Morphological and Functional Changes in a New Animal Model Of

Total Page:16

File Type:pdf, Size:1020Kb

Morphological and Functional Changes in a New Animal Model Of Laboratory Investigation (2013) 93, 1001–1011 & 2013 USCAP, Inc All rights reserved 0023-6837/13 Morphological and functional changes in a new animal model of Me´nie`re’s disease Naoya Egami1, Akinobu Kakigi1, Takashi Sakamoto1, Taizo Takeda2, Masamitsu Hyodo2 and Tatsuya Yamasoba1 The purpose of this study was to clarify the underlying mechanism of vertiginous attacks in Me´nie`re’s disease (MD) while obtaining insight into water homeostasis in the inner ear using a new animal model. We conducted both histopatho- logical and functional assessment of the vestibular system in the guinea-pig. In the first experiment, all animals were maintained 1 or 4 weeks after electrocauterization of the endolymphatic sac of the left ear and were given either saline or desmopressin (vasopressin type 2 receptor agonist). The temporal bones from both ears were harvested and the extent of endolymphatic hydrops was quantitatively assessed. In the second experiment, either 1 or 4 weeks after surgery, animals were assessed for balance disorders and nystagmus after the administration of saline or desmopressin. In the first experiment, the proportion of endolymphatic space in the cochlea and the saccule was significantly greater in ears that survived for 4 weeks after surgery and were given desmopressin compared with other groups. In the second experiment, all animals that underwent surgery and were given desmopressin showed spontaneous nystagmus and balance disorder, whereas all animals that had surgery but without desmopressin administration were asymptomatic. Our animal model induced severe endolymphatic hydrops in the cochlea and the saccule, and showed episodes of balance disorder along with spontaneous nystagmus. These findings suggest that administration of desmopressin can exacerbate endolymphatic hydrops because of acute V2 (vasopressin type 2 receptor)-mediated effects, and, when combined with endolymphathic sac dysfunction, can cause temporary vestibular abnormalities that are similar to the vertiginous attacks in patients with MD. Laboratory Investigation (2013) 93, 1001–1011; doi:10.1038/labinvest.2013.91; published online 22 July 2013 KEYWORDS: animal model; aquaporin; desmopressin; endolymphatic hydrops; Me´nie`re’s disease; vasopressin; vestibular disorder Me´nie`re’s disease (MD) is a well-known inner ear disorder been observed.6 In other words, this model is insufficient for characterized by symptoms including recurring attacks of fully representing the common symptoms of MD. vertigo typically lasting for hours, fluctuating sensorineural Water homeostasis of the inner ear is essential for main- hearing loss, and tinnitus. Since the milestone findings on the taining the functions of hearing and balance. EH is con- temporal bones of MD patients,1,2 endolymphatic hydrops sidered to be the result of disruption of inner ear water (EH) has been considered as the histopathological origin of homeostasis, which involves excessive production of endo- MD, as characteristic morphological changes were reported lymph and/or reduced absorption of endolymph. Until to be produced by surgical obstruction of the endolymphatic recently, however, the detailed mechanisms underlying the sac (ES) in guinea-pig.3 This observation indicates that overaccumulation of endolymph were unclear. Since the malabsorption of endolymph in the ES is one of the possible discovery of aquaporin (AQP) water channels,7 it has been mechanisms underlying the development of EH. This proposed that precise regulation of water reabsorption experimentally induced EH has been frequently used as an largely depends on the regulation of AQP2 channels and animal model to investigate the pathogenesis of inner ear that water permeability can change rapidly in response to disorders associated with EH. In terms of vestibular function, vasopressin(VP).8 Recently, it has come to light that this while canal dysfunction and/or spontaneous nystagmus have mechanism has a crucial role not only in the kidney but also been occasionally observed in this animal model,4,5 episodes in the inner ear. In addition, the following evidence has of vertiginous attack or balance disorder have only rarely accumulated to suggest that