Insects As a Global Food Resource: the History of Talking About It at the University of Wisconsin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs. -
Consumption of Insects As Food in Three Villages Of
e- ISSN: 2394 -5532 p- ISSN: 2394 -823X Scientific Journal Impact Factor: 3.762 International Journal of Applied And Pure Science and Agriculture www.ijapsa.com CONSUMPTIO N OF INSECTS AS FOOD IN THREE VILLAGES OF NORTH WEST DISTRICT ,BOTSWANA John Cassius Moreki 1 and Sethunya Obatre 2 1Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources , Private Ba g 0027, Gaborone, Botswana. 2Department of Agricultural Economics, Education and ExtensExtensionion , BotswanaUniversity of Agriculture and Natural Resources , Private Bag 0027, Gaborone, Botswana . Abstract This study investigated the consumption of ed ible insects in Nxaraga, Sehithwa and Shorobe villages of the North West district of Botswana. Information was gathered using a structured questionnaire which was administered to 60 respondents across the three villages and also through direct observation. A total of six insect species were identified belonging to six families and four orders (i.e., Coleoptera, Isoptera, Lepidoptera and Orthoptera) with t he two most consumed orders being Lepidoptera and Coleoptera. Carebara vidua F. Smith (33.3%) was the most consumed followed by Sternocera orissa Buq. (21.7%), Agrius convolvuli L. (15.0%), Oryctes boas Fabr.(13.3%), Imbrasia belina Westwood (10.0%) and Lo custa migratoria (6.7%). The study revealed that insects were abundant during and/or immediately after the rainy season. This implies that insects can be harvested and preserved during the time of abundan ce to maximize their utilization in meeting the human protein needs. The common methods of collecting insects were hand picking, trapping and digging. Insects were prepared for consumption by boiling, frying or roasting. -
Insecta: Phasmatodea) and Their Phylogeny
insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y. -
PRÓ ARAUCÁRIA ONLINE Araucaria Beetles Worldwide
PRÓ ARAUCÁRIA ONLINE www.pro-araucaria-online.com ISSN 1619-635X Araucaria beetles worldwide: evolution and host adaptations of a multi-genus phytophagous guild of disjunct Gondwana- derived biogeographic occurrence Roland Mecke1, Christian Mille2, Wolf Engels1 1 Zoological Institute, University of Tübingen, Germany 2 Institut Agronomique Néo-Calédonien, Station de Recherches Fruitières de Pocquereux, La Foa Nouvelle-Calédonie Corresponding author: Roland Mecke E-mail: [email protected] Pró Araucária Online 1: 1-18 (2005) Received May 9, 2005 Accepted July 5, 2005 Published September 6, 2005 Abstract Araucaria trees occur widely disjunct in the biogeographic regions Oceania and Neotropis. Of the associated entomofauna phytophagous beetles (Coleoptera) of various taxonomic groups adapted their life history to this ancient host tree. This occurred either already before the late Gondwanian interruption of the previously joint Araucaria distribution or only later in the already geographically separated populations. A bibliographic survey of the eastern and western coleopterans recorded on Araucaria trees resulted in well over 200 species belonging to 17 families. These studies include records of beetles living on 12 of the 19 extant Araucaria species. Their occurrence and adaptations to the host trees are discussed under aspects of evolution and co- speciation. Keywords: Araucaria, Coleoptera, synopsis, evolution, co-speciation, South America, Oceania Pró Araucária Online 1: 1-18 (2005) www.pro-araucaria-online.com R Mecke, C Mille, W Engels Zusammenfassung Araukarienbäume kommen in den disjunkten biogeographischen Regionen Ozeanien und Neotropis vor. Von der mit diesen Bäumen vergesellschafteten Entomofauna haben sich phytophage Käfer (Coleoptera) unterschiedlicher taxonomischer Gruppen in ihrer Lebensweise an diese altertümlichen Bäume angepasst. -
Crotalaria Longirostrata Hook &
