Space Law Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPACE RESEARCH in POLAND Report to COMMITTEE
SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
INDIA JANUARY 2018 – June 2020
SPACE RESEARCH IN INDIA JANUARY 2018 – June 2020 Presented to 43rd COSPAR Scientific Assembly, Sydney, Australia | Jan 28–Feb 4, 2021 SPACE RESEARCH IN INDIA January 2018 – June 2020 A Report of the Indian National Committee for Space Research (INCOSPAR) Indian National Science Academy (INSA) Indian Space Research Organization (ISRO) For the 43rd COSPAR Scientific Assembly 28 January – 4 Febuary 2021 Sydney, Australia INDIAN SPACE RESEARCH ORGANISATION BENGALURU 2 Compiled and Edited by Mohammad Hasan Space Science Program Office ISRO HQ, Bengalure Enquiries to: Space Science Programme Office ISRO Headquarters Antariksh Bhavan, New BEL Road Bengaluru 560 231. Karnataka, India E-mail: [email protected] Cover Page Images: Upper: Colour composite picture of face-on spiral galaxy M 74 - from UVIT onboard AstroSat. Here blue colour represent image in far ultraviolet and green colour represent image in near ultraviolet.The spiral arms show the young stars that are copious emitters of ultraviolet light. Lower: Sarabhai crater as imaged by Terrain Mapping Camera-2 (TMC-2)onboard Chandrayaan-2 Orbiter.TMC-2 provides images (0.4μm to 0.85μm) at 5m spatial resolution 3 INDEX 4 FOREWORD PREFACE With great pleasure I introduce the report on Space Research in India, prepared for the 43rd COSPAR Scientific Assembly, 28 January – 4 February 2021, Sydney, Australia, by the Indian National Committee for Space Research (INCOSPAR), Indian National Science Academy (INSA), and Indian Space Research Organization (ISRO). The report gives an overview of the important accomplishments, achievements and research activities conducted in India in several areas of near- Earth space, Sun, Planetary science, and Astrophysics for the duration of two and half years (Jan 2018 – June 2020). -
資料2-1 宇宙輸送に係る国外の主要動向について (Pdf:7.8Mb)
2-1 2R2.1.30 2(2020)130 1 1. n l l l 2 1. 1.1 n n l l • • • • • • n l n l • n l 3 1. 1.1 n l l NSSLNational Security Space Launch Evolved Expendable Launch Vehicle (EELV) CRSCommercial Resupply Services CCPCommercial Crew Development DoD:Department of Defense NRO:National Reconnaissance Office A-2. 4 1. 1.1 n l q NASA ⁻ Flight Opportunities(FO) Award(15M) ⁻ Venture Class LaunCh ServiCes(VCLS) RoCket Lab$6.9MVirgin Orbit$4.7M ⁻ SBIR/STTR » SBIR Small Business Innovation ResearCh1 A-15. NASA 20173.2% » STTRSmall Business TeChnology Transfer: 10 20160.45% q DARPA DARPA Launch ChallengeDLC ⁻ 2020 ⁻ VeCtor SpaCeVoX SpaCe3 A-16. DLC 5 1. 1.1 n l l l NASA2015 AFRL 6 1. 1.2 n <>European Space Policy2007 • • ⁻ Ariane 5 ESA Vega SoyuZ ⁻ <>Space Strategy for Europe2016 • autonomousEU ⁻ ⁻ ⁻ EU ⁻ n ESA l Future LaunChers Preparatory Programme (FLPP) 2003 ⁻ 5 ⁻ ⁻ ⁻ ⁻ l FLPP 7 1. 1.3 n 2016(China‘s Space Activities in 2016)5 5/ / (CALT) 2017-2045 2020(LMCZ) 8 2025 2030SR 2040 2045 8 1. 1.4 n l 2030 l l 5 l 2016-2025 • • • • (3) 9 1. 1.5 n l (ISRO)SLVASLVPSLV GSLV, GSLV MkIII l 20192(Department of SpaceDOS) ISRODOS • (Small Satellite Launch Vehicle: SLV) • (Polar SLV) • • n l DOSISRO Semi-CryogeniC ProjeCt 200/ Reusable LaunCh VehiCle - TeChnology Demonstrator (RLV-TD) 2016 India’s Human SpaCe Flight GSLV MkIII2022 10 2. n l l l l l l 11 71.6m -
Fiscal Year 2016 Activities Aeronautics and Space Report of the President
Aeronautics and Space Report of the President Fiscal Year 2016 Activities Aeronautics and Space Report OF THE PRESIDENT Fiscal Year 2016 Activities The National Aeronautics and Space Act of 1958 directed the annual Aeronautics and Space Report to include a “comprehensive description of the programmed activities and the accomplishments of all agencies of the United States in the field of aeronautics and space activities during the preceding calendar year.” In recent years, the reports have been prepared on a fiscal-year basis, consistent with the budgetary period now used in programs of the Federal Government. This year’s report covers activities that took place from October 1, 2015, through September 30, 2016. Please note that these activities reflect the Federal policies of that time and do not include subsequent Aeronautics and Space Report of the President • Fiscal Year 2016 Activities and SpaceAeronautics Report 2016 of the Year President • Fiscal events or changes in policy. On the title page, clockwise from the top left: 1. Composite image of the diffuse nebula NGC 6357 containing x-ray data from NASA’s Chandra X-ray Observatory and the ROentgen SATellite (ROSAT) telescope (purple), infrared data from NASA’s Spitzer Space Telescope (orange), and opti- cal data from the SuperCosmos Sky Survey (blue) made by the United Kingdom Infrared Telescope (UKIRT). Credit: X-ray—NASA/CXC/PSU/L. Townsley et al.; optical—UKIRT; infrared—NASA/ Jet Propulsion Laboratory–Caltech. 