VESTIBULAR SYSTEM (Balance/Equilibrium) the Vestibular Stimulus Is Provided by Earth's Gravity, and Head/Body Movement. Locate

Total Page:16

File Type:pdf, Size:1020Kb

VESTIBULAR SYSTEM (Balance/Equilibrium) the Vestibular Stimulus Is Provided by Earth's Gravity, and Head/Body Movement. Locate VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth’s gravity, and head/body movement. Located in the labyrinths of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular canals - angular acceleration (changes in the rotation of the head, not steady rotation) 1. Vestibular sacs (Otolith organs) - made of: a) Utricle (“little pouch”) b) Saccule (“little sac”) Signaling mechanism of Vestibular sacs Receptive organ located on the “floor” of Utricle and on “wall” of Saccule when head is in upright position - crystals move within gelatinous mass upon head movement; - crystals slightly bend cilia of hair cells also located within gelatinous mass; - this increases or decreases rate of action potentials in bipolar vestibular sensory neurons. Otoconia: Calcium carbonate crystals Gelatinous mass Cilia Hair cells Vestibular nerve Vestibular ganglion 2. Semicircular canals: 3 ring structures; each filled with fluid, separated by a membrane. Signaling mechanism of Semicircular canals -head movement induces movement of endolymph, but inertial resistance of endolymph slightly bends cupula (endolymph movement is initially slower than head mvmt); - cupula bending slightly moves the cilia of hair cells; - this bending changes rate of action potentials in bipolar vestibular sensory neurons; - when head movement stops: endolymph movement continues for slightly longer, again bending the cupula but in reverse direction on hair cells which changes rate of APs; - detects “acceleration” in all 3 planes semicircular Ampulla Cross- canal section Cross- section Perilymph Membrane Cupula Hair Endolymph cells Vestibular nerve Vestibular Ganglion 3. Vestibular pathway to the nervous system: - vestibular bipolar sensory cell bodies located in vestibular ganglion, which looks like a nodule (enlargement) on the vestibular nerve - axons from vestibular neurons get together with axons of the spiral ganglion (auditory) and give rise to vestibulocochlear nerve = VIII cranial nerve - vestibular axons synapse within vestibular nuclei in medulla, and in cerebellum; - vestibular neurons send axons to cerebellum, spinal cord, medulla and pons - medullary responses to vestibular stimulation involved in motion sickness (nausea, emesis) - responsible for controlling neck muscles for keeping head upright - controls eye movement; compensates for sudden head movement = Vestibulo-Ocular Reflex (VOR) Chap. 8- 4 Nerves out of the “vestibule” . and entering the brain AUDITORY SYSTEM (Hearing) I. AUDITORY (ACOUSTIC) STIMULUS - waves of energy = sound waves - propagates through: gases (air), liquids (water), and solids (metals) 1 cycle Intensity (loudness): measured on a logarithmic scale (decibels, dB); very sensitive & wide range - range: 0 - 160+ dB (>140 dB = painful) Frequency: Normal range (humans): 20-20,000 cps - cps = cycles per seconds = Hertz (Hz) - frequency = pitch - ex., women’s voice higher pitch than men’s - range gets considerably narrower with age Complexity: additivity of simple waves gives rise to complex waves - most sounds are complex waves that can be analyzed with Fourier transform analysis into their component simple waves. II. EAR A. OUTER EAR a. Pinna (external ear) b. Ear canal Hammer Ossicles (middle Anvil Stirrup}ear bones) Oval window Auditory nerve Bone Cochlea Vestibule Ear canal Tympanic Round membrane Pinna window Eustachian tube (connects with throat) B. MIDDLE EAR a. Eardrum (tympanic membrane) b. Ossicles 1. Hammer 2. Anvil 3. Stirrup C. INNER EAR = COCHLEA C. COCHLEA a. Oval window b. Round window c. Endolymph d. Cochlear duct - contains Organ of Corti 1. Tectorial membrane (top) 2. Basilar membrane (bottom) 3. Hair cells Tectorial Cilia of Inner membrane hair cell hair cell Outer (rigid) hair cells Deiter’s cells Cochlear Axons of auditory nerve duct Basilar membrane - mobile Organ of Corti Cochlear nerve Spiral ganglion Bone Membrane surrounding cochlea Slice through cochlea Signaling mechanism for hearing: - sound waves produce movement of basilar membrane; - movement of basilar membrane induce movement of cilia of hair cells; - cilia movement increase or