Botanical Name Common Name Origin Family

Total Page:16

File Type:pdf, Size:1020Kb

Botanical Name Common Name Origin Family Botanical List Prepared by: Arielle J. Simon Corner Park: 401 Hampton Lane Horticultural Advisor Botanical Name Common Name Origin Family Abutilon pictum fireball, red vein flowering maple South America Malvaceae Acacia choriophylla cinnecord Florida native Fabaceae Acalypha hispida chenille plant Oceania Euphorbiaceae Acalypha pendula firetail, trailing chenille plant Cuba Euphorbiaceae Aloysia virgata sweet almond bush Tropical America Verbenaceae Anthurium hookeri 'Ruffles' bird's nest anthurium Guyana, Caribbean Araceae Arachis glabrata perennial peanut South America Fabaceae Arachnothryx leucophylla Panama rose, huele de noche Mexico to Panama Rubiaceae Ardisia escallonioides marlberry Florida native Myrsinaceae Asclepias curassavica Mexican milkweed Tropical America Asclepiadaceae Blechnum serrulatum swamp fern Florida native Blechnaceae Bourreria cassinifolia little strongback Florida native Boraginaceae Brachychiton acerifolius Australian flame tree N Australia Malvaceae Brunfelsia pauciflora 'Compacta' yesterday, today, tomorrow South America Fabaceae Byrsonima lucida locust-berry Florida native Malpighiaceae Caesalpinia granadillo bridal veil Venezuela Fabaceae Calliandra haematocephala 'Alba' white powder-puff Cultivated from Bolivia Fabaceae Calliandra surinamensis pink powder-puff N South America Fabaceae Calyptranthes pallens spicewood Florida native Myrtaceae Cananga odorata ylang-ylang India, SE Asia to N Australia Annonaceae Canella winterana wild cinnamon bark Florida native Canellaceae Capparis cynophallophora Jamaican caper Florida native Capparaceae Carpoxylon macrospermum Carpoxylon Vanuatu Arecaceae Cassia roxburghii Ceylon senna Sri Lanka, S India Fabaceae Ceiba speciosa silk floss tree Brazil, Argentina Malvaceae Chambeyronia macrocarpa red feather palm New Caledonia Arecaceae Chrysobalanus icaco 'Horizontal' horizontal cocoplum Florida native Chrysobalanaceae Clusia lanceolata porcelain flower Brazil, Venezuela Clusiaceae Coccothrinax alta Puerto Rican thatch palm Puerto Rico, the Virgin Islands Arecaceae Coccothrinax argentata Florida silver palm Florida native Arecaceae Coccothrinax borhidiana yuraguano Cuba Arecaceae Coccothrinax crinita grandfather palm Cuba Arecaceae Codiaeum variegatum 'Franklin Roosevelt' croton 'Franklin Roosevelt' Cultivated Euphorbiaceae Codiaeum variegatum 'Stop Light' croton 'Stop Light' Cultivated Euphorbiaceae Coreopsis lanceolata lanceleaf tickseed Florida native Asteraceae March 2017 Botanical List Prepared by: Arielle J. Simon Corner Park: 401 Hampton Lane Horticultural Advisor Botanical Name Common Name Origin Family Coreopsis leavenworthii Leavenworth's tickseed Florida native Asteraceae Cuphea hyssopifolia Mexican heather Mexico, Guatemala Lythraceae Cuphea schumannii orange cigar plant Mexico Lythraceae Dictyosperma album princess palm, hurricane palm Mascarene Islands Arecaceae Dombeya x 'Seminole' tropical hydrangea hybridized from Madagascar Malvaceae Duranta erecta golden dewdrop Florida native Verbenaceae Dypsis cabadae cabada palm Madagascar Arecaceae Epidendrum radicans fire star orchid, reed orchid Tropical America Orchidaceae Erithalis fruticosa black torch Florida native Rubiaceae Ernodea littoralis golden creeper Florida native Rubiaceae Ernodea cokeri Coker's creeper Florida native Rubiaceae Eugenia confusa red-berry stopper Florida native Myrtaceae Eugenia foetida Spanish stopper Florida native Myrtaceae Eugenia rhombea red stopper Florida native Myrtaceae Farfugium japonicum variety giganteum green leopard plant Japan Asteraceae Flaveria linearis yellowtop Florida native Asteraceae Gaillardia pulchella blanket flower Florida native Asteraceae Gardenia taitensis 'Mini' dwarf Tahitian gardenia W Polynesia Rubiaceae Guaiacum sanctum lignum vitae Florida native Zygophyllaceae Hamelia patens firebush Florida native Rubiaceae Heterocentron elegans Spanish shawl S Mexico to El Salvador Melastomataceae Hyophorbe