2. Artist’s concept of one of the eight Cyclone Global Navigation Satellite System satellites deployed in space above a hurricane. Credit: NASA. 3. The Bigelow Expandable Activity Module (BEAM), installed on the International Space Station on April 16, 2016, at 5:36 a.m. -
Guidance and Control for Launch and Vertical Descend of Reusable Launchers Using Model Predictive Control and Convex Optimisation
Guidance and Control for Launch and Vertical Descend of Reusable Launchers using Model Predictive Control and Convex Optimisation Guillermo Zaragoza Prous Space Engineering, master's level (120 credits) 2020 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Abstract The increasing market of small and affordable space systems requires fast and reliable launch capabilities to cover the current and future demand. This project aims to study and implement guidance and control schemes for vertical ascent and descent phases of a reusable launcher. Specifically, the thesis focuses on developing and applying Model Predictive Control (MPC) and optimisation techniques to several kino-dynamic models of rockets. Moreover, the classical MPC method has been modified to include a decreas- ing factor for the horizon used, enhancing the performance of the guidance and control. Multiple scenarios of vertical launch, landing and full flight guidance on Earth and Mars, along with Monte Carlo analysis, were carried out to demonstrate the robustness of the algorithm against different initial conditions. The results were promising and invite to further research. Keywords Model Predictive Control; Rocket; Reusable Launch Vehicle; Vertical Takeoff; Vertical Landing; Guidance and Control; Convex Optimisation; Microcontroller; Processor-in- the-Loop; Space Engineering. v vi ABSTRACT Contents Abstract v Contents vii List of Figures xi List of Tables xiii List of Abbreviations xv Nomenclature xvii Acknowledgements xxi 1 Motivation 1 1.1 Background . .1 1.2 Fundamental Questions . .2 1.3 Outline . .3 2 Literature Review 5 2.1 Guidance and Control . .5 2.1.1 Guidance Subsystem . .6 2.1.1.1 Launch . -
NASA Scientific and Technical Aerospace Reports
NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, information (STI) program plays a key part in seminars, or other meetings sponsored helping NASA maintain this important role. or co-sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the substantial public interest. NASA Aeronautics and Space Database and its public interface, the NASA Technical Report • TECHNICAL TRANSLATION. Server, thus providing one of the largest English-language translations of foreign collections of aeronautical and space science scientific and technical material pertinent to STI in the world. Results are published in both NASA’s mission. non-NASA channels and by NASA in the NASA STI Report Series, which includes the Specialized services also include organizing following report types: and publishing research results, distributing specialized research announcements and feeds, • TECHNICAL PUBLICATION. Reports of providing help desk and personal search completed research or a major significant support, and enabling data exchange services. phase of research that present the results of NASA Programs and include extensive data For more information about the NASA STI or theoretical analysis. Includes compila- program, see the following: tions of significant scientific and technical data and information deemed to be of • Access the NASA STI program home page continuing reference value. -
2020 for 2021-2025, WE’LL NEED to BE EVEN MORE IMAGINATIVE 04 Interview with Jean-Yves Le Gall to PREPARE 06 a Political Ambition for the FUTURE!