VP is closely associated with the 1Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan and 2Department of Otolaryngology-Head and Neck Surgery, Kochi Medical School, Kochi, Japan Correspondence: Dr A Kakigi, MD, Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 8655, Japan. E-mail: [email protected] Received 30 April 2013; revised 20 June 2013; accepted 22 June 2013 www.laboratoryinvestigation.org | Laboratory Investigation | Volume 93 September 2013 1001 Animal model of Me´nie`re’s disease N Egami et al formation of EH: (1) plasma levels of arginine VP are higher before euthanasia. In saline-treated animals, 25 ml/kg saline in patients with MD and may depend on the phase that the solution was administered subcutaneously 1 h before patient is in,9–11 (2) acute and chronic application of arginine euthanasia. All animals were killed under deep anesthesia VP produces EH in guinea-pigs and rats,12–14 (3) V2 receptor using ketamine and xylazine, and the temporal bones were mRNA is expressed in rat and human inner ear,15–18 and collected from both sides. As shown in Figure 1a, 48 temporal (4) expression of V2 receptor mRNA in the rat inner ear is bones harvested were classified into eight groups (n ¼ 6) downregulated by VP application.19 Such accumulated according to the presence or absence of surgery, the survival evidence has led to the assumption that production of duration, and type of treatment: (1) right temporal bones, endolymph is controlled by VP–AQP2 system. 1-week survival after left ear electrocauterization, administered In a previous study using an animal model of MD, saline (1 W Control group (RIGHT)); (2) left temporal Dunnebier et al20 reported chronic ES dysfunction induced bones of the above-mentioned animals (1 W Surgery group by destruction of the ES, and acute stress-induced endo- (LEFT)); (3) right temporal bones, 1-week survival after left lymph production by aldosterone administration revealed ear electrocauterization, administered desmopressin (1 W severe degrees of hydrops in the cochlea.20 In this Desmopressin group (RIGHT)); (4) left temporal bones of investigation, we successfully developed a new clinically the above-mentioned animals (1 W Combined group (LEFT)); relevant animal model for MD, in which desmopressin (5) right temporal bones, 4-week survival after left ear electro- (a VP type 2 receptor agonist) was administered after electro- cauterization, administered saline (4 W Control group cauterization of the ES. (RIGHT)); (6) left temporal bones of the above-mentioned We evaluated both morphological and behavioral altera- animals (4 W Surgery group (LEFT)); (7) right temporal tions of the vestibular system in this animal model to bones, 4-week survival after left ear electrocauterization, elucidate the role of VP in the pathogenesis of MD. administered desmopressin (4 W Desmopressin group (RIGHT)), and (8) left temporal bones of the above- MATERIALS AND METHODS mentioned animals (4 W Combined group (LEFT)). This study was composed of two experiments. Experiment 1 was designed to investigate the influence of desmopressin on Surgical procedure for Electrocauterization of the ES the development of EH morphologically. Experiment 2 was All experimental animals were anesthetized by an intra- designed to investigate the role of desmopressin on changes muscular injection of ketamine (35 mg/kg) and xylazine in vestibular function. The animals used in Experiment 1 (5 mg/kg). The animals received local anesthesia using xylo- were albino outbred English short-haired guinea-pig caine under sterile conditions. Subsequently, they were placed (Hartley). In Experiment 2, pigmented English short-haired in a prone position with a head holder and underwent guinea-pig were used. Pigmented animals were selected for dorsal midline scalp incision. The left occipital bone was Experiment 2 to facilitate eye movement recording using an removed for visual exposure of the ES via an epidural infrared-sensitive CCD camera. occipital approach. Thereafter, the extraosseous portion of These experiments were approved by Tokyo University the sac was cauterized electrically with a bipolar electro- Animal Care and Use Committee, and were conducted in coagulator (Surgitron Model FFPF; Ellman International, accordance with The Animal Welfare Act and the guiding Hewlett, NY, USA) so as not to injure the sigmoid