THE MODES of ANCIENT GREECE by Elsie Hamilton
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
4. Non-Heptatonic Modes
Tagg: Everyday Tonality II — 4. Non‐heptatonic modes 151 4. Non‐heptatonic modes If modes containing seven different scale degrees are heptatonic, eight‐note modes are octatonic, six‐note modes hexatonic, those with five pentatonic, while four‐ and three‐note modes are tetratonic and tritonic. Now, even though the most popular pentatonic modes are sometimes called ‘gapped’ because they contain two scale steps larger than those of the ‘church’ modes of Chapter 3 —doh ré mi sol la and la doh ré mi sol, for example— they are no more incomplete FFBk04Modes2.fm. 2014-09-14,13:57 or empty than the octatonic start to example 70 can be considered cluttered or crowded.1 Ex. 70. Vigneault/Rochon (1973): Je chante pour (octatonic opening phrase) The point is that the most widespread convention for numbering scale degrees (in Europe, the Arab world, India, Java, China, etc.) is, as we’ve seen, heptatonic. So, when expressions like ‘thirdless hexatonic’ occur in this chapter it does not imply that the mode is in any sense deficient: it’s just a matter of using a quasi‐global con‐ vention to designate a particular trait of the mode. Tritonic and tetratonic Tritonic and tetratonic tunes are common in many parts of the world, not least in traditional music from Micronesia and Poly‐ nesia, as well as among the Māori, the Inuit, the Saami and Native Americans of the great plains.2 Tetratonic modes are also found in Christian psalm and response chanting (ex. 71), while the sound of children chanting tritonic taunts can still be heard in playgrounds in many parts of the world (ex. -
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
The New Dictionary of Music and Musicians
The New GROVE Dictionary of Music and Musicians EDITED BY Stanley Sadie 12 Meares - M utis London, 1980 376 Moda Harold Powers Mode (from Lat. modus: 'measure', 'standard'; 'manner', 'way'). A term in Western music theory with three main applications, all connected with the above meanings of modus: the relationship between the note values longa and brevis in late medieval notation; interval, in early medieval theory; most significantly, a concept involving scale type and melody type. The term 'mode' has always been used to designate classes of melodies, and in this century to designate certain kinds of norm or model for composition or improvisation as well. Certain pheno mena in folksong and in non-Western music are related to this last meaning, and are discussed below in §§IV and V. The word is also used in acoustical parlance to denote a particular pattern of vibrations in which a system can oscillate in a stable way; see SOUND, §5. I. The term. II. Medieval modal theory. III. Modal theo ries and polyphonic music. IV. Modal scales and folk song melodies. V. Mode as a musicological concept. I. The term I. Mensural notation. 2. Interval. 3. Scale or melody type. I. MENSURAL NOTATION. In this context the term 'mode' has two applications. First, it refers in general to the proportional durational relationship between brevis and /onga: the modus is perfectus (sometimes major) when the relationship is 3: l, imperfectus (sometimes minor) when it is 2 : I. (The attributives major and minor are more properly used with modus to distinguish the rela tion of /onga to maxima from the relation of brevis to longa, respectively.) In the earliest stages of mensural notation, the so called Franconian notation, 'modus' designated one of five to seven fixed arrangements of longs and breves in particular rhythms, called by scholars rhythmic modes. -
Chapter 26 Scales a La Mode
CHAPTER 26 SCALES A LA MODE Musical innovation is full of danger to the State, for when modes of music change, the laws of the State always change with them. PLATO WHAT IS A MODE? A mode is a type of scale. Modes are used in music like salsa, jazz, country, rock, fusion, speed metal, and more. The reason the Chapter image is of musicians jamming is that modes are important to understanding (and using) jazz theory, and helpful if you’re trying to understand improvisation. Certain modes go with certain chords. For more information about modes and their specific uses in jazz, read James Levine’s excellent book, Jazz Theory. On the Web at http://is.gd/iqufof These are also called “church modes” because they were first used in the Catholic Church back in Medieval times (remember good old Guido d’ Arezzo?). The names of the modes were taken from the Greek modes, but other than the names, they have no relation to the Greek modes. The two modes that have been used the most, and the only two most people know, are now called the Major and natural minor scales. Their original names were the Ionian mode (Major), and the Aeolian mode (natural minor). The other modes are: dorian, phrygian, lydian, mixolydian, and locrian. Modes are easy to understand. We’ll map out each mode’s series of whole and half steps and use the key of C so there aren’t any sharps or flats to bother with. THE MODES IONIAN Ionian is used in nearly all Western music, from Acid Rock to Zydeco. -