FRANCE RISING TO THE FUTURE CHALLENGES OF SPACE 03 CNES • THE SPIRIT OF SPACE 2020 FOR 2021-2025, WE’LL NEED TO BE EVEN MORE IMAGINATIVE 04 Interview with Jean-Yves Le Gall TO PREPARE 06 A political ambition FOR THE FUTURE! 08 Four centres of excellence 10 An exceptional budget 12 France 14 Europe 16 On the world stage 18 Launchers with Jean-Yves Le Gall CNES President The Space19+ ESA Ministerial Conference proved a huge success for Europe’s space programme, securing a budget of nearly €14.4 billion. What are the main lines of action to come out of it? This conference, co-chaired by Frédérique Vidal, our Minister for Higher Education, Research and Innovation, was a great success in several sectors that France advocated for. First, for Europe’s independent space launch capability; second, in two other areas where CNES has been a precursor in recent years, namely climate and Earth observation through the Copernicus programme and exploration of the Moon and Mars; and third, industrial competitiveness, particularly in the telecommunications sector, which received significant funding aided by CNES’s contribution to ESA and through our national programme. The final result is that we’ve approved a historic budget that stands 20 Satellites to greatly benefit Europe and its industry. Europe is now poised to step up a gear in a fast-changing space landscape. 22 Applications What role does CNES have to play in this new phase, in particular in the light of its next Objectives and Performance Contract for 2021-2025? 24 Innovation CNES has been leading the way in recent years as the first to make innovation, climate actions and international cooperation its priorities. -
Future Launchers Preparatory Programme”: the Reusability Option for Ariane Evolutions
DOI: 10.13009/EUCASS2019-971 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) LAUNCH VEHICLES SYSTEM STUDIES IN THE “FUTURE LAUNCHERS PREPARATORY PROGRAMME”: THE REUSABILITY OPTION FOR ARIANE EVOLUTIONS. Olivier Gogdet(1), Jamila Mansouri(2), Jerome Breteau(3) , Antoine Patureau De Mirand(4), (5) Eric Louaas (1) Ariane Group (AG), 66, route de Verneuil, 78130 Les Mureaux (France) Email:[email protected] (2) European Space Agency (ESA), 52, rue Jacques Hillairet, 75012 Paris (France) Email:[email protected] (3) European Space Agency (ESA), 52, rue Jacques Hillairet, 75012 Paris (France) Email:[email protected] (4) Centre National d’Etudes Spatiales (CNES), 52, rue Jacques Hillairet, 75012 Paris Cedex (France) Email:[email protected] (5) Centre National d’Etudes Spatiales (CNES), 52, rue Jacques Hillairet, 75012 Paris Cedex (France) Email:[email protected] ABSTRACT: The European launchers shall answer the evolutions of the payloads and their mission profiles. Ariane 6 and Vega-C programmes are the next step “short term” answers. But Beyond that, the Future Launchers Preparatory Programme (FLPP) managed By ESA, prepares the future launcher system architectures and the enaBling technologies through demonstrators. Concerning the future of Ariane, and in front of the increasing competition pressure, the system and technology activities in FLPP/NEO shall prepare the options that will ensure sustainaBle competitiveness. Part of these activities, the in-flight reusaBle vehicle demonstration aims to contriBute to the following targets: • Ariane Recurring Cost decrease with a target of -50% compared to Ariane 6 Baseline • ReusaBility to reduce investment in production means (CAPEX) • Acquisition of the reusaBility key competences not availaBle in Europe The reusaBility option, for the future liquid Boosters and/or lower stage, is under evaluation through Ariane Group studies currently ongoing. -
Unique Abilities of Hopper Spacecraft to Enable National Objectives for Solar System Exploration
UNIQUE ABILITIES OF HOPPER SPACECRAFT TO ENABLE NATIONAL OBJECTIVES FOR SOLAR SYSTEM EXPLORATION EPHRAIM ROBERT LANFORD B.S. Engineering Harvey Mudd College, 2006 Submitted to the Engineering Systems Division and the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degrees of MASTER OF SCIENCE IN TECHNOLOGY AND POLICY and MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2011 © 2011 Massachusetts Institute of Technology. All rights reserved. Signature of author: Technology and Policy Program Department of Aeronautics and Astronautics January 27, 2011 Certified by: Jeffrey A. Hoffman Professor of the Practice of Aeronautics and Astronautics Thesis Supervisor Certified by: John Danis Group Leader, Mission Architectures and Applications Charles Stark Draper Laboratory Accepted by: Dava J. Newman Professor of Aeronautics and Astronautics & Engineering Systems, MacVicar Faculty