decrease polarization of hair cells, which increase or decrease neurotransmitter release onto axon terminals of bipolar auditory neurons; - this increases or decreases action potentials in bipolar auditory neurons. - it is the inner hair cells that provide the auditory signal to the brain; - the outer hair cells are believed to control the “tightness” of the basilar membrane, and therefore provide some modulation of hearing. D. CODING OF FREQUENCY: Pitch (frequency) perception: 1. Place coding a. Different spots on basilar membrane vibrate to different frequencies (Fig. A above) b. Works for moderate to high frequencies, 100-200 to 20,000 Hz; - near oval window (base): very high frequencies (20,000 Hz) - near apex: moderate frequencies (100-200 Hz) 2. Rate coding a. Frequency of sound waves over a large portion of basilar membrane = frequency of action potentials b. Works for low frequency sounds (below about 100-200 Hz) Chap. 8- 8 E. CODING OF INTENSITY (LOUDNESS): Determined by action potential frequency; ex. soft sound = fewer AP, loud sound = more AP F. CODING OF SOUND LOCALIZATION: Based on: 1. Arrival time: ex., click sound generated to the left arrives at left ear first 2. Phase difference: ex., continuous sound waves will reach each ear at slightly different phases of the oscillating sound waves - these mechanisms work best with sounds of moderate frequencies 3. Intensity difference: ex., sound generated to the left are sensed slightly louder on the left side - this mechanism works best with sounds of high frequencies Note. Low frequencies (< 100 Hz) are nearly impossible to localize (that’s why you need only one “sub-woofer” in a home-theater system) G. AUDITORY SYSTEM PATHWAY Spiral ganglion - contains bipolar neurons - receive information from hair cells - send their axons to brain via VIII nerve (auditory component of vestibulocochear nerve) Lateral fissure Auditory cortex Forebrain Thalamus: Medial geniculate body Midbrain Inferior colliculus Dorsal cochlear nucleus Lateral lemniscus Ventral cochlear nucleus Trapezoid Medulla body Auditory nerve Superior (VIII nerve) olivary complex Frequency organization kept throughout auditory system all the way to auditory cortex.
Recommended publications
  • Vestibular Sensory Dysfunction: Neuroscience and Psychosocial Behaviour Overview
    DOI: 10.21277/sw.v2i6.263 VESTIBULAR SENSORY DYSFUNCTION: NEUROSCIENCE AND PSYCHOSOCIAL BEHAVIOUR OVERVIEW Brigita Kreivinienė Dolphin Assisted Therapy Center, Klaipėda University, Lithuania Abstract The objective of the submitted contribution is to describe one of the sensory dysfunctions – the dysfunction of the vestibular system. The vestibular system is a crucial sensory system for other sensory systems such as tactile and proprioception, as well as having tight connection to the limbic system. Vestibular sensory system has a significant role for further physical, emotional and psychosocial development. Descriptive method and case analysis are applied in literature based research methodology. These methods are most appropriate as far the vestibular dysfunctions are not always recognized in young age even though they are seen as high psychoemotional reactions (psychosocial behavior). The vestibular dysfunctions in young age can be scarcely noticeable as far more often they tend to look like “just high emotional reactions” as crying, withdrawal, attachment to mother etc. which could be sensed as a normal reaction of a young child. Detailed vestibular sensory dysfunction analysis is presented, as well as the explanation of the neurological processes, and predictions are made for the further possible interventions. Keywords: vestibular dysfunction, neuroscience, psychosocial behavior. Introduction Some problems, such as broken bones, cerebral palsy or poor eyesight are obvious. Others, such as underlying poor behavior or slow learning are not so obvious. The issues, such as awkward walking, fear of other children, complicated socialization, unsecured feeling at school, avoidance of swings or climbing, slapping on the floor or to any other object, attachment to mother, sensitivity to changes in walking surfaces, preference on the same footwear (if changed, often falling/takes time to adapt), aggression to others, stimulation of head rotation, hyperactivity or constant distraction by light, smell, sound etc., and any others can have underlying sensory issues.