sinus. principles for animal care produced by the Ministry of The operation was performed using a Carl Zeiss operation Education, Culture, Sports, and Technology, Japan. microscope. Experiment 1 Quantitative Assessment of the Endolymphatic Space Animals Under deep anesthesia by an intraperitoneal injection of A total of 24 guinea-pigs with a positive Preyer’s reflex and ketamine (35 mg/kg) and xylazine (5 mg/kg), all animals were weighing approximately 300 g were used in this experiment. perfused from the left ventricle with physiological saline All animals underwent electrocauterization of the ES of the left solution, and then fixed with 10% formalin. The temporal ear as reported previously.21,22 The right ear was not treated bones were removed on both sides and postfixed in 10% surgically. The surgical procedures are described below (in the formalin solution
Recommended publications
  • Endolymphatic Sac Tumors: an Overview Michael B
    Endolymphatic Sac Tumors: An Overview Michael B. Gluth, MD, FACS Associate Professor Director, Comprehensive Ear & Hearing Ctr. Section of Otolaryngology-Head & Neck Surgery VHL Alliance, Chicago, 2015 Disclosure • No relevant financial interests or other relevant relationships to disclose • Will discuss off-label use of cochlear implants for single-sided SNHL VHL | 2 Outline • What is an endolymphatic sac tumor? • What are the symptoms? • What is the work-up and treatment? VHL | 3 Endolymphatic Sac Anatomy VHL | 4 Endolymphatic Sac Function • Part of the “membranous labyrinth” • Filled with fluid called endolymph • Secretes locally acting chemical called “saccin” • Involved with inner ear fluid homeostasis, mechanisms not fully understood – ELS is involved with Meniere’s disease VHL | 5 ELS Tumors • Extremely rare tumor originating from the endolymphatic sac, only recognized as a unique entity since 1989 • Benign (not cancer) • Highly destructive, slowly progressive – Destroy bone of inner ear, around cranial vault/skull base, and around facial nerve – Can grow into nerves, pass through dura (sac around brain) and press on cerebellum • May be asymptomatic until inner ear is partially destroyed • Key: if hearing loss is present: high chance dura is invaded VHL | 6 Symptoms • Most common presenting symptoms: – Hearing loss (85%) – Visible mass in the ear (50%) – Ringing in the ear (48%) – Facial paralysis (44%) – Dizziness/imbalance (44%) – Headache (37%) – Other neurologic (cranial nerve) weakness (25%) • If present in both ears, outlook
    [Show full text]
  • CONGENITAL MALFORMATIONS of the INNER EAR Malformaciones Congénitas Del Oído Interno
    topic review CONGENITAL MALFORMATIONS OF THE INNER EAR Malformaciones congénitas del oído interno. Revisión de tema Laura Vanessa Ramírez Pedroza1 Hernán Darío Cano Riaño2 Federico Guillermo Lubinus Badillo2 Summary Key words (MeSH) There are a great variety of congenital malformations that can affect the inner ear, Ear with a diversity of physiopathologies, involved altered structures and age of symptom Ear, inner onset. Therefore, it is important to know and identify these alterations opportunely Hearing loss Vestibule, labyrinth to lower the risks of all the complications, being of great importance, among others, Cochlea the alterations in language development and social interactions. Magnetic resonance imaging Resumen Existe una gran variedad de malformaciones congénitas que pueden afectar al Palabras clave (DeCS) oído interno, con distintas fisiopatologías, diferentes estructuras alteradas y edad Oído de aparición de los síntomas. Por lo anterior, es necesario conocer e identificar Oído interno dichas alteraciones, con el fin de actuar oportunamente y reducir el riesgo de las Pérdida auditiva Vestíbulo del laberinto complicaciones, entre otras —de gran importancia— las alteraciones en el área del Cóclea lenguaje y en el ámbito social. Imagen por resonancia magnética 1. Epidemiology • Hyperbilirubinemia Ear malformations occur in 1 in 10,000 or 20,000 • Respiratory distress from meconium aspiration cases (1). One in every 1,000 children has some degree • Craniofacial alterations (3) of sensorineural hearing impairment, with an average • Mechanical ventilation for more than five days age at diagnosis of 4.9 years. The prevalence of hearing • TORCH Syndrome (4) impairment in newborns with risk factors has been determined to be 9.52% (2).