I. the Term Стр. 1 Из 93 Mode 01.10.2013 Mk:@Msitstore:D
Mode Стр. 1 из 93 Mode (from Lat. modus: ‘measure’, ‘standard’; ‘manner’, ‘way’). A term in Western music theory with three main applications, all connected with the above meanings of modus: the relationship between the note values longa and brevis in late medieval notation; interval, in early medieval theory; and, most significantly, a concept involving scale type and melody type. The term ‘mode’ has always been used to designate classes of melodies, and since the 20th century to designate certain kinds of norm or model for composition or improvisation as well. Certain phenomena in folksong and in non-Western music are related to this last meaning, and are discussed below in §§IV and V. The word is also used in acoustical parlance to denote a particular pattern of vibrations in which a system can oscillate in a stable way; see Sound, §5(ii). For a discussion of mode in relation to ancient Greek theory see Greece, §I, 6 I. The term II. Medieval modal theory III. Modal theories and polyphonic music IV. Modal scales and traditional music V. Middle East and Asia HAROLD S. POWERS/FRANS WIERING (I–III), JAMES PORTER (IV, 1), HAROLD S. POWERS/JAMES COWDERY (IV, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 1), RUTH DAVIS (V, 2), HAROLD S. POWERS/RICHARD WIDDESS (V, 3), HAROLD S. POWERS/MARC PERLMAN (V, 4(i)), HAROLD S. POWERS/MARC PERLMAN (V, 4(ii) (a)–(d)), MARC PERLMAN (V, 4(ii) (e)–(i)), ALLAN MARETT, STEPHEN JONES (V, 5(i)), ALLEN MARETT (V, 5(ii), (iii)), HAROLD S. POWERS/ALLAN MARETT (V, 5(iv)) Mode I. -
In Ludus Tonalis
Grand Valley Review Volume 23 | Issue 1 Article 4 2001 The rC eative Process vs. The aC non Kurt J. Ellenberger Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/gvr Recommended Citation Ellenberger, Kurt J. (2001) "The rC eative Process vs. The aC non," Grand Valley Review: Vol. 23: Iss. 1, Article 4. Available at: http://scholarworks.gvsu.edu/gvr/vol23/iss1/4 This Article is brought to you for free and open access by ScholarWorks@GVSU. It has been accepted for inclusion in Grand Valley Review by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. by Kurt J. Ellenberger frenzied and unforh The Creative Process vs. for "originality" (as trinsic value in and greatest composers a The Canon in a variety of differe as a testament to thE Hindemith Recycles in Ludus Tonalis in our own contempc necessary for today' s ways in which this w he contemporary composer faces many ob confines of a centuri Tstacles in the struggle towards artistic inde apparently still capab pendence. Not the least of these is the solemn music) in the hopes th realization that one's work will inevitably be might show themsel compared to the countless pieces of music that expression of our ow define the tradition of musical achievement as canonized in the "Literature." Another lies in the he need for one's mandate (exacerbated in this century by the T logical outgrowtl academy's influence) that, to qualify as innova ently a powerful 01 tive or original, a work must utilize some new influence. -
The Consecutive-Semitone Constraint on Scalar Structure: a Link Between Impressionism and Jazz1
The Consecutive-Semitone Constraint on Scalar Structure: A Link Between Impressionism and Jazz1 Dmitri Tymoczko The diatonic scale, considered as a subset of the twelve chromatic pitch classes, possesses some remarkable mathematical properties. It is, for example, a "deep scale," containing each of the six diatonic intervals a unique number of times; it represents a "maximally even" division of the octave into seven nearly-equal parts; it is capable of participating in a "maximally smooth" cycle of transpositions that differ only by the shift of a single pitch by a single semitone; and it has "Myhill's property," in the sense that every distinct two-note diatonic interval (e.g., a third) comes in exactly two distinct chromatic varieties (e.g., major and minor). Many theorists have used these properties to describe and even explain the role of the diatonic scale in traditional tonal music.2 Tonal music, however, is not exclusively diatonic, and