lagenicaulis bottle palm Mauritius Arecaceae Jacaranda mimosifolia Jacaranda NW Argentina to Brazil Bignoniaceae Jacquinia keyensis joewood Florida native Theophrastaceae Justicia brandegeeana red shrimp plant Mexico Acanthaceae Justicia fulvicoma Mexican shrimp plant Central America Acanthaceae Lantana camara lantana Tropical America, naturalized in FL Verbenaceae Lantana involucrata wild sage Florida native Verbenaceae Leucothrinax morrisii Keys thatch palm Florida native Arecaceae Lonchocarpus violaceus West Indian lilac N South America Fabaceae Majidea zanguebarica mgambo tree, black pearl tree Kenya, E Africa Sapindaceae Malpighia coccigera miniature holly Caribbean Malpighiaceae Melochia tomentosa teabush Florida native Malvaceae Michelia alba white champaca, pakalana Java Magnoliaceae Millingtonia hortensis Indian cork tree SE Asia Bignoniaceae March 2017 Botanical List Prepared by: Arielle J. Simon Corner Park: 401 Hampton Lane Horticultural Advisor Botanical Name Common Name Origin Family Mimosa strigillosa sensitive plant, sunshine Mimosa Florida native Fabaceae Muhlenbergia capillaris muhly grass Florida native Poaceae Muhlenbergia dumosa bamboo muhly grass SW United States, Mexico Poaceae Myrcianthes fragrans Simpson's stopper Florida native Myrtaceae Myrcianthes fragrans 'Ingram's Sport' variegated Simpson's stopper Florida native Myrtaceae Nephrolepis exaltata sword fern, native Boston fern Florida native Nephrolepidaceae Passiflora suberosa corkystem passionflower Florida native Passifloraceae Pentas lanceolata Egyptian starclusters E Africa Rubiaceae Phyla nodiflora frogfruit, creeping Charlie Florida native Verbenaceae Phyllanthus myrtifolius 'Cascade' mousetail plant Cultivated Phyllanthaceae Picramnia pentandra bitterbush Florida native Simaroubaceae Pilea serpyllacea 'Stoplight' artillery plant South America Urticaceae Pimenta dioica allspice Tropical America Myrtaceae Pimenta racemosa bay rum West Indies Myrtaceae Pithecellobium keyense blackbead Florida native Fabaceae Pityopsis graminifolia silk grass Florida native Asteraceae Plumeria 'Chocolate Delight' frangipani, flor de mayo Cultivated from Tropical America Apocynaceae Plumeria 'Salmon Jack' frangipani, flor de mayo Cultivated from Tropical America Apocynaceae Portlandia grandiflora bell flower Jamaica Rubiaceae Portlandia proctorii crimson portlandia Jamaica Rubiaceae Portulaca oleracea purslane Persia Portulacaceae Psychotria ligustrifolia Bahama wild coffee Florida native Rubiaceae Ptychosperma elegans Alexander palms Australia Arecaceae Randia aculeata white indigoberry Florida native Rubiaceae Ruellia squarrosa water bluebell Mexico Acanthaceae Salvia coccinea tropical sage Florida native Lamiaceae Salvia leucantha Mexican bush sage Mexico Lamiaceae Sedum hakonense 'Chocolate Ball' stonecrop Cultivated Crassulaceae Senna alata candlestick senna Tropical America Fabaceae Senna mexicana variety chapmanii Bahama senna Florida native Fabaceae Serenoa repens saw palmetto Florida native Arecaceae Sesuvium portulacastrum sea purslane Florida native Aizoaceae Solidago odora subspecies chapmanii Chapman's goldenrod Florida native Asteraceae Stachytarpheta jamaicensis porterweed Florida native Verbenaceae Stemmadenia litoralis milky way tree, lechoso Mexico to Colombia Apocynaceae March 2017 Botanical List Prepared by: Arielle J. Simon Corner Park: 401 Hampton Lane Horticultural Advisor Botanical Name Common Name Origin Family Suriana maritima bay cedar Florida native Surianaceae Tabebuia 'St. Lucie' trumpet tree Cultivated from Caribbean Bignoniaceae Tabebuia bahamensis five fingers Bahamas, Cuba Bignoniaceae Tabebuia heterophylla pink trumpet tree Caribbean Bignoniaceae Tecoma stans yellow elder Tropical America Bignoniaceae Thrinax radiata Florida thatch palm Florida native Arecaceae Tripsacum floridana Florida gamagrass Florida native Poaceae Vallesia antillana pearl berry Florida native Apocynaceae Verbena bonariensis Brazilian vervain South America Verbenaceae Zamia pumila coontie Florida native Zamiaceae March 2017.