    [Show full text]
  • Sound and the Ear Chapter 2
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter© Jones & Bartlett 2 Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Sound and the Ear © Jones Karen &J. Kushla,Bartlett ScD, Learning, CCC-A, FAAA LLC © Jones & Bartlett Learning, LLC Lecturer NOT School FOR of SALE Communication OR DISTRIBUTION Disorders and Deafness NOT FOR SALE OR DISTRIBUTION Kean University © Jones & Bartlett Key Learning, Terms LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR Acceleration DISTRIBUTION Incus NOT FOR SALE OR Saccule DISTRIBUTION Acoustics Inertia Scala media Auditory labyrinth Inner hair cells Scala tympani Basilar membrane Linear scale Scala vestibuli Bel Logarithmic scale Semicircular canals Boyle’s law Malleus Sensorineural hearing loss Broca’s area © Jones & Bartlett Mass Learning, LLC Simple harmonic© Jones motion (SHM) & Bartlett Learning, LLC Brownian motion Membranous labyrinth Sound Cochlea NOT FOR SALE OR Mixed DISTRIBUTION hearing loss Stapedius muscleNOT FOR SALE OR DISTRIBUTION Compression Organ of Corti Stapes Condensation Osseous labyrinth Tectorial membrane Conductive hearing loss Ossicular chain Tensor tympani muscle Decibel (dB) Ossicles Tonotopic organization © Jones Decibel & hearing Bartlett level (dB Learning, HL) LLC Outer ear © Jones Transducer & Bartlett Learning, LLC Decibel sensation level (dB SL) Outer hair cells Traveling wave theory NOT Decibel FOR sound SALE pressure OR level DISTRIBUTION
    [Show full text]
  • Guide to Sensory Processing.Pdf
    Guide to Sensory Processing Prepared by Allison Travnik, MSOTS Level II Fieldwork Student Project Kavitha N Krishnan MS OTR/L Fieldwork Instructor Sensory Processing In order to understand what is going on around us, we need to organize all of the incoming sensory information (Ayres, 2005). The sensory information involves what we see, smell, taste, hear, feel on our body, where our body is in relation to others, and how well we are balanced. This is a lot of information that our brains need to process in order to engage in productive behavior, learn, and form accurate perceptions. Proprioceptive Where are body is in space Tactile Auditory What we feel The noise on our skin around us Sensory Smell Processing The Sight difference What we see scents around us around us Oral Sensory Processing Vestibular The sensations Jean Ayres developed the sensory Our sense of Disorder + balance that food give integration (SI) theory. SI gives us in our mouth meaning to what our senses are recognizing. When the sensations are not being organized properly may notice some of the same qualities in the brain, Ayres compared it to about yourself.It is important to a traffic jam. The traffic jam of remember that everyone has some sensory information can lead to quirks about their sensory processing learning difficulties and problem whether it be a sensitivity to loud behavior (Ayres, 2005). Children noises or dislike of light touch. with Sensory Processing Disorder However the identification of SPD is (SPD) are struggling with this reserved for individuals whose traffic jam. sensory quirks are outside of the Sensory processing is a typical range and affect their daily dynamic and complex theory.
    [Show full text]
  • How Does the Balance System Work?