UNIVERSIDAD RAFAEL LANDÍVAR FACULTAD DE CIENCIAS AMBIENTALES Y AGRÍCOLAS LICENCIATURA EN CIENCIAS AGRÍCOLAS CON ÉNFASIS EN GERENCIA AGRÍCOLA EVALUACIÓN DE RIESGO DE PLAGAS PARA LA IMPORTACIÓN DE FOLLAJE FRESCO DE CHIPILÍN ( Crotalaria longirostrata Hook & Arn) PROCEDENTES DE GUATEMALA EN LOS ESTADOS UNIDOS. TESIS DE GRADO ADOLFO CARAVANTES MENES CARNET 12863-97 GUATEMALA DE LA ASUNCIÓN, JULIO DE 2014 CAMPUS CENTRAL UNIVERSIDAD RAFAEL LANDÍVAR FACULTAD DE CIENCIAS AMBIENTALES Y AGRÍCOLAS LICENCIATURA EN CIENCIAS AGRÍCOLAS CON ÉNFASIS EN GERENCIA AGRÍCOLA EVALUACIÓN DE RIESGO DE PLAGAS PARA LA IMPORTACIÓN DE FOLLAJE FRESCO DE CHIPILÍN ( Crotalaria longirostrata Hook & Arn) PROCEDENTES DE GUATEMALA EN LOS ESTADOS UNIDOS. TESIS DE GRADO TRABAJO PRESENTADO AL CONSEJO DE LA FACULTAD DE CIENCIAS AMBIENTALES Y AGRÍCOLAS POR ADOLFO CARAVANTES MENES PREVIO A CONFERÍRSELE EL TÍTULO DE INGENIERO AGRÓNOMO CON ÉNFASIS EN GERENCIA AGRÍCOLA EN EL GRADO ACADÉMICO DE LICENCIADO GUATEMALA DE LA ASUNCIÓN, JULIO DE 2014 CAMPUS CENTRAL AUTORIDADES DE LA UNIVERSIDAD RAFAEL LANDÍVAR RECTOR: P. EDUARDO VALDES BARRIA, S. J. VICERRECTORA ACADÉMICA: DRA. MARTA LUCRECIA MÉNDEZ GONZÁLEZ DE PENEDO VICERRECTOR DE DR. CARLOS RAFAEL CABARRÚS PELLECER, S. J. INVESTIGACIÓN Y PROYECCIÓN: VICERRECTOR DE MGTR. LUIS ESTUARDO QUAN MACK INTEGRACIÓN UNIVERSITARIA: VICERRECTOR LIC. ARIEL RIVERA IRÍAS ADMINISTRATIVO: SECRETARIA GENERAL: LIC. FABIOLA DE LA LUZ PADILLA BELTRANENA DE LORENZANA AUTORIDADES DE LA FACULTAD DE CIENCIAS AMBIENTALES Y AGRÍCOLAS DECANO: DR. ADOLFO OTTONIEL MONTERROSO RIVAS VICEDECANA: LIC. ANNA CRISTINA BAILEY HERNÁNDEZ SECRETARIA: ING. REGINA CASTAÑEDA FUENTES DIRECTOR DE CARRERA: ING. LUIS FELIPE CALDERÓN BRAN NOMBRE DEL ASESOR DE TRABAJO DE GRADUACIÓN ING. LUIS ALFONSO CANIZ TERREAUX TERNA QUE PRACTICÓ LA EVALUACIÓN ING. -
Contact: Sondra Katzen 708.688.8351 [email protected]
Contact: Sondra Katzen 708.688.8351 [email protected] Amazing Arachnids Fact Sheet Opening Amazing Arachnids is open from Saturday, May 26, through Monday, September 3. It features two sections—Art and Science of Arachnids and Mission Safari Maze . Purpose ° To provide Brookfield Zoo guests with an engaging and interactive experience where they can discover the incredible attributes of arachnids and how the species has played an important role in our lives. ° To inspire guests to gain a better understanding of arachnids and other species that could then lead to a greater appreciation for them. Location Brookfield Zoo’s West Mall Art and Science of Arachnids Art and Science of Arachnids invites guests to discover the cultural connections of these eight-legged creatures that have weaved their way into a variety of genres, including music, art, folklore, medicine, conservation, film, and literature. In addition to engaging, hands-on interactives, the exhibit features 100 live arachnids found around the world, making it the largest public collection of arachnids in North America. ° Arachnid Species —the live collection is primarily composed of tarantulas and scorpions with a sampling of whip scorpions and true spiders. Species include: Blue femur beauty tarantula Mahogany tree spider Brazilian blue violet tarantula Metallic pink toe tarantula Brazilian pink bloom tarantula Mexican fireleg tarantula Burgundy goliath birdeater Mexican red knee tarantula Columbian pumpkin patch tarantula Mozambique golden baboon tarantula Chaco golden knee -
Insights Into the Karyotype Evolution and Speciation of the Beetle Euchroma Gigantea (Coleoptera: Buprestidae)
Chromosome Res (2018) 26:163–178 https://doi.org/10.1007/s10577-018-9576-1 ORIGINAL ARTICLE Insights into the karyotype evolution and speciation of the beetle Euchroma gigantea (Coleoptera: Buprestidae) Crislaine Xavier & Rógean Vinícius Santos Soares & Igor Costa Amorim & Diogo Cavalcanti Cabral-de-Mello & Rita de Cássia de Moura Received: 28 December 2017 /Revised: 10 February 2018 /Accepted: 13 February 2018 /Published online: 9 March 2018 # Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract Euchroma Dejean, 1833 (Buprestidae: Cole- ones), and high dispersion of histone genes in different optera) is a monotypic genus comprising the species karyotypes. These data indicate that chromosomal poly- Euchroma gigantea, with populations presenting a degree morphism in E. gigantea is greater than previously report- of karyotypic variation/polymorphism rarely found within ed, and that the species can be a valuable model for a single taxonomic (specific) unit, as well as drastically cytogenetic studies. The COI phylogenetic and haplotype incompatible meiotic configurations in populations from analyses highlighted the formation of three groups with extremes of the species range. To better understand the chromosomally polymorphic individuals. Finally, we complex karyotypic evolution of E. gigantea, the karyo- compared the different karyotypes and proposed a model types of specimens from five populations in Brazil were for the chromosomal evolution of this species. The species investigated using molecular cytogenetics and phyloge- E. gigantea includes at least three cytogenetically poly- netic approaches. Herein, we used FISH with histone morphic lineages. Moreover, in each of these lineages, genes as well as sequencing of the COI to determine different chromosomal rearrangements have been fixed. -
