Phasmid Study Group Newsletter, 30

Total Page:16

File Type:pdf, Size:1020Kb

Phasmid Study Group Newsletter, 30 ISSN 0268-3806 Chairman: Mrs Judith Marshall Department of Entomology British Museum (Natural History) Cromwell Road, London SW7 5BD Membership: Paul Brock (Phone 0753-79447) "Papillon", 40 Thorndike Road Slough, Berks SL2 lSR NEWSLETTER NO. 30 March 1987 ANNUAL GENERAL MEETING REPORT About 40 members attended, and over 20 species were given away. The venue had to be altered to the Centre for Life Studies (kindly opened up by Peter Curry, No. 91) because of the sudden imposition of a heavy charge by the British Museum (Natural History). Hopefully you were all informed of this change in time. Finance - Paul Brock (No. 26) reported that the unexpectedly large number of members increased the 1986 surplus to £279, making the Group's General Fund now £866. Newsletters - Michael and Frances (No. 3) reminded members that contributions are always needed, but that longer articles may be delayed until the right amount of space becomes available. Short, or even very short, items are particularly needed. A Species Report on Phenacephorus cornucervi (PSG 73) has been provided by Chris Raper (No. 216). But of course your own notes on this species are still required and, in this case, should be sent to the Editors for insertion~ The meeting agreed to some of the Group's General Fund being spent on a computer or typewriter for the Editors' use. Library - David Robinson (No. 29) reported that his computer search for phasmid literature has been funded for another year. However, articles are classified by author only, so he is unable to select papers on a specified subject. Members may also have to wait patiently for copies of papers, especially early ones, as these can be difficult to obtain. Phil Clarke (ex Na 150) has kindly donated a photocopy of Westwood's 1859 catalogue of phasmids in the British Museum (Natural History). This is to be kept at the Centre for Life Studies for reference, together with a copy of Brunner and Redtenbacher's 1908 standard monograph. Livestock - Tim Branney (No. 239) reported that he had been inundated with requests for eggs but that surplus stock was being provided almost solely by our European members. He expressed the concern of the whole Committee at the number of species that are dying out, and felt that some members show no r espect f o r their cultures because they assume that they can always get replacements. Concern has also been expressed at the way some members grab all spare live­ stock in sight at meetings. And once again some sticks disappeared which had been put aside for a particular member. In future a system will be tried whereby members will have to feed back their surplus eggs from easier species to the Mart before they can receive more difficult species. For details see Livestock Co-ordinator's Report on page 2. Committee - The existing Committee was re-elected, with 4 additional members: Adrian Durkin (No. 78), Mel Herbert (No. 232), John Slater (No. 183) and Eric van Gorkom (No. 250). The meeting closed with an interesting talk, including slide show, by Tony James (No. 1) on his recent collecting trip to Malaysia. By the "Law of Cussed­ ness" he found sticks (5 species) only on the last days~ 30:2 ­ FORTHCOMING MEETINGS The next PSG meeting will be at the Centre for Life Studies on Saturday 18th July 1987, starting at 10.30 a.m. The Ninth Midlands Entomological Fair will be at Granby Halls in Leicester on Sunday 5th April from 11 a.m. to 5 p.m. The Group has booked 2 tables ­ offers of help, please, to Adrian Durkin (No. 78) The Third North London Entomological Fair will be at Picketts Lock Centre, Edmonton, on Sunday 31st May from 11 a.m. to 5 p.m. The Groups has booked 2 tables. LIVESTOCK CO-ORDINATOR' S REPORT by Tim Branney (No. 239) One continuing problem is that, whilst I send out various species as and when members ask for them, there is at present no way of knowing the fate of those species. Too often in the past species have been lost or seriously threatened as an initially large surplus has been distributed to members, none of whom has succeeded with them. So, following on from the proposals made at the AGM, all PSG species will be graded as follows: A. Least difficult to rear/ most readily available. B. More difficult to rear/ less readily available. C. Most difficult to rear/ least readily available. In order to obtain