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Endolymphatic Hydrops Meniere's
    ENDOLYMPHATIC HYDROPS MENIERE’S DISEASE Introduction: Meniere’s Disease, or endolymphatic hydrops, is a disorder of the inner ear. This condition occurs because of abnormal fluctuations in the inner ear fluid called endolymph. A system of membranes, called the membranous labyrinth, contains a fluid called endolymph. This fluid bathes the inner ear balance and hearing system sensory cells and allows them to function normally. The membranes can become dilated like a balloon when pressure increases. This is called "hydrops". The amount of fluid is normally kept constant by altering the production and absorption of the fluid. Endolymph also contains a specific concentration of sodium, potassium, chloride, and other electrolytes. If the inner ear is damaged by disease, injury, or other causes, the volume and composition of the inner ear fluid can fluctuate with changes in the body’s fluid and electrolyte levels. This fluctuation in inner ear fluid can cause the symptoms of hydrops, including pressure or fullness of the affected ear, tinnitus, hearing loss, and imbalance or dizziness. Treatment of this condition is geared towards stabilizing the body fluid levels so that fluctuations in the endolymph volume can be avoided. Meniere's episodes may occur in clusters in which several attacks may occur within a short period of time. On the other hand, years may pass between episodes. Between the acute attacks, most people are free of symptoms or note mild imbalance, tinnitus, and/or hearing loss. Meniere’s affects roughly 0.2% of the population, about 200 out of 100,000 people (or in other words, 2/1000).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Audiology 101: an Introduction to Audiology for Nonaudiologists Terry Foust, Aud, FAAA, CC-SLP/A; & Jeff Hoffman, MS, CCC-A
    NATIONALA RESOURCE CENTER GUIDE FOR FOR EARLY HEARING HEARING ASSESSMENT DETECTION & & MANAGEMENT INTERVENTION Chapter 5 Audiology 101: An Introduction to Audiology for Nonaudiologists Terry Foust, AuD, FAAA, CC-SLP/A; & Jeff Hoffman, MS, CCC-A Parents of young Introduction What is an audiologist? children who are arents of young children who are An audiologist is a specialist in hearing identified as deaf or hard identified as deaf or hard of hearing and balance who typically works in of hearing (DHH) are P(DHH) are suddenly thrust into a either a medical, private practice, or an suddenly thrust into a world of new concepts and a bewildering educational setting. The primary roles of world of new concepts array of terms. What’s a decibel or hertz? an audiologist include the identification and a bewildering array What does sensorineural mean? Is a and assessment of hearing and balance moderate hearing loss one to be concerned problems, the habilitation or rehabilitation of terms. about, since it’s only moderate? What’s of hearing and balance problems, and the a tympanogram or a cochlear implant? prevention of hearing loss. When working These are just a few of the many questions with infants and young children, the that a parent whose child has been primary focus of audiology is hearing. identified as DHH may have. In addition to parents, questions also arise from Audiologists are licensed by the state in professionals and paraprofessionals who which they practice and may be members work in the field of early hearing detection of the American Speech-Language- and intervention (EHDI) and are not Hearing Association (ASHA), American audiologists.
    [Show full text]
  • Anatomy of the Ear ANATOMY & Glossary of Terms
    Anatomy of the Ear ANATOMY & Glossary of Terms By Vestibular Disorders Association HEARING & ANATOMY BALANCE The human inner ear contains two divisions: the hearing (auditory) The human ear contains component—the cochlea, and a balance (vestibular) component—the two components: auditory peripheral vestibular system. Peripheral in this context refers to (cochlea) & balance a system that is outside of the central nervous system (brain and (vestibular). brainstem). The peripheral vestibular system sends information to the brain and brainstem. The vestibular system in each ear consists of a complex series of passageways and chambers within the bony skull. Within these ARTICLE passageways are tubes (semicircular canals), and sacs (a utricle and saccule), filled with a fluid called endolymph. Around the outside of the tubes and sacs is a different fluid called perilymph. Both of these fluids are of precise chemical compositions, and they are different. The mechanism that regulates the amount and composition of these fluids is 04 important to the proper functioning of the inner ear. Each of the semicircular canals is located in a different spatial plane. They are located at right angles to each other and to those in the ear on the opposite side of the head. At the base of each canal is a swelling DID THIS ARTICLE (ampulla) and within each ampulla is a sensory receptor (cupula). HELP YOU? MOVEMENT AND BALANCE SUPPORT VEDA @ VESTIBULAR.ORG With head movement in the plane or angle in which a canal is positioned, the endo-lymphatic fluid within that canal, because of inertia, lags behind. When this fluid lags behind, the sensory receptor within the canal is bent.