    How Does the Balance System Work? Author: Shannon L.G. Hoffman, PT, DPt Sara MacDowell PT, DPT Fact Sheet Many systems work together to help you keep your balance. The goal is to keep your body and vision stable Peripheral Sensory Systems: 1) Vision: Your vision helps you see where your head and body are in rela- tion to the world around you. 2) Somatosensory/Proprioception: We use the feeling from our feet against the ground as well as special sensors in our joints to know where our feet and legs are positioned. It also tells how your head is oriented to your neck and shoulders. Produced by 3) Vestibular system: Balance organs in the inner ear tell the brain about the movements and position of your head. There are 3 canals in each ear that sense when you move your head and help keep your vision clear. Central Processing: Information from these 3 systems is sent to the brain for processing. The brain stem also gets information from other parts of the brain called the cerebellum and cerebral cortex, mostly about past experiences that have A Special Interest affected your sense of balance. Your brain can control balance by using Group of the information that is most important for a certain situation. For example, in the dark, when you can’t use your vision, your brain will use more information from your legs and feet and your inner ear. If you are walking on a sandy beach during the day, you can’t trust your feet on the ground and your brain will use your eyes and inner ear more.
    [Show full text]
  • Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
    Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder
    [Show full text]
  • The Standing Acoustic Wave Principle Within the Frequency Analysis Of
    inee Eng ring al & ic d M e e d Misun, J Biomed Eng Med Devic 2016, 1:3 m i o c i a B l D f o e v DOI: 10.4172/2475-7586.1000116 l i a c n e r s u o Journal of Biomedical Engineering and Medical Devices J ISSN: 2475-7586 Review Article Open Access The Standing Acoustic Wave Principle within the Frequency Analysis of Acoustic Signals in the Cochlea Vojtech Misun* Department of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic Abstract The organ of hearing is responsible for the correct frequency analysis of auditory perceptions coming from the outer environment. The article deals with the principles of the analysis of auditory perceptions in the cochlea only, i.e., from the overall signal leaving the oval window to its decomposition realized by the basilar membrane. The paper presents two different methods with the function of the cochlea considered as a frequency analyzer of perceived acoustic signals. First, there is an analysis of the principle that cochlear function involves acoustic waves travelling along the basilar membrane; this concept is one that prevails in the contemporary specialist literature. Then, a new principle with the working name “the principle of standing acoustic waves in the common cavity of the scala vestibuli and scala tympani” is presented and defined in depth. According to this principle, individual structural modes of the basilar membrane are excited by continuous standing waves of acoustic pressure in the scale tympani. Keywords: Cochlea function; Acoustic signals; Frequency analysis; The following is a description of the theories in question: Travelling wave principle; Standing wave principle 1.
    [Show full text]
  • Morphological and Functional Changes in a New Animal Model Of
    Laboratory Investigation (2013) 93, 1001–1011 & 2013 USCAP, Inc All rights reserved 0023-6837/13 Morphological and functional changes in a new animal model of Me´nie`re’s disease Naoya Egami1, Akinobu Kakigi1, Takashi Sakamoto1, Taizo Takeda2, Masamitsu Hyodo2 and Tatsuya Yamasoba1 The purpose of this study was to clarify the underlying mechanism of vertiginous attacks in Me´nie`re’s disease (MD) while obtaining insight into water homeostasis in the inner ear using a new animal model. We conducted both histopatho- logical and functional assessment of the vestibular system in the guinea-pig. In the first experiment, all animals were maintained 1 or 4 weeks after electrocauterization of the endolymphatic sac of the left ear and were given either saline or desmopressin (vasopressin type 2 receptor agonist). The temporal bones from both ears were harvested and the extent of endolymphatic hydrops was quantitatively assessed. In the second experiment, either 1 or 4 weeks after surgery, animals were assessed for balance disorders and nystagmus after the administration of saline or desmopressin. In the first experiment, the proportion of endolymphatic space in the cochlea and the saccule was significantly greater in ears that survived for 4 weeks after surgery and were given desmopressin compared with other groups. In the second experiment, all animals that underwent surgery and were given desmopressin showed spontaneous nystagmus and balance disorder, whereas all animals that had surgery but without desmopressin administration were asymptomatic. Our animal model induced severe endolymphatic hydrops in the cochlea and the saccule, and showed episodes of balance disorder along with spontaneous nystagmus.