Chapter 13 SOUTHERN AFRICA
Chapter 13 Zimbabwe Chapter 13 SOUTHERN AFRICA: ZIMBABWE Taxonomic Inventory Taxa and life stages consumed Coleoptera Buprestidae (metallic woodborers) Sternocera funebris (author?), adult Sternocera orissa Buquet, adult Scarabaeidae (scarab beetles) Lepidiota (= Eulepida) anatine (author?), adult Lepidiota (= Eulepida) masnona (author?), adult Lepidiota (= Eulepida)nitidicollis (author?), adult Miscellaneous Coleoptera Scientific name(s) unreported Hemiptera Pentatomidae (stink bugs) Euchosternum (= Haplosterna; = Encosternum) delegorguei (Spinola) (= delagorguei), adult Pentascelis remipes (author?), adult Pentascelis wahlbergi (author?), adult Miscellaneous Hemiptera Scientific name(s) unreported Homoptera Cicadidae (cicadas) Loba leopardina (author?) Hymenoptera Apidae (honey bees) Trigona spp., larvae Formicidae (ants) Carebara vidua Sm., winged adult Isoptera Termitidae Macrotermes falciger Gerstacker (= goliath), winged adult, soldier, queen Macrotermes natalensis Haviland Lepidoptera Lasiocampidae (eggar moths, lappets) Lasiocampid sp., larva Limacodidae (slug caterpillars) Limacodid sp. Notodontidae (prominents) Anaphe panda (Boisdv.), larva Saturniidae (giant silkworm moths) Bunaea (= Bunea) alcinoe (Stoll), larva Bunaea sp., larva Cirina forda (Westwood), larva 1 of 12 9/20/2012 2:02 PM Chapter 13 Zimbabwe Gonimbrasia belina Westwood, larva Goodia kuntzei Dewitz (?), larva Gynanisa sp. (?), larva Imbrasia epimethea Drury, larva Imbrasia ertli Rebel, larva Lobobunaea sp., larva Microgone sp., (?), larva Pseudobunaea sp. (?), -
Coleoptera: Scarabaeidae* ) in Agroecological Systems of Northern Cauca, Colombia
Pardo-Locarno et al.: White Grub Complex in Agroecological Systems 355 STRUCTURE AND COMPOSITION OF THE WHITE GRUB COMPLEX (COLEOPTERA: SCARABAEIDAE* ) IN AGROECOLOGICAL SYSTEMS OF NORTHERN CAUCA, COLOMBIA LUIS CARLOS PARDO-LOCARNO1, JAMES MONTOYA-LERMA2, ANTHONY C. BELLOTTI3 AND AART VAN SCHOONHOVEN3 1Vegetales Orgánicos C.T.A. 2Departmento de Biología, Universidad del Valle, Apartado Aéreo 25360, Cali, Colombia 3Parque Científico Agronatura, CIAT, Centro Internacional de Agricultura Tropical Apartado Aéreo, 6713 Cali, Colombia ABSTRACT The larvae of some species of Scarabaeidae, known locally as “chisas” (whitegrubs), are impor- tant pests in agricultural areas of the Cauca, Colombia. They form a complex consisting of many species belonging to several genera that affect the roots of commercial crops. The objec- tive of the present study was to identify the members of the complex present in two localities (Caldono and Buenos Aires) and collect basic information on their biology, economic impor- tance, and larval morphology. The first of two types of sampling involved sampling adults in light traps installed weekly throughout one year. The second method involved larval collec- tions in plots of cassava, pasture, coffee, and woodland. Each locality was visited once per month and 10 samples per plot were collected on each occasion, with each sample from a quad- rants 1 m2 by 15 cm deep, during 1999-2000. Light traps collected 12,512 adults belonging to 45 species and 21 genera of Scarabaeidae within the subfamilies Dynastinae, Melolonthinae, and Rutelinae. Members of the subfamily Dynastinae predominated with 48% of the species (mostly Cyclocephala), followed in decreasing order by Melolonthinae (35%) and Rutelinae (15%, principally Anomala). -
Synopsis and Key to the Genera of Dynastinae (Coleoptera, Scarabaeoidea, Scarabaeidae) of Colombia
