Zileuton for the Prophylaxis and Chronic Treatment of Asthma

Total Page:16

File Type:pdf, Size:1020Kb

Zileuton for the Prophylaxis and Chronic Treatment of Asthma Asthma Zileuton for the Prophylaxis and Chronic Treatment of Asthma a report by Bradley E Chipps, MD, FAAP, FAAAAI, FCCP Capital Allergy and Respiratory Disease Center Zileuton is the only commercially available leukotriene synthesis inhibitor pulmonary function, and will be able to lead a normal life, carrying on all approved for the prophylaxis and treatment of chronic asthma in adults activities desired.1 Risk refers to the potential for negative outcomes, which and adolescents aged 12 years and above. According to the updated and include symptom exacerbations and associated urgent care (i.e. comprehensive 2007 Expert Panel Report 3 (EPR3): Guidelines for the unscheduled office visits, emergency department visits, hospitalizations), as Diagnosis and Management of Asthma, zileuton is an alternative well as any adverse events associated with treatment.1 therapeutic option to be added to inhaled corticosteroids (ICS) to enhance asthma control for patients who remain uncontrolled despite According to the EPR3, patients who have more than one exacerbation of using recommended therapy.1 This article will examine the role of symptoms a year requiring a short course of oral corticosteroids (OCS) are zileuton in asthma management in relation to asthma control as an considered not well controlled.1 Between May 2006 and May 2007 almost unmet patient need. 1.7 million asthma patients received at least one prescription for OCS. This represented the largest single reason for OCS use in the US.4 What should Uncontrolled Asthma Remains an Unmet Need the physician do when the patient’s asthma remains uncontrolled despite Despite almost 20 years of global and national guidelines for managing optimal therapy? The EPR3 presents a revised step-care approach to therapy, asthma, and despite scientific contributions to understanding its with six steps, each accounting for a progressive drop in asthma control. pathogenesis, the burden of this disease remains high.1 Asthma continues Figure 1 shows the medications recommended for use to increase asthma to be associated with mortality, morbidity, and substantial costs to the control when a step-up is needed.1 healthcare system, as well as to the patient. The asthma burden may be higher than estimated as patients, care-givers, and healthcare professionals According to the updated step-care regimen, zileuton is recommended as have been found to overestimate asthma control. The result is that many an add-on therapy to ICS in both steps 3 and 4: in step 3 it is added to low- patients are undertreated, increasing their risk for unwanted symptoms and dose ICS, the combination providing an alternative to medium-dose ICS; in use of healthcare services, and lowering their ability to participate fully in step 4 it is added to medium-dose ICS, with the combination providing an daily activities.2 alternative to medium-dose ICS plus long-acting bronchodilator.1 It was estimated in 2005 that 32.6 million persons—representing more Uncontrolled asthma is not unusual even when patients are using than 11% of the US population—had been diagnosed with asthma during recommended therapy. An analysis of a web-based survey administered to their lifetime. Of those, 22.2 million or almost 8% of the US population patients with asthma for at least one year who were using multiple had a current diagnosis of asthma, and approximately 55% (12.2 million) controller medications showed that 55% of the 1,812 respondents had suffered an asthma exacerbation during that year. According to national uncontrolled asthma as defined by the Asthma Control Test, a self- statistics, asthma accounts for 1.8 million emergency department visits administered questionnaire.5 annually and almost 500,000 hospitalizations. Eleven people die from asthma every day.3 The reasons for uncontrolled asthma are varied and may reflect genetic heterogeneity and/or different underlying physiological mechanisms that The comprehensive update to the National Heart, Lung, and Blood Institute affect how the disease is expressed and how the individual patient (NHLBI) Guidelines for Diagnosing and Managing Asthma, the EPR3, responds to specific classes of medication. The variable response of some released