a species listed in Grade B, a member must send in surplus eggs from 3 species in Grade A, thereby demonstrating his or her ability to rear those species. Likewise, 3 species from Grade B can be exchanged for one from Grade C. In addition, eggs of anyone species can be sent in to obtain another species from the same grade. All members will be able to obtain one culture of any Grade A species, when available, and all new species will automatically join Grade C. The provisional grades are as follows: A. Species 1, 3, 4 , 5, 9, 22, 23, 24, 48, 52, 73. B. Species 2, 6, 12, 13, 15, 25, 31, 32, 35, 38, 44, 51, 61, 66, 69. C. All other species - if not lost! These grades are not fixed and will change with the fortunes of the species. LIVESTOCK SUPPLIERS PANEL 232. Mel Herbert, 30 Dores Road, Upper Stratton, Swindon, Wilts (0793-723533) has kindly agreed to join and can supply species: 1 (EA, N), 2 (E), 4 (EA, NA), 5 (E), 9 (EA, N), 13 (E), 22 (EA, N), 23 (E, N), 31 (E, N), 32(EA, N), 38(E), 44(E, N), 52(E), 69(E), 73(E), 86(E). (E = eggs, N = nymphs, A = all year round supplies.) 152. Christopher Mann can now only supply eggs of species: 25, 32, 37, 44. WANTS AND SURPLUSES Mel Herbert (No. 232) wants eggs or nymphs of species 16, 19, 20, 29, 36, 51, 68. Paul Jennings (No. 80) of 14 Croyde Avenue, Greenford, ~1iddlesex UB6 9LS has surplus nymphs of 9, 24, 66, 73, and surplus eggs of species 13, 22, 24, 52, 66. Michael Lazenby and Frances Holloway (No. 3) have surplus eggs of species 9, 12, 44, 90. Nicholas Wadham (No. 358) wants eggs or nymphs of species 6, 7, 22, 24, 27, 35, 38, 69, and offers eggs of species 9. A STICK INSECT DIARY by Charlye Woolman (No. 2) I have extracted a few quotes from the diary I kept of my stick insect studies during my first year in Tanzania, East Africa. I have restricted them to those referring to the "Grass type" stick insect (PSG 41). In some ways it seems odd that it took me so long to find the local phasmids and get them into 30: 3 ­ culture (they were very common). On the other hand, as you will read, an apparently simple task can be a minefield of frustrations! September-December 1980 - On occasions, when I took groups of students out collecting insects, they found a type of stick insect, but these were invariably half squashed, lacking several legs and of unknown provenance. January 1981 - In the first few weeks I did some serious beating work on the local bushes. My first couple of expeditions drew a blank, which is depressing, but I know that there are stick insects in the area. I went back to the field where I had taken students insect collecting and soon beat a few (three) stick insects off some low, aromatic bushes which may be a species of Euclea (but I am very uncertain of that). This success was cheering but it was hard earned - I had to beat about thirty bushes to get those three phasmids! ...None of these stick insects accepted leaves of the bush they were found on and they all died within a few days. 14th February - I got up and out at 6 a.m. and beat a range of bushes in the area .... 15th February - Another 6 a.m. trip, this time mainly beating grasses. I caught one stick insect. 18th February - Thorough beating failed to produce a single stick insect. I then searched the grass stalks visually but could not find any. 2nd March - I went out with a torch and inspected the same grass sward visually at 9.30 p.m. Once again I could not find any stick insects. 21st March - I set out at 6.30 a.m. to beat for stick insects .... I came back completely empty-handed and very wet. It has been raining frequently during the week. Everywhere is very damp at night and there is a heavy dew. I can imagine the first-instar nymphs getting stuck in the water films. 22nd March - ... 1 went on to beat the coarse grasses again and drew a complete blank. I then found, almost by accident, that nearby fine grasses had plenty of stick insects. Before the rains I had beaten fine grasses without reward.... I have put both fine and coarse grasses in the cage to see which they prefer. 7th April - The new female has died. All I have left now is a couple of males. 9th April - My last male has died. 21st April - I know now that they do not hide away, as I had thought, during the day. The ones I observed were frequently high up in the grasses, in full sun, in the middle of the day. Late afternoon was the time of minimum activity and dusk the time of maximum activity.