Recommended publications
  • Nature Policy Plan
    Ministry of Public Housing, Spatial Planning, Environment And Infrastructure Ministerie van Volkshuisvesting, Ruimtelijke Ordening, Milieu en Infrastructuur Nature Policy Plan 2021 – 2025 Established/Approved: Date: By: i Nature Policy Plan Sint Maarten 2021 – 2025 “We the people of Sint Maarten: RESOLVED to provide for the continuing preservation of nature and the environment”. Constitution of Sint Maarten ii Nature Policy Plan Sint Maarten 2021 – 2025 Nature Policy Plan Sint Maarten 2021 – 2025 Ministry of Public Housing, Spatial Planning, Environment and Infrastructure (Ministry of VROMI) Address: Government of Sint Maarten Ministry of VROMI Soualiga Road #1 Pond Island, Great Bay Sint Maarten Contact: [email protected] [email protected] iii Nature Policy Plan Sint Maarten 2021 – 2025 Lignum Vitae (Guaiacum officinale) iv Photo by: Mark Yokoyama Nature Policy Plan Sint Maarten 2021 – 2025 Acknowledgments In writing the Nature Policy Plan Sint Maarten 2021 – 2025, the Ministry of VROMI consulted several government ministries, and external stakeholders including private sector entities and NGO’s. Some were engaged in the preparation of the policy from the onset; others were part of a review of the policy and stakeholder meetings. The Ministry of VROMI acknowledges and appreciates the time and effort of the stakeholders who contributed to the formulation of this Nature Policy Plan, which provides insights into the current state of affairs of nature on Sint Maarten and the proposed way forward on nature conservation
    [Show full text]
  • Appendix A: Consultation and Coordination
    APPENDIX A: CONSULTATION AND COORDINATION Virgin Islands National Park July 2013 Caneel Bay Resort Lease This page intentionally left blank Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-1 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-2 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-3 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-4 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-5 Virgin Islands National Park July 2013 Caneel Bay Resort Lease A-6 APPENDIX B: PUBLIC INVOLVEMENT Virgin Islands National Park July 2013 Caneel Bay Resort Lease This page intentionally left blank Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-1 Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-2 Virgin Islands National Park July 2013 Caneel Bay Resort Lease B-3 APPENDIX C: VEGETATION AND WILDLIFE ASSESSMENTS Virgin Islands National Park July 2013 Caneel Bay Resort Lease VEGETATION AND WILDLIFE ASSESSMENTS FOR THE CANEEL BAY RESORT LEASE ENVIRONMENTAL ASSESSMENT AT VIRGIN ISLANDS NATIONAL PARK ST. JOHN, U.S. VIRGIN ISLANDS Prepared for: National Park Service Southeast Regional Office Atlanta, Georgia March 2013 TABLE OF CONTENTS Page LIST OF FIGURES ...................................................................................................................... ii LIST OF TABLES ........................................................................................................................ ii LIST OF ATTACHMENTS ......................................................................................................
