducks were examined at the ed in North America (Hohman et al. 1992; California Academy of Sciences (CAS), San Francisco; Poole and Gill 1992-2003), and this sequence the Museum of Vertebrate Zoology (MVZ), University and extent of molts and plumages (albeit of California at Berkeley; the Museum of Wildlife and Fisheries Biology (MWFB), University of California at with different terminologies) has been ac- Davis; the Provincial Museum of Alberta (PMA), Ed- cepted throughout the world (Dement’ev monton; and the National Museum of Natural History and Gladkov 1952; Cramp and Simmons (USNM), Washington, D.C. Specimens examined were collected throughout the year (sample range 119-230 per 1977; Marchant and Higgins 1990).
Recommended publications
  • 'Alae 'Ula (Hawaiian Moorhen)
    NATIVE WATERBIRDS AVIAN NEWCOMERS These newly-created wetlands have been rapidly colonized by native waterbirds, Many non-native birds are attracted to the wetland restoration as well. The including four species that are highly endangered and found only in the Hawaiian long-necked white waders are Cattle Egrets, native to the Old World. Non-native Islands. The ‘Alae ‘Ula, or Hawaiian Moorhen (Gallinula chloropus sandvicensis), songbirds include the Common Myna, White-rumped Shama, two unrelated kinds of and Koloa Maoli, or Koloa Duck (Anas wyvilliana), have by now raised many broods cardinals, and three kinds of doves. Many of these exotic species probably became here, nesting among the native sedges. The Ae‘o, or Hawaiian Stilt (Himantopus established in recent decades as escaped cage birds. Before the accidental mexicanus knudseni), and the Nēnē, or Hawaiian Goose (Branta sandvicensis), stop introduction of mosquitoes in the 19th century and bird diseases they carry, by almost daily to rest and feed. In the morning and evening, watch for the ‘Auku‘u these coastal lowlands were home to native honeycreepers and other native or Black-crowned Night Heron (Nycticorax nycticorax). Long-distance migrants such songbirds, preserved abundantly in the fossil record of Makauwahi Cave. as the Kōlea or Pacific Golden Plover Pluvialis( fulva) stop to rest and often winter here, as part of their annual 10,000-mile migration from breeding grounds in the Arctic to wintering sites in the tropics. Bones of all these bird species occur as fossils in the sediment of adjacent Makauwahi Cave, showing that they have thrived here for thousands of years.
    [Show full text]
  • Diet and Habitat Use of Scoters Melanitta in the Western Palearctic - a Brief Overview
    163 Diet and habitat use of scoters Melanitta in the Western Palearctic - a brief overview A. D. Fox Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, Kalø, Grenåvej 12, DK-8410 Rønde, Denmark. E-mail: tfo@dmu. dk If patterns of scoter distribution and abundance are to be understood, there is a need to know upon which prey items these birds feed, how they obtain these prey items and the habitats from which these food items are most easily harvested. Dietary studies and descriptions of habitats exploited by Common and Velvet Scoter in the non-breeding season are reviewed. The existing literature strongly suggests that, outside of the breeding season, these species forage mainly upon marine bivalve mol­ luscs (especially those less than 4cm long) that live on the surface or within the upper 3cm of clean, coarse, sandy substrates in waters less than 20m deep. Although there is a large energetic cost to diving, han­ dling and crushing such prey prior to digestion, such sedentary prey items often occur in very high densities, offering a locally abundant and predictable feeding resource. Since single species often dominate the diet, but dominant food items differ between feeding areas, it seem s likely that scoters simply take whatever prey is locally available in suffi­ cient abundance to fulfil nutritional needs. Large differences in docu­ mented prey size frequency distributions suggest that scoters may not select for specific prey size classes below an upper digestive limit. However, in the absence of any precise understanding of how scoters obtain their prey, nor any simultaneous studies of available benthic food abundance and size class distributions in scoter diets, it is not possible to confirm if differences simply reflect differences in profitability between different prey at different sites at different times of the year.
    [Show full text]
  • Waterfowl of North America, Revised Edition (2010) Papers in the Biological Sciences
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Waterfowl of North America, Revised Edition (2010) Papers in the Biological Sciences 2010 Waterfowl of North America: Waterfowl Distributions and Migrations in North America Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciwaterfowlna Part of the Ornithology Commons Johnsgard, Paul A., "Waterfowl of North America: Waterfowl Distributions and Migrations in North America" (2010). Waterfowl of North America, Revised Edition (2010). 5. https://digitalcommons.unl.edu/biosciwaterfowlna/5 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Waterfowl of North America, Revised Edition (2010) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Waterfowl Distributions and Migrations in North America The species of waterfowl breeding in North America have distribution patterns that collectively reflect the past geologic and ecological histories of this continent. In general, our waterfowl species may be grouped into those that are limited (endemic) to North America, those that are shared between North and South America, and those that are shared with Europe and/or Asia. Of the forty-four species known to breed in continental North America, the resulting grouping of breeding distributions is as follows: Limited to North America: Snow goose (also on Greenland and Wrangel Island) , Ross goose, Canada goose (also on Greenland), wood duck, Amer­ ican wigeon, black duck, blue-winged teal, redhead, canvasback, ring­ necked duck, lesser scaup, Labrador duck (extinct), surf scoter, bufflehead, hooded merganser.