Recommended publications
  • Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Methane Production in Terrestrial Arthropods (Methanogens/Symbiouis/Anaerobic Protsts/Evolution/Atmospheric Methane) JOHANNES H
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5441-5445, June 1994 Microbiology Methane production in terrestrial arthropods (methanogens/symbiouis/anaerobic protsts/evolution/atmospheric methane) JOHANNES H. P. HACKSTEIN AND CLAUDIUS K. STUMM Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, NL-6525 ED Nimegen, The Netherlands Communicated by Lynn Margulis, February 1, 1994 (receivedfor review June 22, 1993) ABSTRACT We have screened more than 110 represen- stoppers. For 2-12 hr the arthropods (0.5-50 g fresh weight, tatives of the different taxa of terrsrial arthropods for depending on size and availability of specimens) were incu- methane production in order to obtain additional information bated at room temperature (210C). The detection limit for about the origins of biogenic methane. Methanogenic bacteria methane was in the nmol range, guaranteeing that any occur in the hindguts of nearly all tropical representatives significant methane emission could be detected by gas chro- of millipedes (Diplopoda), cockroaches (Blattaria), termites matography ofgas samples taken at the end ofthe incubation (Isoptera), and scarab beetles (Scarabaeidae), while such meth- period. Under these conditions, all methane-emitting species anogens are absent from 66 other arthropod species investi- produced >100 nmol of methane during the incubation pe- gated. Three types of symbiosis were found: in the first type, riod. All nonproducers failed to produce methane concen- the arthropod's hindgut is colonized by free methanogenic trations higher than the background level (maximum, 10-20 bacteria; in the second type, methanogens are closely associated nmol), even if the incubation time was prolonged and higher with chitinous structures formed by the host's hindgut; the numbers of arthropods were incubated.
    [Show full text]
  • A Comparative Study on Muscle and Leg Properties of Male and Female
    International Journal of Veterinary Sciences and Animal Husbandry 2020; 5(1): 72-82 ISSN: 2456-2912 VET 2020; 5(1): 72-82 A comparative study on muscle and leg properties of © 2020 VET www.veterinarypaper.com male and female stick insects and their impact on the Received: 16-11-2019 Accepted: 21-12-2019 insects behaviour Ali Asghar Pilehvarian Associate professor of Biology Ali Asghar Pilehvarian Department, Payame Noor University, Tehran, Iran Abstract The physiological, mechanical and morphological properties of the specialized metathoracic leg and flexor muscle of the male and those homologous but unspecialized ones of the female stick insects, Eurycantha calcarata were examined, to find the correlation between the properties of the muscles and legs with the animal behavior. The intact insects, isotonic and isometric transducer, pen recorder and oscilloscope were used. The initial contraction of the muscle was a rapid contraction with the duration of 70 to 130 msec. Its delayed contraction was much longer remaining in contraction, more than 30 sec. The muscle of the male was much more developed, faster, produced more force and did more initial and delayed work than the muscle of the female. Also the produced power output and work output by the muscle of the male were higher than those of the female, due to its greater size. The muscle produced the highest tension at the femur-tibia joint angle of 1.22 rad. The muscles, as compared with other insect muscles, produced relatively high power and were considered to be relatively fast. Keywords: Physiology, Morphology, Behaviour, Leg, Muscle, Stick insect.