    [Show full text]
  • Introduction to the Geography, Geology, Climate and Flora Habitats of Culebra Culebra Flora & Fauna Digital Database and Indexes Flora of Culebra, Puerto Rico
    Introduction to the Geography, Geology, Climate and Flora Habitats of Culebra, Puerto Rico by: Manuel H. Dubón A Fundación Mi Terruño Flora Series Publication 2015 Edition Fundación Mi Terruño [FMT] – Culebra, Puerto Rico Introduction to the Geography, Geology, Climate and Flora Habitats of Culebra Culebra Flora & Fauna Digital Database and Indexes Flora of Culebra, Puerto Rico © Manuel H. Dubón Introduction The experience of appreciating the subtropical Flora and Fauna of Culebra affords visitors and residents a unique opportunity to enjoy a very special personal experience of both a visual and spiritual dimensions. Nature is a God given gift to be enjoyed today, shared, and conserved for our future generations. The FMT Culebra Flora and Fauna Digital Photographic Databases are published by Fundación Mi Terruño, Inc. (FMT) with special permission and license from its author and amateur photographer, Manuel H. Dubón. The database presents and describes the flora found within the land site of a proposed sustainable resort-residential development of advance design designated as Villa Mi Terruño (VMT). It has been expanded to cover general flora of Culebra. FMT publishes this photographic website to offer Culebra residents, our island visitors, guest from Puerto Rico or afar and website visitors a visual and learning experience as they enjoy the Flora of Culebra in its entire splendor. It will hopefully enrich the visitors and residents life experience as they appreciate and better understand their subtropical environment in the Caribbean island of Culebra. The Flora Digital Database will also allow website visitors, students and professional and amateur naturalist to do research and enjoy a specialized photographic database of the dry subtropical Flora of Culebra with ample references.
    [Show full text]
  • Flaveria Pringlei (C3) Andflaveria Trinervia (C4) Under Nacl Stress
    BIOLOGIAPLANTARUM 37 (1): 65-70, 1995 Flaveria pringlei (C3) and Flaveria trinervia (C4) under NaCI stress P. APEL, M. PEISKER, E. PFUNDEL and K.MISIHLE* Institut fi~r Pflanzengenetik und Kulturpflanzenforschung, Corrensstrafle 3, Gatersleben, D-06466, Germany Institut far Geophysik und Geologie der Universitdt Leipzig, Abt. Geochemm, Permoserstrafle 15, Letpztg, D-04303, Germany* Abstract The C 4 species Flaveria trinervia is obviously better adapted to saline environments than the C 3 species F pringlei, Treatment with 100 mM NaCl diminished crop growth rate in F. pringlei by 38 % but not in F. tnnervia. Under saline conditions, more assimilates were invested in leaf growth in F. trinervia but not in F. pringlei. Electrolyte concentration in F trinervia in control and salt treated plants is lower than in F. pringlei. Fluorescence data do not indicate a damage of PS 2 charge separation in both species. Whether the C 4 photosynthetic pathway in F. trinervia is responsible for the improved salt tolerance compared to F pringlei remains an open question. Key words: assimilates, clilorophyll, electrolytes, fluorescence, growth analysis, isotope discrimination, photosystem2, stomata Introduction The saline environments could have been an ecological niche which 'favoured genotypes exhibiting C 4 photosynthesis. Distribution of C 4 Atriplex species and their obvious preference of saline habitats support this assumption (Osmond et aL 1980). Powell (1978) reported in his monography of the genus Flaveria (Asteraceae) the salinity of natural habitats of F. australasica (C4), F. campestris (C4), F. trinervia (C4), F brownii (C4-1ike), F. chloraefolia (C3-C4), F. flondana (C3-C4) and F. oppositifolia (C3-C4). Although adaptation to salinity is a complex phenomenon (for review see e.g.
