Auditory Nerve.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fibroblast Growth Factor (Fgf) Implication in the Neonatal Development of the Cochlear Innervation G
FIBROBLAST GROWTH FACTOR (FGF) IMPLICATION IN THE NEONATAL DEVELOPMENT OF THE COCHLEAR INNERVATION G. Després, I. Jalenques, R. Romand To cite this version: G. Després, I. Jalenques, R. Romand. FIBROBLAST GROWTH FACTOR (FGF) IMPLICATION IN THE NEONATAL DEVELOPMENT OF THE COCHLEAR INNERVATION. Journal de Physique IV Proceedings, EDP Sciences, 1992, 02 (C1), pp.C1-173-C1-176. 10.1051/jp4:1992134. jpa-00251205 HAL Id: jpa-00251205 https://hal.archives-ouvertes.fr/jpa-00251205 Submitted on 1 Jan 1992 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C1, suppICment au Journal de Physique 111, Volume 2, avril 1992 FIBROBLAST GROWMI FACTOR (FGF) IMPLICATION IN TIlE NEONATAL DEVELOPMENT OF THE COCIiLEAR INNERVATION G. DESPR~S,I. JALENQUES and R. ROMAND Laboratoire de Neurobiolc@e et Physwlogie du Dkeloppement, Universite'BIaise Pascal, F-63177Aubi2re ceder, France The presence of fibroblast growth factor-like protein has been investigated on cryostat sections from Sprague Dawley rat cochleae and auditory brainstem nuclei of various neonatal stages by indirect immunofluorescence and immunoperoxydase techniques with an antibody directed against the 1-24 amino-acid sequence of brain derived basic FGF. -
Guide to Sensory Processing.Pdf
Guide to Sensory Processing Prepared by Allison Travnik, MSOTS Level II Fieldwork Student Project Kavitha N Krishnan MS OTR/L Fieldwork Instructor Sensory Processing In order to understand what is going on around us, we need to organize all of the incoming sensory information (Ayres, 2005). The sensory information involves what we see, smell, taste, hear, feel on our body, where our body is in relation to others, and how well we are balanced. This is a lot of information that our brains need to process in order to engage in productive behavior, learn, and form accurate perceptions. Proprioceptive Where are body is in space Tactile Auditory What we feel The noise on our skin around us Sensory Smell Processing The Sight difference What we see scents around us around us Oral Sensory Processing Vestibular The sensations Jean Ayres developed the sensory Our sense of Disorder + balance that food give integration (SI) theory. SI gives us in our mouth meaning to what our senses are recognizing. When the sensations are not being organized properly may notice some of the same qualities in the brain, Ayres compared it to about yourself.It is important to a traffic jam. The traffic jam of remember that everyone has some sensory information can lead to quirks about their sensory processing learning difficulties and problem whether it be a sensitivity to loud behavior (Ayres, 2005). Children noises or dislike of light touch. with Sensory Processing Disorder However the identification of SPD is (SPD) are struggling with this reserved for individuals whose traffic jam. sensory quirks are outside of the Sensory processing is a typical range and affect their daily dynamic and complex theory. -
Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder -
Projections from the Trigeminal Nuclear Complex to the Cochlear Nuclei: a Retrograde and Anterograde Tracing Study in the Guinea Pig
Journal of Neuroscience Research 78:901–907 (2004) Projections From the Trigeminal Nuclear Complex to the Cochlear Nuclei: a Retrograde and Anterograde Tracing Study in the Guinea Pig Jianxun Zhou and Susan Shore* Department of Otolaryngology and Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan In addition to input from auditory centers, the cochlear cuneate nucleus innervation of cochlear nucleus has been nucleus (CN) receives inputs from nonauditory centers, hypothesized to convey information about head and pinna including the trigeminal sensory complex. The detailed position for the purpose of localizing a sound source in anatomy, however, and the functional implications of the space (Young et al., 1995). In addition, interactions be- nonauditory innervation of the auditory system are not tween somatosensory and auditory systems have been fully understood. We demonstrated previously that the linked increasingly to phantom sound perception, also trigeminal ganglion projects to CN, with terminal labeling known as tinnitus. This is demonstrated in the observa- most dense in the marginal cell area and secondarily in tions that injuries of the head and neck region can lead to the magnocellular area of the ventral cochlear nucleus the onset of tinnitus in patients with no hearing loss (VCN). We continue this line of study by investigating the (Lockwood et al., 1998). projection from the spinal trigeminal nucleus to CN in We demonstrated previously projections from the guinea pig. After injections of the retrograde tracers Flu- trigeminal ganglion to CN in guinea pigs (Shore et al., oroGold or biotinylated dextran amine (BDA) in VCN, 2000). Terminal labeling of trigeminal ganglion projec- labeled cells were found in the spinal trigeminal nuclei, tions to the CN was found to be most dense in the most densely in the pars interpolaris and pars caudalis marginal cell area and secondarily in the magnocellular with ipsilateral dominance. -