A peer-reviewed open-access journal ZooKeys 34: 153–192 (2010)Synopsis and key to the genera of Dynastinae of Colombia 153 doi: 10.3897/zookeys.34.309 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Synopsis and key to the genera of Dynastinae (Coleoptera, Scarabaeoidea, Scarabaeidae) of Colombia Héctor Jaime Gasca-Álvarez1, Germán Amat-García2 1 Corporación Sentido Natural; Calle 134 A No. 14–44 Bogotá, D. C., Colombia 2 Insects of Colombia Research Group, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado 7495, Bogotá, D.C., Colombia Corresponding authors: Héctor Jaime Gasca-Álvarez ([email protected]), Germán Amat-García ([email protected]) Academic editor: Brett Ratcliff e | Received 30 October 2009 | Accepted 28 November 2009 | Published 28 January 2010 Citation: Gasca-Álvarez HJ, Amat-García G (2010) Synopsis and key to the genera of dynastinae (Coleoptera, Scaraba- eoidea, Scarabaeidae) of Colombia. In: Ratcliff e B, Krell F-T (Eds) Current advances in Scarabaeoidea research. ZooKeys 34: 153–192. doi: 10.3897/zookeys.34.309 Abstract An illustrated key to identify the adults at the generic level of Dynastinae known from Colombia is pro- vided. A synopsis for each genus is given with updated information on the diversity and distribution of species in Colombia and worldwide. Keywords Illustrated key, Scarabaeidae, Dynastinae, Colombia, Biodiversity. Introduction Th e subfamily Dynastinae is a cosmopolitan group of beetles widely distributed in most biogeographical regions of the world (except in the polar regions), and the major- ity of species are distributed in the tropics, especially in the Neotropics. Th ere are ap- proximately 220 genera and 1500 species within the Dynastinae world wide (Ratcliff e 2003). -
Biological Infestations Page
Chapter 5: Biological Infestations Page A. Overview ........................................................................................................................... 5:1 What information will I find in this chapter? ....................................................................... 5:1 What is a museum pest? ................................................................................................... 5:1 What conditions support museum pest infestations? ....................................................... 5:2 B. Responding to Infestations ............................................................................................ 5:2 What should I do if I find live pests or signs of pests in or around museum collections? .. 5:2 What should I do after isolating the infested object? ......................................................... 5:3 What should I do after all infested objects have been removed from the collections area? ................................................................................................ 5:5 What treatments can I use to stop an infestation? ............................................................ 5:5 C. Integrated Pest Management (IPM) ................................................................................ 5:8 What is IPM? ..................................................................................................................... 5:9 Why should I use IPM? ..................................................................................................... -
Wax, Wings, and Swarms: Insects and Their Products As Art Media
Wax, Wings, and Swarms: Insects and their Products as Art Media Barrett Anthony Klein Pupating Lab Biology Department, University of Wisconsin—La Crosse, La Crosse, WI 54601 email: [email protected] When citing this paper, please use the following: Klein BA. Submitted. Wax, Wings, and Swarms: Insects and their Products as Art Media. Annu. Rev. Entom. DOI: 10.1146/annurev-ento-020821-060803 Keywords art, cochineal, cultural entomology, ethnoentomology, insect media art, silk 1 Abstract Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly, but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually, or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest paper), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts, and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of “insect media art” are topics relevant at a time when the natural world is at unprecedented risk. INTRODUCTION The value of studying cultural entomology and insect art No review of human culture would be complete without art, and no review of art would be complete without the inclusion of insects. Cultural entomology, a field of study formalized in 1980 (43), and ambitiously reviewed 35 years ago by Charles Hogue (44), clearly illustrates that artists have an inordinate fondness for insects.