    [Show full text]
  • Ethnographic Assessment and Overview National Park of American Samoa
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 152 ETHNOGRAPHIC ASSESSMENT AND OVERVIEW NATIONAL PARK OF AMERICAN SAMOA November 2006 Jocelyn Linnekin1, Terry Hunt, Leslie Lang and Timothy McCormick 1 Email: [email protected]. Department of Anthropology, University of Connecticut Beach Hall Room 445, U-2176 354 Mansfield Road Storrs, Connecticut 06269-2176 Ethnographic Assessment and Overview The National Park of American Samoa Table of Contents List of Tables and Figures iii List of Slides v Preface: Study Issues vi Maps vii Key to Maps x I. The Environmental Context 1 Climate and Vegetation 1 The National Park Environments 4 II. Archaeology and Samoan Prehistory 8 Early Settlement 8 Later Inland Settlement 9 Late Prehistoric Period 9 European Contact and the Historical Period 10 Archaeology in the National Park Units 10 III. Research Methodology 15 Documentary Phase 15 Field Research 15 Limitations of the Research 17 IV. Ethnohistory 22 Myths and Legends Relevant to the Park 22 The European Contact Period 25 Western Ethnohistorical and Ethnographic Reports 31 V. Agriculture and Domestically Useful Plants 46 Tutuila Unit 46 Ta'u Unit 49 Ofu Unit 51 Summary 52 VI. Marine Resources 53 Tutuila Unit 53 Ta'u Unit 57 Ofu Unit 58 Summary 61 i VII. Medicinal Plants 63 Ofu Unit 63 Ta'u Unit 66 Tutuila Unit 66 Summary 67 VIII. Analysis of Freelist Data 75 Crops and Cultivated Plants 76 Medicinal Plants 81 Fish and Marine Species 84 Animals and Birds 86 Summary of the Freelist Results 88 IX.
    [Show full text]
  • Flaveria' Received for Publication February 21, 1986 R
    Plant Physiol. (1986) 82, 211-217 0032-0889/86/82/0211/07/$0 1.00/0 Photosynthesis of F1 Hybrids between C4 and C3-C4 Species of Flaveria' Received for publication February 21, 1986 R. HAROLD BROWN, CAROLE L. BASSETT, RANDALL G. CAMERON, PHILIP T. EVANS, JOSEPH H. BOUTON*, CLANTON C. BLACK, JR., LEONEL O'REILLY STERNBERG, AND MICHAEL J. DENIRO Department ofAgronomy (R.H.B., P.T.E., J.H.B., R.G.C.) and Department ofBiochemistry (C.C.B.), University ofGeorgia, Athens, Georgia 30602; Richard Russell Research Center, United States Department ofAgriculture, Agricultural Research Service, Athens, Georgia (C.L.B.); Department of Biology, University ofMiami, Coral Gables, Florida 33124 (L.O'R.S.); and Department ofEarth and Space Sciences and Archaeology Program, University ofCalifornia, Los Angeles, California 90024 (M.J.D.) ABSTRACT not been found which are closely enough related to produce highly fertile offspring. But species have been discovered in Photosynthetic characteristics were studied in several F, hybrids be- several genera which have photosynthetic and leaf anatomical tween C4 and C3-C4 species of Flaveria. Stable carbon isotope ratios, 02 characteristics intermediate between C3 and C4 species (C3-C4) inhibition of apparent photosynthesis, and phosphoenolpyruvate carbox- (11, 20, 22). These intermediate characteristics may indicate ylase activities in the hybrids were similar to the means for the parents. closer phylogenetic relationships with C4 species and greater Values of CO2 compensation concentrations were nearer to those of the success in hybridization. Because C3-C4 species in most cases fix C4 parent and apparent photosynthesis was below that of both parents, CO2 exclusively by the C3 cycle (10, 11, 20, 29), hybrids between being only 60 and 74% of that of the lowest (C3-C4) parent in two C4 and C3-C4 species may be useful in understanding genetic experiments.