in 2007, places the primary goal for treating asthma on control. patients to ICS is well documented, although not clearly understood.6–9 β This is in contrast to earlier Guidelines that focused on reducing asthma Additionally, recent evidence suggests that polymorphisms on the 2- severity.1 In the EPR3, asthma control is defined according to reductions in adrenergic receptor are associated with diminished responses to both β 10 two domains: impairment and risk (see Table 1). Impairment refers to the short- and long-acting 2-agonists. Finally, multiple asthmatic frequency and intensity of symptoms and how those symptoms influence phenotypes, such as smoking asthmatics, nocturnal asthma, occupational the patient’s daily life. The goal in reducing impairment thus focuses on asthma, and exercise-induced bronchospasm, along with a variety of reducing asthma symptoms and, ideally, preventing symptoms. Meeting comorbid conditions such as obesity and upper-airway inflammation, this goal also means that the patient will need little or no rescue influence the variable response to asthma medications.1 Therefore, medications (for breakthrough symptoms), will have no nocturnal or early targeting multiple inflammatory pathways therapeutically enhances morning awakenings due to symptoms, will demonstrate no deficit in asthma control for many patients. © TOUCH BRIEFINGS 2008 15 Asthma Table 1: Goals for Improving Asthma Control by Targeting the eosinophils, neutrophils, and macrophages, all of which have been implicated Domains of Risk and Impairment1 in asthma pathogenesis. Leukotrienes of interest in asthma include: Reduction in Impairment Reduction in Risk • the cysteinyl leukotrienes, LTC4/D4/E4, which are involved in Minimal (ideally no) troublesome symptoms Minimal (ideally no) symptom exacerbations bronchoconstriction, mucus secretion, vascular permeability, airway No rescue medications needed No urgent care (unscheduled office visits, smooth-muscle contraction, and eosinophil infiltration;5 No night-time awakenings due to symptoms emergency department visits, hospitalizations) •LTB, an extremely potent chemoattractant for inflammatory cells (e.g. (Near) normal pulmonary function Minimal (ideally no) adverse events 4 Normal daily activities from pharmacotherapy T-effector cells, eosinophils, neutrophils) and the major 5-lipoxygenase (5-LO) product of neutrophils, monocytes, and alveolar macrophages, Figure 1: Step Approach to Asthma Control1 which stimulates leukocyte chemotaxis, chemokinesis, and vascular endothelium adherence, delays neutrophil apoptosis, and prolongs 11,12 Persistent asthma: daily medication neutrophil survival; and Intermittent Consult with asthma specialist if step 4 care or higher is required asthma • 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a chemoattractant Consider consultation at step 3 Step up for eosinophils that is over 30 times more potent than the cysteinyl if needed (first check leukotrienes; 5-oxo-ETE induces migration of eosinophils and prolongs Step 6 adherence, Preferred: their survival, activates neutrophils and stimulates neutrophil Step 5 environmental Step 3 high-dose Step 4 Preferred: control, and 13 Preferred: ICS + LABA degranulation, and induces potent basophil migratory responses. Preferred: high-dose comorbid medium-dose + oral medium-dose ICS + LABA conditions) Step 2 ICS or corticosteroid ICS + LABA and Preferred: low-dose and Leukotrienes Are Associated with Uncontrolled Asthma Alternative: Consider: Assess low-dose ICS ICS + LABA Consider: medium-dose omalizumbab Control Alternative: Alternative: omalizumab Leukotrienes are important mediators in asthma pathogenesis, and 5-LO ICS + for patients cromolyn, low-dose ICS for patients Step 1 LTRA, who have Step down products have been shown to be increased in all levels of asthma severity, nedocromil, + LTRA, who have Preferred: theophylline, allergies if possible LTRA, or theohylline, allergies 5,7,14–16 SABA prn or zileuton (and asthma despite treatment with ICS and OCS. Multiple studies have theophylline or zileuton is well- demonstrated increases in the 5-LO products 5-HETE, LTB , and the cysteinyl controlled 4 Patient education and environmental control at each step ≥3 months) leukotrienes, despite corticosteroid treatment; additionally, OCS have not been shown to reduce urinary LTE4 levels, thought to be a marker of