    [Show full text]
  • Auditory System & Hearing
    Auditory System & Hearing Chapters 9 part II Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Cochlea: physical device tuned to frequency! • place code: tuning of different parts of the cochlea to different frequencies 2 The auditory nerve (AN): fibers stimulated by inner hair cells • Frequency selectivity: Clearest when sounds are very faint 3 Threshold tuning curves for 6 neurons (threshold = lowest intensity that will give rise to a response) Characteristic frequency - frequency to which the neuron is most sensitive threshold(dB) frequency (kHz) 4 Information flow in the auditory pathway • Cochlear nucleus: first brain stem nucleus at which afferent auditory nerve fibers synapse • Superior olive: brainstem region thalamus MGN in the auditory pathway where inputs from both ears converge • Inferior colliculus: midbrain nucleus in the auditory pathway • Medial geniculate nucleus (MGN): part of the thalamus that relays auditory signals to the cortex 5 • Primary auditory cortex (A1): First cortical area for processing audition (in temporal lobe) • Belt & Parabelt areas: areas beyond A1, where neurons respond to more complex characteristics of sounds 6 Basic Structure of the Mammalian Auditory System Comparing overall structure of auditory and visual systems: • Auditory system: Large proportion of processing before A1 • Visual system: Large proportion of processing after V1 7 Basic Structure of the Mammalian Auditory System Tonotopic organization: neurons organized spatially in order of preferred frequency •
    [Show full text]
  • Common Vestibular Function Tests
    Common Vestibular Function Tests Authors: Barbara Susan Robinson, PT, DPT; Lisa Heusel-Gillig PT DPT NCS Fact Sheet The purpose of Vestibular Function Tests (VFTs) is to determine the health of the vestibular portion of the inner ear. These tests are commonly performed by ENTs, Audiologists, and Otolaryngologists Electronystagmography or Videonystagmography Electronystagmography (ENG test) or Videonystagmography (VNG test) evaluate the inner ear. Both record eye movements during a group of tests in light and dark rooms. During the ENG test, small electrodes are placed on the skin near the eyes to record eye movements. For the VNG test, eye movements are recorded by a video camera mounted inside of goggles that are worn during testing. ENG and VNG tests evaluate eye movements while following a visual target (tracking Produced by test) or during body and head position changes (positional test). The caloric test evaluates eye movements in response to cool or warm air (or water) placed in the ear canal. If there is no response to warm or cool air or water, ice water may be used in order to try to produce a response. The caloric test determines the difference between the function of the left and right inner ear. During this test, you may experience dizziness or nausea. You may be asked questions (math questions, city names, alphabet tasks) to distract you in order to get the best results. A Special Interest Group of Contact us: ANPT Other Common Vestibular Function Tests 5841 Cedar Lake Rd S. The rotary chair test is used along with the VNG to confirm the diagnosis and assess Ste 204 compensation of the vestibular system.
    [Show full text]
  • Vestibular Neuritis, Labyrinthitis, and a Few Comments Regarding Sudden Sensorineural Hearing Loss Marcello Cherchi
    Vestibular neuritis, labyrinthitis, and a few comments regarding sudden sensorineural hearing loss Marcello Cherchi §1: What are these diseases, how are they related, and what is their cause? §1.1: What is vestibular neuritis? Vestibular neuritis, also called vestibular neuronitis, was originally described by Margaret Ruth Dix and Charles Skinner Hallpike in 1952 (Dix and Hallpike 1952). It is currently suspected to be an inflammatory-mediated insult (damage) to the balance-related nerve (vestibular nerve) between the ear and the brain that manifests with abrupt-onset, severe dizziness that lasts days to weeks, and occasionally recurs. Although vestibular neuritis is usually regarded as a process affecting the vestibular nerve itself, damage restricted to the vestibule (balance components of the inner ear) would manifest clinically in a similar way, and might be termed “vestibulitis,” although that term is seldom applied (Izraeli, Rachmel et al. 1989). Thus, distinguishing between “vestibular neuritis” (inflammation of the vestibular nerve) and “vestibulitis” (inflammation of the balance-related components of the inner ear) would be difficult. §1.2: What is labyrinthitis? Labyrinthitis is currently suspected to be due to an inflammatory-mediated insult (damage) to both the “hearing component” (the cochlea) and the “balance component” (the semicircular canals and otolith organs) of the inner ear (labyrinth) itself. Labyrinthitis is sometimes also termed “vertigo with sudden hearing loss” (Pogson, Taylor et al. 2016, Kim, Choi et al. 2018) – and we will discuss sudden hearing loss further in a moment. Labyrinthitis usually manifests with severe dizziness (similar to vestibular neuritis) accompanied by ear symptoms on one side (typically hearing loss and tinnitus).