    [Show full text]
  • International Single Species Action Plan for the Conservation of the Velvet Scoter Melanitta Fusca
    TECHNICAL SERIES No. 67 International Single Species Action Plan for the Conservation of the Velvet Scoter (W Siberia & N Europe/NW Europe Population) Melanitta fusca Supported by: based on a decision of the German Bundestag Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) European Union (EU) International Single Species Action Plan for the Conservation of the Velvet Scoter (W Siberia & N Europe/NW Europe Population) Melanitta fusca AEWA Technical Series No. 67 December 2018 Produced by Lithuanian Ornithological Society (LOD) Wildfowl & Wetlands Trust (WWT) Prepared in the framework of the EuroSAP (LIFE14 PRE/UK/000002) LIFE preparatory project, coordinated by BirdLife International and co-financed by the European Commission Directorate General for the Environment, and the UNEP/AEWA Secretariat, through a grant by the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety of Germany (BMU) AEWA Technical Series No. 67 Adopting Frameworks: Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) European Union (EU) The International Single Species Action Plan for the Conservation of the Velvet Scoter Melanitta fusca (Western Siberia & Northern Europe/North-western Europe population) was prepared in the framework of LIFE EuroSAP (LIFE14 PRE/UK/000002), a LIFE Preparatory project, co-financed by the European Commission Directorate General for the Environment, the Secretariat of the African-Eurasian Migratory Waterbird Agreement (UNEP/AEWA) through a grant provided by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), and by each of the project partners, and coordinated by BirdLife International. Preparation of this Single Species Action Plan was coordinated by the Lithuanian Ornithological Society (LOD) and supported by the Wildfowl & Wetlands Trust (WWT).
    [Show full text]
  • Red-Breasted Merganser Mergus Serrator of California's Three Mergansers, the Red-Breasted Is the Only One with a Preference Fo
    84 Waterfowl — Family Anatidae Red-breasted Merganser Mergus serrator Of California’s three mergansers, the Red-breasted is the only one with a preference for salt water. The Red-breasted Merganser is a common winter visitor on San Diego Bay but much scarcer at other coastal wetlands and rare on inland lakes. Almost all Red- breasted Mergansers reaching San Diego County are females or immatures with white breasts and rusty heads. Winter: San Diego Bay is by far the principal site for the Red-breasted Merganser in San Diego County. In weekly surveys of the central and south bay from April 1993 to April 1994 Manning (1995) recorded an average of about Photo by Anthony Mercieca 70 in January, the peak month, and a maximum of 117 on 21 January 1994. In weekly surveys of the salt works and 1976 to 2002 the Oceanside Christmas bird count aver- adjacent south bay from February 1993 to February 1994 aged 9.1 Red-breasted Mergansers; from 1980 to 2003 the Stadtlander and Konecny (1994) recorded an average of Rancho Santa Fe count averaged 8.8. about 100 in December, the peak month in that study, and Though the Red-breasted is by far the commonest a maximum of 184 on 29 December 1993. From 1997 to merganser along the coast, in San Diego County it is 2002 the maximum reported in a single atlas square was by far the scarcest inland. Nevertheless, atlas observers 45 in southwestern San Diego Bay (U10) 18 December noted at least 14 individuals inland, with up to six at Lake 1998 (P.
    [Show full text]
  • The Migration Strategy, Diet & Foraging Ecology of a Small
    The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment Renata Jorge Medeiros Mirra September 2010 Thesis submitted for the degree of Doctor of Philosophy, Cardiff School of Biosciences, Cardiff University UMI Number: U516649 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U516649 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Declarations & Statements DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed j K>X).Vr>^. (candidate) Date: 30/09/2010 STATEMENT 1 This thasjs is being submitted in partial fulfillment of the requirements for the degree o f ..................... (insertMCh, MD, MPhil, PhD etc, as appropriate) Signed . .Ate .^(candidate) Date: 30/09/2010 STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledgedjjy explicit references. Signe .. (candidate) Date: 30/09/2010 STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.
    [Show full text]
  • Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
    Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A.