    [Show full text]
  • St. John and Cinnamon Bay
    United States Department of A Summary of 20 Years Agriculture Forest Service of Forest Monitoring in Cinnamon Bay Watershed, International Institute St. John, U.S. Virgin Islands of Tropical Forestry General Technical Peter L. Weaver Report IITF–34 Author Peter L. Weaver, Research Forester, U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry, Jardín Botánico Sur, 1201 Calle Ceiba, San Juan, PR 00926-1119. Cover photos Top right: The island’s attractive scenery prompted President Eisenhower to authorize the establishment of the Virgin Islands National Park as a sanctuary of natural beauty in 1956. Left: A hiker looks up at large Ceiba trees (Ceiba pentandra) at an interpretative stop on one of the many hiking trails scattered throughout Virgin Islands National Park. Bottom right: Picturesque Cruz Bay Harbor with government house situated on a narrow peninsula. All photos in report by Peter L. Weaver. October 2006 International Institute of Tropical Forestry Jardín Botánico Sur 1201 Calle Ceiba San Juan, PR 00926-1119 A Summary of 20 Years of Forest Monitoring in Cinnamon Bay Watershed, St. John, U.S. Virgin Islands Peter L. Weaver Abstract St. John, and probably the Cnnamon Bay watershed, has a hstory of human use datng to 1700 B.C. The most notable mpacts, however, occurred from 1730 to 1780 when sugar cane and cotton producton peaked on the sland. As agrculture was abandoned, the sland regenerated n secondary forest, and n 1956, the Vrgn Islands Natonal Park was created. From 1983 to 2003, the staff of the Internatonal Insttute of Trop cal Forestry montored 16 plots, stratfied by elevaton and topography, n the Cnnamon Bay watershed.
    [Show full text]
  • Molecular and Morphological Support for a Florida Origin of the Cuban
    Journal of Biogeography (J. Biogeogr.) (2011) SPECIAL Molecular and morphological support ISSUE for a Florida origin of the Cuban oak Paul F. Gugger* and Jeannine Cavender-Bares Department of Ecology, Evolution and ABSTRACT Behavior, University of Minnesota, 100 Ecology Aim The origins of the Cuban biota are of long-standing interest in Building, 1987 Upper Buford Circle, Saint Paul, MN, USA biogeography, and the source of a small live oak (Quercus series Virentes) population on Cuba remains unresolved. Based on morphological evidence, previous authors have hypothesized a Florida origin from either Q. geminata or Q. virginiana or both; a Mexican origin from Q. oleoides; or a hybrid origin from both sources. We use molecular data and taxonomically informative leaf morphology to identify the source species and timing of colonization. Location Cuba, Central America, Mexico and the south-eastern United States. Methods We collected representative samples of Cuban oaks and each putative source species and genotyped each sample at 12 nuclear microsatellites and two chloroplast DNA sequences. We estimated population structure using a Bayesian clustering analysis and F-statistics, pairwise migration rates among taxa, and divergence time using an isolation-with-migration model. We measured seven leaf traits and conducted an analysis of similarity (ANOSIM) to determine which putative source species was most similar to Cuban oaks. Results Cuban oak contains one chloroplast DNA haplotype, which is common in southern Florida. Bayesian clustering analysis of microsatellites revealed that the Cuban oak forms a distinct and pure population cluster, and F-statistics showed that Cuban oaks are differentiated least from Q. virginiana and most from Q.
    [Show full text]
  • Non-Invasive Landscape Plants with Fragrant Flowers
    Ornamentals and Flowers Feb. 2010 OF-46 Non-invasive Landscape Plants with Fragrant Flowers Patti Clifford1 and Kent Kobayashi2 1Hawaii Invasive Species Council, 2CTAHR Department of Tropical Plant and Soil Sciences eeds are not friends to my garden. They cause To have a plant screened by one of the Hawaii Inva- more work and displace the flowers or vegetables sive Species Council’s weed risk assessment specialists, thatW I am trying to grow. But I do understand that in e-mail [email protected]. our multicultural world, a weed to one person may be a medicine, food, or ornamental to another. Plants have Characteristics of invasive plants many uses to humans; that is why we transport them with Many of the attributes that we appreciate in our garden us as we traverse the planet. and landscape plants contribute to their ability to invade In Hawai‘i, many of the native plants are endemic— natural and agricultural ecosystems. These include they are not found anywhere else in the world. This rarity • rapid growth has made them vulnerable to impacts from non-native • early maturity species. Some of the plants introduced here from other • heavy seed production regions become weeds and displace the native plants. • vegetative reproduction (i.e., pieces of roots, stems, While invasive weeds may cause trouble in my garden, or leaves can break off and grow into new plants; this they create havoc in Hawai‘i’s delicate native ecosystems. can happen when green waste or plant trimmings are Hawai‘i’s natural ecosystems have one of the worst discarded) weed problems in the world.