whole- body leukotriene production.14–16 Figure 2: Targeting Leukotrienes in the 5-lipoxygenase Pathway5 There is a strong association between increased leukotriene levels and Membrane phospholipids asthma exacerbations, evidenced by heightened cysteinyl leukotriene 17,18 cPLA2 production and measurable increases in urinary LTE4 levels. Asthma is a heterogeneous disease, and interest exists in how differences in underlying Arachidonic acid 5-lipoxygenase • Eosinophil disease pathology might affect response to treatment. Data exist implicating Zileuton FLAP chemoattractant increased leukotriene levels (measured by urinary LTE4), an elevated 5-HPETE 5-HETE 5-oxo-ETE • Neutrophil monocyte migration neutrophil:eosinophil ratio, and decreased atopy in some patients who do 5-Lipoxygenase • Neutrophil activation not show optimal responses to corticosteroids.6,7 Leukotriene A4 LTC4 hydrolase LTC4 synthase Related to this, evidence suggests that neutrophilic
Recommended publications
  • Medication Coverage Policy
    MEDICATION COVERAGE POLICY PHARMACY AND THERAPEUTICS ADVISORY COMMITTEE POLICY: Asthma/COPD P&T DATE 12/14/2016 CLASS: Respiratory Disorders REVIEW HISTORY 9/15, 5/15, 9/14, 2/13, LOB: Medi-Cal, SJHA (MONTH/YEAR) 5/12 This policy has been developed through review of medical literature, consideration of medical necessity, generally accepted medical practice standards, and approved by the HPSJ Pharmacy and Therapeutic Advisory Committee. OVERVIEW Asthma is a reversible, chronic, inflammatory disorder that involves narrowing of the respiratory airways leading to wheezing, chest tightness, and shortness of breath. Inhaled corticosteroids are the mainstay of therapy and the goal of treatment is to reverse airway obstruction and maintain respiratory control. Chronic obstructive pulmonary disease (COPD) is another chronic airway disorder. Unlike asthma, COPD is not reversible. The goal of COPD management is to slow disease progression. COPD is managed with a combination of inhaled corticosteroids and anticholinergics. Some patients exhibit both features of asthma and COPD; this is called Asthma-COPD Overlap Syndrome (ACOS). The below criteria, limits, and requirements for asthma & COPD agents are in place to ensure appropriate use and to help members achieve control of their Asthma or COPD. Table 1: Available Asthma/COPD Medications (Current as of 9/2016) Average Therapeutic Generic Name Strength & Dosage Formulary Cost per Limits Notes/Restriction Language Class (Brand Name) form 30 days* Single Agents Limit 2 inhalers per 30 days; Limit 7
    [Show full text]
  • Clinical Guideline for the Diagnosis, Evaluation and Management of Adults and Children with Asthma
    Clinical Guideline for the Diagnosis, Evaluation and Management of Adults and Children with Asthma Color Key n Four Components of Asthma Care n Classifying Asthma Severity, Assessing Asthma Control and the Stepwise Approach for Managing Asthma in Children Aged 0– 4 years n Classifying Asthma Severity, Assessing Asthma Control and the Stepwise Approach for Managing Asthma in Children Aged 5–11 years n Classifying Asthma Severity, Assessing Asthma Control and the Stepwise Approach for Managing Asthma in Children >12 Years of Age & Adults n Long-Term Control Medications: Estimated Comparative Daily Dosages n Long-Term Control Medications: Usual Dosages n Quick-Relief Medications Guidelines are intended to be flexible. They serve as recommendations, not rigid criteria. Guidelines should be followed in most cases, but depending on the patient, and the circumstances, guidelines may need to be tailored to fit individual needs. 4750 11/18 Contents Criteria that suggest the diagnosis of asthma . 3 Goal of Therapy: Control of Asthma . 3 Four Components of Asthma Care 1. Assessment and Monitoring of Asthma Severity and Control . 4 2. Education for a Partnership in Care . 5 3. Control of Environmental Factors and Co-morbid Conditions that Affect Asthma . 5 4. Medications . 6 Bibliography . 6 Classifying Asthma Severity & Initiating Treatment in Children 0– 4 Years of Age . 7 Assessing Asthma Control & Adjusting Therapy in Children 0– 4 Years of Age . 7 Stepwise Approach for Managing Asthma in Children 0– 4 Years of Age . 8 Classifying Asthma Severity & Initiating Treatment in Children 5–11 Years of Age . 9 Assessing Asthma Control & Adjusting Therapy in Children 5–11 Years of Age .