the two nondiatonic minor scales possess none of the properties mentioned above. Thus, to the extent that we emphasize the mathematical uniqueness of the diatonic scale, we must downplay the musical significance of the other scales, for example by treating the melodic and harmonic minor scales merely as modifications of the natural minor. The difficulty is compounded when we consider the music of the late-nineteenth and twentieth centuries, in which composers expanded their musical vocabularies to include new scales (for instance, the whole-tone and the octatonic) which again shared few of the diatonic scale's interesting characteristics. This suggests that many of the features *I would like to thank David Lewin, John Thow, and Robert Wason for their assistance in preparing this article. -
Music Theory
Music Theory Advanced Level June 2005 Defining modes .................................................................................................................................... 4 Theory ................................................................................................................................................. 4 Most Important Modes ................................................................................................................ 5 Summary ........................................................................................................................................... 7 Using Modes for Improvisation ......................................................................................................... 9 Theory ............................................................................................................................................... 10 A. Recap ....................................................................................................................................... 10 B Choosing appropriate modes ............................................................................................... 11 Using Modes for Composition .......................................................................................................... 16 Usage ................................................................................................................................................ 18 The Dorian Mode ............................................................................................................................... -
Towards a Generative Framework for Understanding Musical Modes
Table of Contents Introduction & Key Terms................................................................................1 Chapter I. Heptatonic Modes.............................................................................3 Section 1.1: The Church Mode Set..............................................................3 Section 1.2: The Melodic Minor Mode Set...................................................10 Section 1.3: The Neapolitan Mode Set........................................................16 Section 1.4: The Harmonic Major and Minor Mode Sets...................................21 Section 1.5: The Harmonic Lydian, Harmonic Phrygian, and Double Harmonic Mode Sets..................................................................26 Chapter II. Pentatonic Modes..........................................................................29 Section 2.1: The Pentatonic Church Mode Set...............................................29 Section 2.2: The Pentatonic Melodic Minor Mode Set......................................34 Chapter III. Rhythmic Modes..........................................................................40 Section 3.1: Rhythmic Modes in a Twelve-Beat Cycle.....................................40 Section 3.2: Rhythmic Modes in a Sixteen-Beat Cycle.....................................41 Applications of the Generative Modal Framework..................................................45 Bibliography.............................................................................................46 O1 O Introduction Western -
Improvisation Dorian Alternative Rock Groove