5.1. Structure of the Spiral Ganglion
CHAPTER 5. INNERVATION OF THE ORGAN OF CORTI The investigation of nerve components of the acoustic system’s periph- eral part is so difficult methodologically that a whole series of questions which were solved long ago during the investigation of the other sensory system have not yet been clarified. The basic difficulty for the morphologists lies in the fact that the organ of Corti, together with its nerve elements, is located within the osseous tissue. In addition, it is in the shape of a spirally involut- ed geometrical figure. These structural peculiarities create considerable dif- ficulties during the determination of the connections between the types of peripheral and central neuron’s processes and bodies of the spiral ganglion of the cochlea. Therefore, most of the work on the cochlea’s innervation and the computation of the different element’s quantity demands an application of special methods, including graphical reconstruction of the serial sections. The Golgi method was and still remains the basic histological method of the organ of Corti’s innervation study, which has been supplemented by the cochlea’s electron-microscope investigations in the normal conditions and during the experimentally induced degenerations. 5.1. Structure of the spiral ganglion The neurons which innervate the auditory receptor cells form a spiral ganglion: a nerve-knot of the VIII pair’s acoustic part of the craniocerebral nerves. The ganglion fills the Rosental’s canal in the cochlea’s axis and re- peats the number of its spiral turns. The ganglionic neuron has, as a rule, a widened body with two processes: peripheral and central (Diagram 7). -
Auditory Neuropathy After Damage to Cochlear Spiral Ganglion Neurons
www.nature.com/scientificreports OPEN Auditory Neuropathy after Damage to Cochlear Spiral Ganglion Neurons in Mice Resulting from Conditional Received: 27 July 2016 Accepted: 15 June 2017 Expression of Diphtheria Toxin Published online: 25 July 2017 Receptors Haolai Pan1, Qiang Song1, Yanyan Huang1, Jiping Wang1, Renjie Chai2, Shankai Yin1 & Jian Wang 1,3 Auditory neuropathy (AN) is a hearing disorder characterized by normal cochlear amplifcation to sound but poor temporal processing and auditory perception in noisy backgrounds. These defcits likely result from impairments in auditory neural synchrony; such dyssynchrony of the neural responses has been linked to demyelination of auditory nerve fbers. However, no appropriate animal models are currently available that mimic this pathology. In this study, Cre-inducible diphtheria toxin receptor (iDTR+/+) mice were cross-mated with mice containing Cre (Bhlhb5-Cre+/−) specifc to spiral ganglion neurons (SGNs). In double-positive ofspring mice, the injection of diphtheria toxin (DT) led to a 30–40% rate of death for SGNs, but no hair cell damage. Demyelination types of pathologies were observed around the surviving SGNs and their fbers, many of which were distorted in shape. Correspondingly, a signifcant reduction in response synchrony to amplitude modulation was observed in this group of animals compared to the controls, which had a Cre− genotype. Taken together, our results suggest that SGN damage following the injection of DT in mice with Bhlhb5-Cre+/− and iDTR+/− is likely to be a good AN model of demyelination. Auditory neuropathy (AN) is a hearing disorder characterized as having normal cochlear microphonic (CM) potentials and otoacoustic emissions (OAEs), but largely reduced or missing auditory brainstem responses (ABRs). -
Auditory System & Hearing
Auditory System & Hearing Chapters 9 part II Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Cochlea: physical device tuned to frequency! • place code: tuning of different parts of the cochlea to different frequencies 2 The auditory nerve (AN): fibers stimulated by inner hair cells • Frequency selectivity: Clearest when sounds are very faint 3 Threshold tuning curves for 6 neurons (threshold = lowest intensity that will give rise to a response) Characteristic frequency - frequency to which the neuron is most sensitive threshold(dB) frequency (kHz) 4 Information flow in the auditory pathway • Cochlear nucleus: first brain stem nucleus at which afferent auditory nerve fibers synapse • Superior olive: brainstem region thalamus MGN in the auditory pathway where inputs from both ears converge • Inferior colliculus: midbrain nucleus in the auditory pathway • Medial geniculate nucleus (MGN): part of the thalamus that relays auditory signals to the cortex 5 • Primary auditory cortex (A1): First cortical area for processing audition (in temporal lobe) • Belt & Parabelt areas: areas beyond A1, where neurons respond to more complex characteristics of sounds 6 Basic Structure of the Mammalian Auditory System Comparing overall structure of auditory and visual systems: • Auditory system: Large proportion of processing before A1 • Visual system: Large proportion of processing after V1 7 Basic Structure of the Mammalian Auditory System Tonotopic organization: neurons organized spatially in order of preferred frequency • -