    [Show full text]
  • Montreal Protocol on Substances That Deplete the Ozone Layer
    MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER UNEP 2006 REPORT OF THE MEDICAL TECHNICAL OPTIONS COMMITTEE 2006 ASSESSMENT UNEP 2006 REPORT OF THE MEDICAL TECHNICAL OPTIONS COMMITTEE 2006 ASSESSMENT 2006 MTOC Assessment Report iii Montreal Protocol On Substances that Deplete the Ozone Layer Report of the UNEP Medical Technical Options Committee 2006 Assessment ASSESSMENT REPORT The text of this report is composed in Times New Roman. Co-ordination: Medical Technical Options Committee Composition and layout: Helen Tope Reproduction: UNON Nairobi Date: January 2007 Under certain conditions, printed copies of this report are available from: UNITED NATIONS ENVIRONMENT PROGRAMME Ozone Secretariat, P.O. Box 30552, Nairobi, Kenya This document is also available in portable document format from the UNEP Ozone Secretariat's website: http://ozone.unep.org/Assessment_Panels/TEAP/Reports/MTOC/ No copyright involved. This publication may be freely copied, abstracted and cited, with acknowledgement of the source of the material. ISBN: 978-92-807-2828-6 Job No: OZO/0954/NA Cover photograph © Luo Hong. iv 2006 MTOC Assessment Report Disclaimer The United Nations Environment Programme (UNEP), the Technology and Economic Assessment Panel (TEAP) Co-chairs and members, the Technical Options Committees Co-chairs and members, the TEAP Task Forces Co-chairs and members, and the companies and organisations that employ them do not endorse the performance, worker safety, or environmental acceptability of any of the technical options discussed. Every industrial operation requires consideration of worker safety and proper disposal of contaminants and waste products. Moreover, as work continues - including additional toxicity evaluation - more information on health, environmental and safety effects of alternatives and replacements will become available for use in selecting among the options discussed in this document.
    [Show full text]
  • Comparison of Effect of Leukotriene Biosynthesis Blockers and Inhibitors of Phosphodiesterase Enzyme in Patients with Bronchial Hyperreactivity
    ID Design Press, Skopje, Republic of Macedonia Open Access Macedonian Journal of Medical Sciences. 2018 May 20; 6(5):777-781. https://doi.org/10.3889/oamjms.2018.187 eISSN: 1857-9655 Clinical Science Comparison of Effect of Leukotriene Biosynthesis Blockers and Inhibitors of Phosphodiesterase Enzyme in Patients with Bronchial Hyperreactivity Naim Morina1, Arsim Haliti1, Ali Iljazi2, Drita Islami3, Sadi Bexheti4, Adnan Bozalija1*, Hilmi Islami3 1Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo; 2Kosovo Occupational Health Institute, Gjakovo, Kosovo; 3Department of Pharmacology, Faculty of Medicine, University of Prishtina, Kosovo; 4Department of Anatomy, Faculty of Medicine, University of Prishtina, Kosovo Abstract Citation: Morina N, Haliti A, Iljazi A, Islami D, Bexheti S, AIM: Blocking effect of leukotriene biosynthesis–zileuton and blocking the effect of phosphodiesterase enzyme– Bozalija A, Islami H. Comparison of Effect of Leukotriene diprophylline in the treatment of patients with bronchial asthma and bronchial increased reactivity, and tiotropium Biosynthesis Blockers and Inhibitors of Phosphodiesterase Enzyme in Patients with Bronchial bromide as an antagonist of the muscarinic receptor studied in this work. Hyperreactivity. Open Access Maced J Med Sci. 2018 May 20; 6(5):777-781. METHODS: Parameters of the lung function are determined with Body plethysmography. The resistance of the https://doi.org/10.3889/oamjms.2018.187 airways (Raw) was registered and measured was intrathoracic gas volume (ITGV), and specific resistance Keywords: Bronchial asthma; Zileuton; Diprophylline and tiotropium bromide (SRaw) was also calculated. For the research, administered was zileuton (tabl. 600 mg) and diprophylline (tabl. 150 mg). *Correspondence: Adnan Bozalija. Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo.