    [Show full text]
  • Free Download! the Trumpeter Swan
    G3647 The Trumpeter Swan by Sumner Matteson, Scott Craven and Donna Compton Snow-white Trumpeter Swans present a truly spectac- Swans of the Midwest ular sight. With a wingspan of more than 7 feet and a rumpeter Swans, along with ducks and geese, belong height of about 4 feet, the Trumpeter Swan (Cygnus buc- to the avian Order Anseriformes, Family Anatidae. cinator) ranks as the largest native waterfowl species in T Trumpeters have broad, flat bills with fine tooth-like North America. serrations along the edges which allow them to strain Because the Trumpeter Swan disappeared as a breed- aquatic plants and water. The birds’ long necks and ing bird in the Midwest, several states have launched strong feet allow them to uproot plants in water up to 4 restoration programs to reintroduce it to the region. This feet deep. publication will provide you with background informa- Most Trumpeter Swans weigh 21–30 pounds, tion on the Trumpeter Swan’s status and life history, and although some males exceed the average weight. The on restoration efforts being conducted in the upper male is called a cob; the female is called a pen; and a swan Midwest. in its first year is called a cygnet or juve- nile. The Trumpeter is often con- fused with the far more common Tundra Swan (formerly Whistling Swan, Cygnus columbianus), the only other native swan found routinely in North America. Tundra Swans can be seen in the upper Trumpeter Swan Midwest only during spring and fall migration. You can distinguish between the two native species most accurately by listening to their calls.
    [Show full text]
  • Wild Geese in Captivity by Bob Elgas Big Timber, Montana
    Wild Geese in Captivity by Bob Elgas Big Timber, Montana Man has always been fascinated by, Wild geese were frequently depicted exists, and wild geese have become and has had a close association with, on ancient structures. Indeed, the increasingly popular with avicul­ wild geese. As a result of their ten- Swan goose of China, and the Greylag turists. dency to vocalize an objection to of Europe were domesticated eons Throughout the world there are nocturnal disturbances, the early ago, long before the dawn of written some 15 species of wild geese, with Romans utilized them as watchdogs.. history. Even today the fascination numerous sub-species, all of which are native to the northern hemi­ sphere. Interestingly, there are no true geese in the southern hemisphere. South America is represented by a specialized group known as sheld­ geese, while Africa and Australia are represented by a number of birds with goose-like characteristics. Sheld­ geese are actually modified ducks which, through the evolutionary process, have assumed goose-like similarities. One of the more obvious differences is the dimorphism of sexes characterized by sheldgeese ­ males being of completely different plumage than females. In true geese, both sexes are alike. Although the birds from the southern hemisphere are interesting in their own right, the differences are so great that they can­ not be classified with the true geese. The geese of the northern hemi­ sphere are divided into two groups ­ the genus Anset; which is representa­ tive of the true geese, and the genus A representative ofthe genus Anser is thispair ofEmperorgeese (Anser canagicus).
    [Show full text]
  • The Cycle of the Common Loon (Brochure)
    ADIRONDACK LOONS AND LAKES FOR MORE INFORMATION: NEED YOUR HELP! lthough the Adirondack Park provides A suitable habitat for breeding loons, the summering population in the Park still faces many challenges. YOU CAN HELP! WCS’ Adirondack Loon Conservation Program Keep Shorelines Natural: Help maintain ~The Cycle of the this critical habitat for nesting wildlife and 7 Brandy Brook Ave, Suite 204 for the quality of our lake water. Saranac Lake, NY 12983 Common Loon~ (518) 891-8872, [email protected] Out on a Lake? Keep your distance (~100 feet or more) from loons and other wildlife, www.wcs.org/adirondackloons so that you do not disturb them. The Wildlife Conservation Society’s Adirondack Going Fishing? Loon Conservation Program is dedicated to ∗ Use Non-Lead Fishing Sinkers and improving the overall health of the environment, Jigs. Lead fishing tackle is poisonous to particularly the protection of air and water loons and other wildlife when quality, through collaborative research and accidentally ingested. education efforts focusing on the natural history ∗ Pack Out Your Line. Invisible in the of the Common Loon (Gavia immer) and water, lost or cut fishing line can conservation issues affecting loon populations entangle loons and other wildlife, often and their aquatic habitats. with fatal results. THE WILDLIFE CONSERVATION SOCIETY IS Be an Environmentally Wise Consumer: GRATEFUL TO ITS COLLABORATORS FOR THEIR Many forms of environmental pollution SUPPORT OF THE LOON PROGRAM: result from the incineration of fossil Natural History Museum of the Adirondacks - fuels, primarily from coal-fired power The W!ld Center plants and vehicles, negatively affecting www.wildcenter.org A guide to the seasonal Adirondack ecosystems and their wild NYS Dept.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • A 2010 Supplement to Ducks, Geese, and Swans of the World
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible.
    [Show full text]