Direct Projections from Cochlear Nuclear Complex to Auditory Thalamus in the Rat
The Journal of Neuroscience, December 15, 2002, 22(24):10891–10897 Direct Projections from Cochlear Nuclear Complex to Auditory Thalamus in the Rat Manuel S. Malmierca,1 Miguel A. Mercha´n,1 Craig K. Henkel,2 and Douglas L. Oliver3 1Laboratory for the Neurobiology of Hearing, Institute for Neuroscience of Castilla y Leo´ n and Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain, 2Wake Forest University School of Medicine, Department of Neurobiology and Anatomy, Winston-Salem, North Carolina 27157-1010, and 3University of Connecticut Health Center, Department of Neuroscience, Farmington, Connecticut 06030-3401 It is known that the dorsal cochlear nucleus and medial genic- inferior colliculus and are widely distributed within the medial ulate body in the auditory system receive significant inputs from division of the medial geniculate, suggesting that the projection somatosensory and visual–motor sources, but the purpose of is not topographic. As a nonlemniscal auditory pathway that such inputs is not totally understood. Moreover, a direct con- parallels the conventional auditory lemniscal pathway, its func- nection of these structures has not been demonstrated, be- tions may be distinct from the perception of sound. Because cause it is generally accepted that the inferior colliculus is an this pathway links the parts of the auditory system with prom- obligatory relay for all ascending input. In the present study, we inent nonauditory, multimodal inputs, it may form a neural have used auditory neurophysiology, double labeling with an- network through which nonauditory sensory and visual–motor terograde tracers, and retrograde tracers to investigate the systems may modulate auditory information processing. -
Common Vestibular Function Tests
Common Vestibular Function Tests Authors: Barbara Susan Robinson, PT, DPT; Lisa Heusel-Gillig PT DPT NCS Fact Sheet The purpose of Vestibular Function Tests (VFTs) is to determine the health of the vestibular portion of the inner ear. These tests are commonly performed by ENTs, Audiologists, and Otolaryngologists Electronystagmography or Videonystagmography Electronystagmography (ENG test) or Videonystagmography (VNG test) evaluate the inner ear. Both record eye movements during a group of tests in light and dark rooms. During the ENG test, small electrodes are placed on the skin near the eyes to record eye movements. For the VNG test, eye movements are recorded by a video camera mounted inside of goggles that are worn during testing. ENG and VNG tests evaluate eye movements while following a visual target (tracking Produced by test) or during body and head position changes (positional test). The caloric test evaluates eye movements in response to cool or warm air (or water) placed in the ear canal. If there is no response to warm or cool air or water, ice water may be used in order to try to produce a response. The caloric test determines the difference between the function of the left and right inner ear. During this test, you may experience dizziness or nausea. You may be asked questions (math questions, city names, alphabet tasks) to distract you in order to get the best results. A Special Interest Group of Contact us: ANPT Other Common Vestibular Function Tests 5841 Cedar Lake Rd S. The rotary chair test is used along with the VNG to confirm the diagnosis and assess Ste 204 compensation of the vestibular system. -
Vestibular Neuritis, Labyrinthitis, and a Few Comments Regarding Sudden Sensorineural Hearing Loss Marcello Cherchi