    [Show full text]
  • FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting
    FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting August 31, 2020 sNDA 209482: fluticasone furoate/umeclidinium/vilanterol fixed dose combination to reduce all-cause mortality in patients with chronic obstructive pulmonary disease NDA209482/S-0008 PADAC Clinical and Statistical Briefing Document Fluticasone furoate/umeclidinium/vilanterol fixed dose combination for all-cause mortality DISCLAIMER STATEMENT The attached package contains background information prepared by the Food and Drug Administration (FDA) for the panel members of the advisory committee. The FDA background package often contains assessments and/or conclusions and recommendations written by individual FDA reviewers. Such conclusions and recommendations do not necessarily represent the final position of the individual reviewers, nor do they necessarily represent the final position of the Review Division or Office. We have brought the supplemental New Drug Application (sNDA) 209482, for fluticasone furoate/umeclidinium/vilanterol, as an inhaled fixed dose combination, for the reduction in all-cause mortality in patients with COPD, to this Advisory Committee in order to gain the Committee’s insights and opinions, and the background package may not include all issues relevant to the final regulatory recommendation and instead is intended to focus on issues identified by the Agency for discussion by the advisory committee. The FDA will not issue a final determination on the issues at hand until input from the advisory committee process has been considered
    [Show full text]
  • Intracolonic Administration of Zileuton, a Selective 5-Lipoxygenase Inhibitor, Accelerates Healing in a Rat Model of Chronic Colitis
    Gut 1996; 38: 899-904 899 Intracolonic administration of zileuton, a selective 5-lipoxygenase inhibitor, accelerates healing in a rat model of chronic colitis Gut: first published as 10.1136/gut.38.6.899 on 1 June 1996. Downloaded from X Bertran, J Mafe', F Fernandez-Bafiares, E Castella, R Bartoli, I Ojanguren, M Esteve, M A Gassull Abstract models of colitis that the concentration of Background-5-Lipoxygenase products leukotrienes (mainly leukotriene B4 (LTB4)) in play a part in inflammatory response. the inflamed mucosa is within the range known Aims-The effect of intracolonic admini- to induce biological effects (chemokinesis, cell stration of zileuton (a 5-lipoxygenase aggregation, increasing of vascular permeabil- inhibitor) on colonic damage and ity), and these concentrations are similar to eicosanoid local release was assessed in a those seen in human IBD.2-7 In addition, rat model ofcolitis. drugs known to be effective in the treatment of Methods-Ninety rats with trinitroben- IBD are capable of reducing intestinal zenesulphonic acid induced colitis were leukotriene production in both experimental randomised to receive placebo, 5-amino- models of colitis and human IBD.36 On the salicylic acid (50 mglkg), or zileuton other hand, administration ofpotent and selec- (50 mg/kg) intracolonically for four weeks. tive inhibitors of leukotriene synthesis results Local eicosanoid release was monitored in a reduction of macroscopic and histological by intracolonic dialysis throughout the colonic damage in experimental colitis.6 8-11 study. The colon was removed for macro- Zileuton, N-(1-(benzo[b]thien-2-yl)ethyl)- scopic and histological assessment at N-hydroxyurea (Abbott Laboratories, Abbott weeks 1, 2, and 4 after colitis induction in Park, IL), is a drug that selectively inhibits the 10 rats of each group.
    [Show full text]
  • Monteleucast and Zileuton Retard the Progression of Atherosclerosis Via Down Regulation of the Inflammatory and Oxidative Pathwa
    & Experim l e ca n i t in a l l C C f a Journal of Clinical & Experimental Hadi et al., J Clin Exp Cardiolog 2013, 4:6 o r d l i a o DOI: 10.4172/2155-9880.1000250 n l o r g u y o J Cardiology ISSN: 2155-9880 Research Article Open Access Monteleucast and Zileuton Retard the Progression of Atherosclerosis via Down Regulation of the Inflammatory and Oxidative Pathways Najah R Hadi1*, Bassim I Mohammad2, Ahmad Almudhafer1, Naser Yousif3 and Ahmed M Sultan2 1Kufa College of Medicine, Iraq 2Al-Qadesiyah University, Iraq 3Colorado University, USA Abstract Background: Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. Leukotrines are involved in different stages of atherosclerosis. Therefore this study was undertaken to evaluate the effect of montelukast and zileuton on the progression of atherosclerosis. Materials and methods: Thirty-five male rabbits were used in this study. These animals randomized into 5 groups (7 rabbits each). Rabbits in first group were maintained on normal rabbit chow diet and used as normal diet control group (NC). While the rabbits in other four groups were fed on atherogenic diet (2% cholesterol) for 8 weeks. The second group, Atherogenic Control Group (AC) rabbits received atherogenic diet alone. Third group, Positive Control Group (PC) rabbits received atherogenic diet and ethanol as vehicle. Forth group, Montelukast Treated Group (MT) rabbits received montelukast 1.5 mg per kg daily and the fifth group, Zileuton Treated Group (ZT) rabbits received zileuton 150 mg per kg daily. At the end of 8th weeks animals were sacrificed, blood sample was collected to measure the following parameters: lipid profile, plasma GSH, MDA, and hsCRP.