    [Show full text]
  • Use of Calcium-Binding Proteins to Map Inputs in Vestibular Nuclei of the Gerbil
    THE JOURNAL OF COMPARATIVE NEUROLOGY 386:317–327 (1997) Use of Calcium-Binding Proteins to Map Inputs in Vestibular Nuclei of the Gerbil GOLDA ANNE KEVETTER* AND ROBERT B. LEONARD Departments of Otolaryngology, Anatomy and Neurosciences, and Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555 ABSTRACT We wished to determine whether calbindin and/or calretinin are appropriate markers for vestibular afferents, a population of neurons in the vestibular nuclear complex, or cerebellar Purkinje inputs. To accomplish this goal, immunocytochemical staining was observed in gerbils after lesions of the vestibular nerve central to the ganglion, the cerebellum, or both. Eleven to fourteen days after recovery, the brain was processed for immunocytochemical identification of calretinin and calbindin. After lesion of the vestibular nerve, no calretinin staining was seen in any of the vestibular nuclei except for a population of intrinsic neurons, which showed no obvious change in number or staining pattern. Calbindin staining was reduced in all nuclei except the dorsal part of the lateral vestibular nuclei. The density of staining of each marker, measured in the magnocellular medial vestibular nucleus, was signifi- cantly reduced. After the cerebellar lesion, no differences in calretinin staining were noted. However, calbindin staining was greatly reduced in all nuclei. The density of staining, measured in the caudal medial vestibular nucleus, was significantly lower. After a combined lesion of the cerebellum and vestibular nerve, the distribution and density of calretinin staining resembled that after vestibular nerve section alone, whereas calbindin staining was no longer seen. This study demonstrates that calretinin and calbindin are effective markers for the identification of vestibular afferents.
    [Show full text]
  • Cranial Nerves 1, 5, 7-12
    Cranial Nerve I Olfactory Nerve Nerve fiber modality: Special sensory afferent Cranial Nerves 1, 5, 7-12 Function: Olfaction Remarkable features: – Peripheral processes act as sensory receptors (the other special sensory nerves have separate Warren L Felton III, MD receptors) Professor and Associate Chair of Clinical – Primary afferent neurons undergo continuous Activities, Department of Neurology replacement throughout life Associate Professor of Ophthalmology – Primary afferent neurons synapse with secondary neurons in the olfactory bulb without synapsing Chair, Division of Neuro-Ophthalmology first in the thalamus (as do all other sensory VCU School of Medicine neurons) – Pathways to cortical areas are entirely ipsilateral 1 2 Crania Nerve I Cranial Nerve I Clinical Testing Pathology Anosmia, hyposmia: loss of or impaired Frequently overlooked in neurologic olfaction examination – 1% of population, 50% of population >60 years Aromatic stimulus placed under each – Note: patients with bilateral anosmia often report nostril with the other nostril occluded, eg impaired taste (ageusia, hypogeusia), though coffee, cloves, or soap taste is normal when tested Note that noxious stimuli such as Dysosmia: disordered olfaction ammonia are not used due to concomitant – Parosmia: distorted olfaction stimulation of CN V – Olfactory hallucination: presence of perceived odor in the absence of odor Quantitative clinical tests are available: • Aura preceding complex partial seizures of eg, University of Pennsylvania Smell temporal lobe origin
    [Show full text]