    [Show full text]
  • Ear Development Ear Development
    Ear Development Ear Development The ear can be divided into three parts ◦ External Ear Auricle external auditory canal ◦ Middle Ear tympanic cavity auditory tube auditory ossicles malleus, incus, stapes ◦ Inner Ear Cochlea vestibular apparatus semicircular canals Utricle Saccule Development of Inner Ear All of inner ear derivatives arise from ectoderm Late in 3rd week ◦ otic placode (disc) appears next to hindbrain During 4th week ◦ otic placode form: otic pit otic vesicle or otocyst Young neurons delaminate from ventral otocyst Form statoacoustic (vestibulocochlear) ganglion Rhombencephalon region:formation of otic vesicles Derivatives of the 1st & 2nd branchial arches Rhombencephalon region:otic placode , otic pit and otic vesicle Development of Inner Ear epithelial structures of Otic vesicle develops to membranous labyrinth dorsomedial region elongate to form: ◦ endolymphatic appendage endolymphatic sac rest region expanded to: ◦ pars superior Utricle semicircular canals endolymphatic duct ◦ pars inferior Its ventral tip elongate and coil form cochlear duct differentiate to spiral organ of Corti Its rest gives rise to: Saccule connected to cochlea by ductus reuniens Development of the otic vesicle showing a dorsal utricular portion with endolymphatic duct, and a ventral saccular portion Saccule, cochlea & organ of Corti Outgrowth of cochlear duct-spiral fashion 8th wk.- 21/2 turns Cochlear duct conect with saccule through ductus reuniens Sensory cells of Inner Ear specialized mechanotransducers arise in six prosensory regions within developing otic vesicle ◦ In the cochlea organ of Corti ◦ In the saccule and utricle Maculae ◦ in the semicircular canals Cristae All of these sensory regions innervated by the vestibulocochlear nerve Development of the scala tympani & scala vestibuli Note:the auditory nerve and spiral ganglion Scala media - organ of Corti Hair cells Tectorial mem.
    [Show full text]
  • The Temporal Bone
    Anatomic Moment The Temporal Bone Joel D. Swartz, David L. Daniels, H. Ric Harnsberger, Katherine A. Shaffer, and Leighton Mark Despite the advent of thin-section high-reso- the inner ear structures and the external lution computed tomography and, more re- environment. cently, unique magnetic resonance imaging se- Virtually all textbooks define the inner ear as quences with thin sections, T2 weighting, and a membranous labyrinth housed within an os- maximum-intensity projection techniques, seous labyrinth. The membranous labyrinth three-dimensional neuroanatomy of the tempo- contains endolymph, a fluid rich in potassium ral bone and related structures remains some- and low in sodium, similar to intracellular fluid. what of an enigma to many medical specialists, Interposed between the membranous labyrinth neuroradiologists included. Therefore, we are and the osseous labyrinth resides a supportive undertaking a series of anatomic moments in perilymphatic labyrinth. Perilymph is similar to the hope of solidifying the most important ana- cerebrospinal fluid and other extracellular tissue tomic concepts as they relate to this region. Our fluid. approach will be organized so as to consider the The osseous labyrinth consists of the bony temporal bone to represent the complex inter- edifice for the vestibule, semicircular canals, relationship of three systems: hearing, balance, cochlea, and vestibular aqueduct. The mem- and related neuroanatomic and neurovascular branous labyrinth consists of the utricle and structures. saccule (located within the vestibule), the semi- The ear originated in fish as a water motion circular ducts, the cochlear duct, and the en- detection system (1). The vestibular (balance) dolymphatic duct. The latter is a channel within mechanism becomes more complex as we the vestibular aqueduct with communications to scale the embryologic ladder and endolymph the utricle and saccule.