    [Show full text]
  • Leukotriene Modifiers (Accolate®, Singulair®, Zileuton®)
    Leukotriene Modifiers (Accolate®, Singulair®, Zileuton®) What are They? Leukotriene modifiers reduce swelling and inflammation in the airways to prevent asthma symptoms. You may not notice a change in your asthma symptoms for one to two week, after starting to use them. • These medicines will not stop a sudden asthma attack. Albuterol should be used for sudden asthma attacks. • Only regular daily use of the leukotriene modifiers will prevent asthma symptoms. • It is important that you do not stop or decrease the dose of these medications without contacting your doctor. How should they be used? • Zafirlukast (Accolate®) is a tablet that is taken by mouth twice a day on an empty stomach (1 hour before you eat or 2 hours after you eat). It is very important to take this medicine on an empty stomach. o Zafirlukast must be taken every day even if you don’t have asthma symptoms. If you forget to take your dose on time, do not take twice as much the next time. Take the regularly scheduled dose as soon as you remember, then get back to your regular schedule. o Side effects . Zafirlukast (Accolate®) causes very few side effects. Some people may have headaches, nausea, or diarrhea. Although these side effects are quite uncommon, it is important for you to let your doctor know if you are experiencing any of these while taking zafirlukast. • Montelukast (Singulair®) o A tablet that is taken once a day at nighttime. o You can take Montelukast with or without food. o Montelukast must be taken every day even if you don’t have asthma symptoms.
    [Show full text]
  • Pharmacology and Therapeutics of Bronchodilators
    1521-0081/12/6403-450–504$25.00 PHARMACOLOGICAL REVIEWS Vol. 64, No. 3 Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics 4580/3762238 Pharmacol Rev 64:450–504, 2012 ASSOCIATE EDITOR: DAVID R. SIBLEY Pharmacology and Therapeutics of Bronchodilators Mario Cazzola, Clive P. Page, Luigino Calzetta, and M. Gabriella Matera Department of Internal Medicine, Unit of Respiratory Clinical Pharmacology, University of Rome ‘Tor Vergata,’ Rome, Italy (M.C., L.C.); Department of Pulmonary Rehabilitation, San Raffaele Pisana Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy (M.C., L.C.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK (C.P.P., L.C.); and Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Naples, Italy (M.G.M.) Abstract............................................................................... 451 I. Introduction: the physiological rationale for using bronchodilators .......................... 452 II. ␤-Adrenergic receptor agonists .......................................................... 455 A. A history of the development of ␤-adrenergic receptor agonists: from nonselective ␤ Downloaded from adrenergic receptor agonists to 2-adrenergic receptor-selective drugs.................... 455 ␤ B. Short-acting 2-adrenergic receptor agonists........................................... 457 1. Albuterol........................................................................ 457
    [Show full text]
  • COPD/Asthma Class Update
    Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35, Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-1119 © Copyright 2012 Oregon State University. All Rights Reserved Class Update: Asthma/COPD Medications Month/Year of Review: July 2014 Last Oregon Review: May 2012/November 2013 PDL Classes: Asthma Controller, Asthma Rescue, COPD Source Documents: OSU College of Pharmacy New drug(s): Anoro® Ellipta® (umeclidinium/vilanterol) Manufacturer: GSK/Theravance Dossier Received: Yes Current Status of PDL Classes: Chronic Obstructive Pulmonary Disease (COPD): Preferred Agents: IPRATROPIUM BROMIDE HFA AER AD, IPRATROPIUM BROMIDE SOLUTION, IPRATROPIUM/ALBUTEROL SULFATE AMPUL-NEB, TIOTROPIUM BROMIDE(SPIRIVA®) CAP W/DEV, IPRATROPIUM/ALBUTEROL (COMBIVENT®) RESPIMAT Non-Preferred Agents: AFORMOTEROL (BROVANA®), FORMOTEROL (PERFOROMIST), ROFLUMILAST (DALIRESP®), INDACATEROL (ARCAPTA®) NEOHALER, ACLIDINIUM (TUDORZA®) PRESSAIR, VILANTEROL/FLUTICASONE (BREO®) ELLIPTA Asthma Controllers and Asthma Rescue Preferred Agents: BECLOMETHASONE DIPROPIONATE(QVAR®), BUDESONIDE (PULMICORT FLEXHALER®), BUDESONIDE / FORMOTEROL FUMARATE (SYMBICORT®), FLUTICASONE PROPIONATE(FLOVENT HFA®), FLUTICASONE PROPIONATE(FLOVENT DISKUS®), FLUTICASONE/SALMETEROL(ADVAIR DISKUS®), FLUTICASONE/SALMETEROL(ADVAIR HFA®), FORMOTEROL (FORADIL®) AEROLIZER, MONTELUKAST SODIUM TAB CHEW/TABLET, SALMETEROL XINAFOATE (SEREVENT®), ALBUTEROL SULFATE SOLUTION/VIAL NEBS, PIRBUTEROL ACETATE, PROAIR® HFA, VENTOLIN® HFA Non-preferred Agents: CICLESONIDE
    [Show full text]
  • Antileukotriene Agents in Asthma: the Dart That Kills the Elephant?