Fellow Director of Technology and Policy Program Accepted by: Eytan H. Modiano Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee, Department of Aeronautics and Astronautics 2 UNIQUE ABILITIES OF HOPPER SPACECRAFT TO ENABLE NATIONAL OBJECTIVES FOR SOLAR SYSTEM EXPLORATION Ephraim Robert Lanford B.S. Engineering Harvey Mudd College, 2006 Submitted to the Engineering Systems Division and the Department of Aeronautics and Astronautics on January 27, 2011 in partial fulfillment of the requirements for the degrees of Master of Science in Technology and Policy and Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology ABSTRACT In comparison with conventional and other conceived approaches, hopper spacecraft offer unique advantages in exploring Solar System objects beyond Earth. The present work began with a survey – based on documents from the White House, Congress, NASA, and the international planetary science community – of exploration plans and objectives in the United States. -
Athena COUSTENIS ESSC-ESF and Paris Observatory-CNRS [email protected] ESA Science Programme
CAPSScience Meeting Programme Committee ESA Science Programme Irvine, 12 Sept.ESAC, 2017 21 June 2017 Overview of ESA’s current and future planetary science missions Athena COUSTENIS ESSC-ESF and Paris Observatory-CNRS [email protected] SCIENCE The European Space Agency Current Scientific Programmes • Science Mandatory Programme • Human Spaceflight and Robotic Exploration Programme • Earth Observation Programme The European Space Agency Current Scientific Programmes • Science Mandatory Programme (SCI) • Human Spaceflight and Robotic Exploration Programme (HSRE): Mars & the Moon • Earth Observation Programme Basics of the SCI and HSRE Programmes .The Programmes are Science-driven and exploratory: both long-term science and exploratory planning ; mission or experiment calls are bottom-up processes, relying on broad community input, advisory structure and peer review. .The Science Programme is Mandatory: all member states contribute pro-rata to GDP providing budget stability, allowing long-term planning of its scientific goals and being the backbone of the Agency. .The Human Spaceflight and Robotic Exploration Programme is optional: 17 countries and Canada contribute. E3P encompasses ISS, astronauts, Orion, Moon and Mars destinations … ESA science programme Successes and objectives of the science mandatory programme – Based on peer-reviewed selection of missions on the basis of scientific excellence following an open call. The content of the Programme (which missions?) is decided by the SPC (national delegates). – Long-term planning to service a broad community with the annual budget over 4-5 years decided at ESA Council at Ministerial level. – Regular sequence of launches based on a balance of mission sizes (Small, Medium, Large), fostering both ambitious, high-return missions and faster, smaller missions. -
Beyond Earth a CHRONICLE of DEEP SPACE EXPLORATION, 1958–2016
Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 Asif A. Siddiqi Beyond Earth A CHRONICLE OF DEEP SPACE EXPLORATION, 1958–2016 by Asif A. Siddiqi NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Office of Communications NASA History Division Washington, DC 20546 NASA SP-2018-4041 Library of Congress Cataloging-in-Publication Data Names: Siddiqi, Asif A., 1966– author. | United States. NASA History Division, issuing body. | United States. NASA History Program Office, publisher. Title: Beyond Earth : a chronicle of deep space exploration, 1958–2016 / by Asif A. Siddiqi. Other titles: Deep space chronicle Description: Second edition. | Washington, DC : National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2018] | Series: NASA SP ; 2018-4041 | Series: The NASA history series | Includes bibliographical references and index. Identifiers: LCCN 2017058675 (print) | LCCN 2017059404 (ebook) | ISBN 9781626830424 | ISBN 9781626830431 | ISBN 9781626830431?q(paperback) Subjects: LCSH: Space flight—History. | Planets—Exploration—History. Classification: LCC TL790 (ebook) | LCC TL790 .S53 2018 (print) | DDC 629.43/509—dc23 | SUDOC NAS 1.21:2018-4041 LC record available at https://lccn.loc.gov/2017058675 Original Cover Artwork provided by Ariel Waldman The artwork titled Spaceprob.es is a companion piece to the Web site that catalogs the active human-made machines that freckle our solar system. Each space probe’s silhouette has been paired with its distance from Earth via the Deep Space Network or its last known coordinates. This publication is available as a free download at http://www.nasa.gov/ebooks. ISBN 978-1-62683-043-1 90000 9 781626 830431 For my beloved father Dr.