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Flórula Vascular De La Sierra De Catorce Y Territorios Adyacentes, San Luis Potosi, México
    Acta Botanica Mexicana 78: 1-38 (2007) FLÓRULA VASCULAR DE LA SIERRA DE CATORCE Y TERRITORIOS ADYACENTES, SAN LUIS POTOSI, MÉXICO ONÉSIMO GONZÁLEZ COSTILLA1,2, JOAQUÍN GIMÉNEZ DE AZCÁRATE3, JOSÉ GARCÍA PÉREZ1 Y JUAN RogELIO AGUIRRE RIVERA1 1Universidad Autónoma de San Luis Potosí, Instituto de Investigación de Zonas Desérticas, Altair 200, Fraccionamiento El Llano, Apdo. postal 504, 78377 San Luis Potosí, México. 2Universidad Complutense de Madrid, Departamento de Biología Vegetal II, Facultad de Farmacia, Madrid, España. [email protected] 3Universidad de Santiago de Compostela, Departamento de Botánica, Escuela Politécnica Superior, 27002 Lugo, España. RESUMEN La Sierra de Catorce, localizada en el norte del estado de San Luis Potosí, reúne algunas de las principales cimas del Desierto Chihuahuense cuyas cotas superan los 3000 metros. Ello ha favorecido que la Sierra sea una importante área de diversificación de la flora y las fitocenosis de dicha ecorregión. A partir del estudio fitosociológico de la vegetación del territorio, que se está realizando desde 1999, se ha obtenido un catálogo preliminar de su flora. Hasta el momento la lista de plantas vasculares está conformada por 526 especies y cuatro taxa infraespecíficos, agrupados en 293 géneros y 88 familias. Las familias y géneros mejor representados son Asteraceae, Poaceae, Cactaceae, Fabaceae, Fagaceae y Lamiaceae, así como Quercus, Opuntia, Muhlenbergia, Salvia, Agave, Bouteloua y Dyssodia, respectivamente. Asimismo se señalan los tipos de vegetación representativos del área que albergan los diferentes taxa. Por último, con base en diferentes listas de flora amenazada, se identificaron las especies incluidas en alguna de las categorías reconocidas. Palabras clave: Desierto Chihuahuense, estudio fitosociológico, flora, flora ame- nazada, México, San Luis Potosí, Sierra de Catorce.
    [Show full text]
  • Pollen Evidence for Plant Introductions in a Polynesian Tropical Island Ecosystem, Kingdom of Tonga 253
    Pollen evidence for plant introductions in a Polynesian tropical island ecosystem, Kingdom of Tonga 253 14 Pollen evidence for plant introductions in a Polynesian tropical island ecosystem, Kingdom of Tonga Patricia L. Fall School of Geographical Sciences, Arizona State University, Tempe, United States [email protected] Introduction The dynamic nature of tropical Pacific ecosystems results from chance migrations and the evolution of founder species, as well as from physical factors such as changes in sea level, ocean currents, tectonic processes and climate (Hope 2001). In addition, this region’s vegetation is constantly adjusting through succession to local perturbations like landslides and tropical cyclones. These ecological and physical processes are compounded by continued immigration of new species, competition, extinctions and extirpation of species. For many island ecosystems the most dramatic impact on species composition results from the arrival of humans and their ‘co-voyaging’ plants and animals (Hope 2001). The degree to which climatic or other natural variations, versus human impacts, have caused recent environmental fluctuations in island ecosystems is an ongoing debate (cf. Nunn 1994; Burney 1997). In this paper, I examine palynological evidence for plants introduced to several islands in the three main island groups of Tongatapu, Ha’apai and Vava’u in the Kingdom of Tonga. My purpose is to briefly document the history of the tropical rainforests of Tonga as they can be reconstructed from pollen cores, to understand the role that humans played in the development of the Tongan flora, and to discuss plant introductions to the islands by both Polynesian and later European settlers. Losses or increases in plant species on remote islands are controlled by many factors, including habitat change, natural factors, and loss of dispersers or pollinators.
    [Show full text]