Improvisation: Dorian Alternative Rock Groove In this lesson, we will demystify what modes are. The alternative rock groove featured in this lesson consists of a chord progression over which you'll improvise using the C Dorian scale. You'll find that as long as you're playing in C Dorian, you don't need to worry about the chord changes. Instead, you can focus on melodic ideas, articulation, technique, emotion/feel, dynamics, rhythm, tone, phrasing, space/rest, and listening. Outcomes: • Gain an aural and theoretical understanding of the Dorian mode through improvisation and analysis • Develop motivic ideas while improvising Materials: • Computer with a browser such as Chrome, Safari or Firefox, to access the Berklee PULSE website • Projector, PA system • Preferred instrument • PULSE motivic development video (above) • C Dorian Alternative Rock Groove Notation Mixer INSTRUCTIONAL ACTIVITY IDEAS Exposition of Material The available time in your curriculum will determine how much you incorporate from the following suggested activities. This is meant as a cumulative experience based on musicianship concepts and training presented inside the Berklee PULSE Music Method site. 1. What is a "mode"? o Modes have seven notes, and are built using a pattern of half steps and whole steps, just like the major and minor scales. Each mode has a “characteristic note,” a note that sets it apart from the other modes. Identifying Key Concepts and Terms 2. The Ionian mode vs. the Dorian mode o The Ionian mode, also known as the major scale, is built using the following pattern of steps: W, W, H, W, W, W, H (W= Whole Step, H= Half Step) o The Dorian mode starts on the second degree of the major scale. -
Analysis of Tableaux De Provence and Concerto in E-Flat Major for Saxophone and String Orchestra
Eastern Illinois University The Keep Undergraduate Honors Theses Honors College 2012 Analysis of Tableaux de Provence and Concerto in E-flat Major for Saxophone and String Orchestra Jessie Svenningsen Follow this and additional works at: https://thekeep.eiu.edu/honors_theses Part of the Music Commons Analysis of Tableauxde Provence and Concerto in E-jlatMajor for Saxophoneand String Orchestra MUS 4644 Undergrad Honors Thesis Dr. Sam Fagaly By Jessie Svenningsen December 13, 2012 Introduction This paper is an analysis of two works that are part of the saxophone literature repertoire. The paper is divided into two halves-the first introduces Paule Maurice and her work, Tableaux de Provence. The analysis of the piece follows the background information on the composer and the work itself. The second half of the writing follows the same format-Alexander Glazunov and his saxophone conce110 are discussed, and the analysis of Concerto in E17atMajor.fir Saxophone and String Orchestra, Op. 109 follows. Paule Maurice Not much information is widely known on the life and career of Paule Maurice. She was a French composer and educator born in Paris, France in 19 10. She studied harmony and counterpoint with the Gallon brothers and composition with Henri Brusser at the Paris conservatory (Moore 13). She began her professional career as a composer in the late 1930's. She was appointed as professorof sight reading in 1942 and of harmonic analysis in 1965 at the Paris conservatory (Moore 14). She also worked as an assistant to Jean Gallon, her harmony professor from 1933 until 1947 (Moore 14). She was married to Pierre Lantier, a professor of harmony and counterpoint who also worked at the Paris Conservatory. -
The Perfect Mode Pitches C to Eb Or D to F Natural
6 The Harp Therapy Journal --summer201~1 consisting of three semitones from the The perfect mode pitches C to Eb or D to F natural. This interval occurs other places within the byJulieAnn Smith BM, MA, IRTF, VAHTP modes and scales by the way but it is the occurrence of this interval between Do and Mi of any mode that is the How often do you start a therapeutic music session and ask yourself, "What do I deciding sound between the major and play?" This is a serious question. When thinking about musical modes I have often minor mode groups. wondered about one being superior. In considering music for therapeutic settings I Throughout time there has been also have wondered what mode might be an all-encompassing mode. Is there a mode a lot of emphasis placed on how we that could effectively work in any therapeutic situation; at least as a starting point? view the third note of any mode and its Therapeutic musicians are so often presented with the dilemma of what to play first, role in music with regards to our mood what key to play in or what mode would work, among other factors. So in considering and how the music affects us. There is which mode would be most important, there are several factors to consider. a different opinion about what affect, 1. Matching and meeting the patient's needs. Is she in pain? Is he sad, anxious, with- effect or emotion music should evoke. drawn, or depressed? Does she need relief from pain or anxiety? Does he just want Socrates and others prescribed that to feel better? Obviously our goal as therapeutic musicians is to address the patient's music should be played that was the needs.