    [Show full text]
  • Balance and Equilibrium, I: the Vestibule and Semicircular Canals
    Anatomic Moment Balance and Equilibrium, I: The Vestibule and Semicircular Canals Joel D. Swartz, David L. Daniels, H. Ric Harnsberger, Katherine A. Shaffer, and Leighton Mark In this, our second temporal bone installment, The endolymphatic duct arises from the en- we will emphasize the vestibular portion of the dolymphatic sinus and passes through the ves- labyrinth, that relating to balance and equilib- tibular aqueduct of the osseous labyrinth to rium. Before proceeding, we must again remind emerge from an aperture along the posterior the reader of the basic structure of the labyrinth: surface of the petrous pyramid as the endolym- an inner membranous labyrinth (endolym- phatic sac. phatic) surrounded by an outer osseous laby- The utricle and saccule are together referred rinth with an interposed supportive perilym- to as the static labyrinth, because their function phatic labyrinth. We recommend perusal of the is to detect the position of the head relative to first installment before continuing if there are gravity (5–7). They each have a focal concen- any uncertainties in this regard. tration of sensory receptors (maculae) located The vestibule, the largest labyrinthine cavity, at right angles to each other and consisting of measures 4 to 6 mm maximal diameter (1–3) ciliated hair cells and tiny crystals of calcium (Figs 1–3). The medial wall of the vestibule is carbonate (otoliths) embedded in a gelatinous unique in that it contains two distinct depres- mass. These otoliths respond to gravitational sions (Fig 4). Posterosuperiorly lies the elliptical pull; therefore, changes in head position distort recess, where the utricle is anchored.
    [Show full text]
  • VESTIBULAR SYSTEM (Balance/Equilibrium) the Vestibular Stimulus Is Provided by Earth's Gravity, and Head/Body Movement. Locate
    VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth’s gravity, and head/body movement. Located in the labyrinths of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular canals - angular acceleration (changes in the rotation of the head, not steady rotation) 1. Vestibular sacs (Otolith organs) - made of: a) Utricle (“little pouch”) b) Saccule (“little sac”) Signaling mechanism of Vestibular sacs Receptive organ located on the “floor” of Utricle and on “wall” of Saccule when head is in upright position - crystals move within gelatinous mass upon head movement; - crystals slightly bend cilia of hair cells also located within gelatinous mass; - this increases or decreases rate of action potentials in bipolar vestibular sensory neurons. Otoconia: Calcium carbonate crystals Gelatinous mass Cilia Hair cells Vestibular nerve Vestibular ganglion 2. Semicircular canals: 3 ring structures; each filled with fluid, separated by a membrane. Signaling mechanism of Semicircular canals -head movement induces movement of endolymph, but inertial resistance of endolymph slightly bends cupula (endolymph movement is initially slower than head mvmt); - cupula bending slightly moves the cilia of hair cells; - this bending changes rate of action potentials in bipolar vestibular sensory neurons; - when head movement stops: endolymph movement continues for slightly longer, again bending the cupula but in reverse direction on hair cells which changes rate of APs; - detects “acceleration”
    [Show full text]
  • Anatomic Moment
    Anatomic Moment Hearing, I: The Cochlea David L. Daniels, Joel D. Swartz, H. Ric Harnsberger, John L. Ulmer, Katherine A. Shaffer, and Leighton Mark The purpose of the ear is to transform me- cochlear recess, which lies on the medial wall of chanical energy (sound) into electric energy. the vestibule (Fig 3). As these sound waves The external ear collects and directs the sound. enter the perilymph of the scala vestibuli, they The middle ear converts the sound to fluid mo- are transmitted through the vestibular mem- tion. The inner ear, specifically the cochlea, brane into the endolymph of the cochlear duct, transforms fluid motion into electric energy. causing displacement of the basilar membrane, The cochlea is a coiled structure consisting of which stimulates the hair cell receptors of the two and three quarter turns (Figs 1 and 2). If it organ of Corti (Figs 4–7) (4, 5). It is the move- were elongated, the cochlea would be approxi- ment of hair cells that generates the electric mately 30 mm in length. The fluid-filled spaces potentials that are converted into action poten- of the cochlea are comprised of three parallel tials in the auditory nerve fibers. The basilar canals: an outer scala vestibuli (ascending spi- membrane varies in width and tension from ral), an inner scala tympani (descending spi- base to apex. As a result, different portions of ral), and the central cochlear duct (scala media) the membrane respond to different auditory fre- (1–7). The scala vestibuli and scala tympani quencies (2, 5). These perilymphatic waves are contain perilymph, a substance similar in com- transmitted via the apex of the cochlea (helico- position to cerebrospinal fluid.
    [Show full text]