Vestibular neuritis, labyrinthitis, and a few comments regarding sudden sensorineural hearing loss Marcello Cherchi §1: What are these diseases, how are they related, and what is their cause? §1.1: What is vestibular neuritis? Vestibular neuritis, also called vestibular neuronitis, was originally described by Margaret Ruth Dix and Charles Skinner Hallpike in 1952 (Dix and Hallpike 1952). It is currently suspected to be an inflammatory-mediated insult (damage) to the balance-related nerve (vestibular nerve) between the ear and the brain that manifests with abrupt-onset, severe dizziness that lasts days to weeks, and occasionally recurs. Although vestibular neuritis is usually regarded as a process affecting the vestibular nerve itself, damage restricted to the vestibule (balance components of the inner ear) would manifest clinically in a similar way, and might be termed “vestibulitis,” although that term is seldom applied (Izraeli, Rachmel et al. 1989). Thus, distinguishing between “vestibular neuritis” (inflammation of the vestibular nerve) and “vestibulitis” (inflammation of the balance-related components of the inner ear) would be difficult. §1.2: What is labyrinthitis? Labyrinthitis is currently suspected to be due to an inflammatory-mediated insult (damage) to both the “hearing component” (the cochlea) and the “balance component” (the semicircular canals and otolith organs) of the inner ear (labyrinth) itself. Labyrinthitis is sometimes also termed “vertigo with sudden hearing loss” (Pogson, Taylor et al. 2016, Kim, Choi et al. 2018) – and we will discuss sudden hearing loss further in a moment. Labyrinthitis usually manifests with severe dizziness (similar to vestibular neuritis) accompanied by ear symptoms on one side (typically hearing loss and tinnitus). -
Diseases of the Brainstem and Cranial Nerves of the Horse: Relevant Examination Techniques and Illustrative Video Segments
IN-DEPTH: NEUROLOGY Diseases of the Brainstem and Cranial Nerves of the Horse: Relevant Examination Techniques and Illustrative Video Segments Robert J. MacKay, BVSc (Dist), PhD, Diplomate ACVIM Author’s address: Alec P. and Louise H. Courtelis Equine Teaching Hospital, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610; e-mail: mackayr@ufl.edu. © 2011 AAEP. 1. Introduction (pons and cerebellum) and myelencephalon (me- This lecture focuses on the functions of the portions dulla oblongata). Because the diencephalon was of the brainstem caudal to the diencephalon. In discussed in the previous lecture under Forebrain addition to regulation of many of the homeostatic Diseases, it will not be covered here. mechanisms of the body, this part of the brainstem controls consciousness, pupillary diameter, eye 3. Functions (Location) movement, facial expression, balance, prehension, mastication and swallowing of food, and movement Pupillary Light Response, Pupil Size (Midbrain, Cranial and coordination of the trunk and limbs. Dysfunc- Nerves II, III) tion of the brainstem and/or cranial nerves therefore In the normal horse, pupil size reflects the balance of manifests in a great variety of ways including re- sympathetic (dilator) and parasympathetic (con- duced consciousness, ataxia, limb weakness, dys- strictor) influences on the smooth muscle of the phagia, facial paralysis, jaw weakness, nystagmus, iris.2–4 Preganglionic neurons for sympathetic and strabismus. Careful neurologic examination supply to the head arise in the gray matter of the in the field can provide accurate localization of first four thoracic segments of the spinal cord and brainstem and cranial nerve lesions. Recognition subsequently course rostrally in the cervical sympa- of brainstem/cranial nerve dysfunction is an impor- thetic nerve within the vagosympathetic trunk. -
Inner Ear Infection (Otitis Interna) in Dogs
Hurricane Harvey Client Education Kit Inner Ear Infection (Otitis Interna) in Dogs My dog has just been diagnosed with an inner ear infection. What is this? Inflammation of the inner ear is called otitis interna, and it is most often caused by an infection. The infectious agent is most commonly bacterial, although yeast and fungus can also be implicated in an inner ear infection. If your dog has ear mites in the external ear canal, this can ultimately cause a problem in the inner ear and pose a greater risk for a bacterial infection. Similarly, inner ear infections may develop if disease exists in one ear canal or when a benign polyp is growing from the middle ear. A foreign object, such as grass seed, may also set the stage for bacterial infection in the inner ear. Are some dogs more susceptible to inner ear infection? Dogs with long, heavy ears seem to be predisposed to chronic ear infections that ultimately lead to otitis interna. Spaniel breeds, such as the Cocker spaniel, and hound breeds, such as the bloodhound and basset hound, are the most commonly affected breeds. Regardless of breed, any dog with a chronic ear infection that is difficult to control may develop otitis interna if the eardrum (tympanic membrane) is damaged as it allows bacteria to migrate down into the inner ear. "Dogs with long, heavy ears seem to bepredisposed to chronic ear infections that ultimately lead to otitis interna." Excessively vigorous cleaning of an infected external ear canal can sometimes cause otitis interna. Some ear cleansers are irritating to the middle and inner ear and can cause signs of otitis interna if the eardrum is damaged and allows some of the solution to penetrate too deeply.