    Antileukotriene agents in asthma: The dart that kills the elephant? Education Paolo M. Renzi, MD Éducation Abstract From the Research Centre and the Pulmonary Unit, THE PERSISTENCE OF AIRWAY INFLAMMATION is believed to cause the mechanical Centre hospitalier de changes and symptoms of asthma. After decades of research, a new class of med- l’Université de Montréal ication has emerged that focuses on leukotrienes, mediators of inflammation. These Hospitals, Université de substances are potent inducers of bronchoconstriction, increased vascular perme- Montréal, and the Meakins ability and mucus production, and they potentiate the influx of inflammatory cells Christie Laboratories, McGill in the airways of patients with asthma. In this article the author reviews the devel- University, Montreal, Que. opment, mechanism of action, and clinical and toxic effects of the leukotriene syn- thesis inhibitors and receptor antagonists that are entering the North American market. These agents can decrease airway response to antigen, airway hyperre- This article has been peer reviewed. sponsiveness and exercise-induced asthma. They are also effective inhibitors of ASA-induced symptoms. Although few published studies are available, the an- CMAJ 1999;160:217-23 tileukotrienes seem almost as effective in the management of chronic asthma as ß See related article page 209 low-dose inhaled corticosteroids, and their use permits a decrease in the frequency of use or dose of corticosteroids. Further evaluation and clinical experience will determine the position of targeted inhibition of the leukotriene pathway in the treatment of asthma. Résumé ON CROIT QUE LA PERSISTANCE DE L’INFLAMMATION des voies respiratoires provoque les changements mécaniques et les symptômes de l’asthme.
    [Show full text]
  • Pranlukast, a Novel Leukotriene Receptor Antagonist 525
    Thorax 1997;52:523±527 523 Pranlukast, a novel leukotriene receptor Thorax: first published as 10.1136/thx.52.6.523 on 1 June 1997. Downloaded from antagonist: results of the ®rst European, placebo controlled, multicentre clinical study in asthma N C Barnes, J-C Pujet on behalf of an International Study Group Abstract asthma. It increased FEV1 within one hour Background ± Leukotriene receptor ant- of dosing, improved patient summary agonists have been shown to protect symptom and night-time asthma scores, against bronchoconstriction induced by and reduced the use of rescue broncho- antigens, exercise, and cold air. There are dilators, thus providing further evidence relatively few clinical studies reported in of a role for leukotrienes in the patho- patients with asthma. The present study genesis of asthma. is the ®rst clinical evaluation of pranlukast (Thorax 1997;52:523±527) (SB 205312, ONO-1078) outside Japan in patients with asthma. Keywords: leukotriene receptor antagonist, asthma, Methods ± A randomised, double blind, pranlukast, SB 205312, ONO-1078. placebo controlled, parallel group, multi- centre four week study of the safety and tolerability of oral pranlukast, 225 or Since the structure of leukotrienes was de- 337.5 mg twice daily, was performed in scribed in 1979,1 considerable eVort has been patients with mild to moderate asthma. made to develop drugs that block the leuko- Preliminary eYcacy data were obtained; triene receptor or inhibit synthesis of leuko- the main eYcacy variables evaluated were trienes. Challenge studies using a number forced expiratory volume in one second of leukotriene receptor antagonists or 5-lip- http://thorax.bmj.com/ (FEV1) and morning domiciliary (home) oxygenase inhibitors have shown that leuko- peak expiratory ¯ow rates (PEFR).
    [Show full text]