    [Show full text]
  • Insects As a Global Food Resource: the History of Talking About It at the University of Wisconsin
    INSECTS AS A GLOBAL FOOD RESOURCE: THE HISTORY OF TALKING ABOUT IT AT THE UNIVERSITY OF WISCONSIN Gene R. DeFoliart Preface It suddenly occurred to me on the morning of May 25th, 2000 that this book had to be written. I had arrived in Fairbanks, Alaska, the night before to spend 12 days visiting my youngest daughter, Linda, and her husband, Dave. The stimulus for this sudden awakening may have occurred a few days earlier, however, when I had stumbled across an old file in my campus office that detailed what became verbal warfare back in 1988 with a subcommittee of the Curriculum Committee of the UW College of Agricultural and Life Sciences, when I had tried to get approval for a 1-credit course on insects as a food resource. I had forgotten how much hard work it was. Talking about insects as food was definitely swimming against the current of prevailing public opinion in the United States even though insects have been historically important as food in most of the rest of the world. I began to remember that almost everything about this project had been hard work. But, at the same time, it has also been great fun. And, sometimes, doors have opened so unexpectedly that I became convinced that this project has a green light somewhere in the realms of the powers that be. My objective here is to take you, the reader, with me on this journey, trying to get Americans and Europeans to thinking of insects as perfectly respectable food. Portions of the first two chapters may seem a bit redundant, but it helps establish a baseline against which future progress in changing the American attitude can be discerned.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • The Pregenital Abdominal Musculature in Phasmids and Its Implications for the Basal Phylogeny of Phasmatodea (Insecta: Polyneoptera) Rebecca Klugã, Sven Bradler
    ARTICLE IN PRESS Organisms, Diversity & Evolution 6 (2006) 171–184 www.elsevier.de/ode The pregenital abdominal musculature in phasmids and its implications for the basal phylogeny of Phasmatodea (Insecta: Polyneoptera) Rebecca KlugÃ, Sven Bradler Zoologisches Institut und Museum, Georg-August-Universita¨tGo¨ttingen, Berliner Str. 28, 37073 Go¨ttingen, Germany Received 7 June 2005; accepted 25 August 2005 Abstract Recently several conflicting hypotheses concerning the basal phylogenetic relationships within the Phasmatodea (stick and leaf insects) have emerged. In previous studies, musculature of the abdomen proved to be quite informative for identifying basal taxa among Phasmatodea and led to conclusions regarding the basal splitting events within the group. However, this character complex was not studied thoroughly for a representative number of species, and usually muscle innervation was omitted. In the present study the musculature and nerve topography of mid-abdominal segments in both sexes of seven phasmid species are described and compared in detail for the first time including all putative basal taxa, e.g. members of Timema, Agathemera, Phylliinae, Aschiphasmatinae and Heteropteryginae. The ground pattern of the muscle and nerve arrangement of mid-abdominal segments, i.e. of those not modified due to association with the thorax or genitalia, is reconstructed. In Timema, the inner ventral longitudinal muscles are present, whereas they are lost in all remaining Phasmatodea (Euphasmatodea). The ventral longitudinal muscles in the abdomen of Agathemera, which span the whole length of each segment, do not represent the plesiomorphic condition as previously assumed, but might be a result of secondary elongation of the external ventral longitudinal muscles.
    [Show full text]
  • Phyllium Giganteum Male by Mark Jackson the Stick
    The Phasmid Study Group JUNE 2014 NEWSLETTER No 132 ISSN 0268-3806 © Paul Brock Haaniella scabra male, head & thorax. (See Page 28). Page Content INDEX Page Content 2. The Colour Page 16. Phyllium giganteum Male 3. Editorial 16. The Stick “Tip Exchange” 3. Obituary: Michael Lazenby 17. Rare Fossils of Phasmids 3. The PSG Committee 17. New Book on LHISI 4. Livestock Report 18. Phyllium giganteum Sexual Reproduction? 4. PSG Crossword Puzzle 20. Sticky the Movie 5. Agenda for PSG Summer Meeting 21. Insect Man at Prances 6. Sticks 21. Crossword Puzzle Answers 6. Correction to December PSG Newsletter 22. PSG Winter Meeting & AGM 2014 7. PSG Winter Meeting 2014 23. Contributions to the Newsletter 8. Phasmid Growth Study 23. How to Join the PSG 9. Stick Talk 24. Giant Female Phasmid Captured in Australia 9. UV Light for Phasmid Cages? 25. National Insect Week 23-29 June 2014 9. PSG Membership Forms 25. Diary Dates 10. Harper’s Magazine Article on Phasmids 26. Sticks do not Stick 15. Unusual Mating Behaviour Bacteria horni 27. Penang Butterfly Farm 15. PSG Summer Meeting 2014 28. Photos of Phasmids. It is to be directly understood that all views, opinions or theories, expressed in the pages of "The Newsletter“ are those of the author(s) concerned. All announcements of meetings, and requests for help or information, are accepted as bona fide. Neither the Editor, nor Officers of "The Phasmid Study Group", can be held responsible for any loss, embarrassment or injury that might be sustained by reliance thereon. THE COLOUR PAGE! Marmessoidea male.
    [Show full text]
  • The Phasmid Study Group the Phasmid Study Group Newsletter No
    The Newsletter of The Phasmid Study Group The Phasmid Study Group Newsletter No. 114 June 2008 ISSN 0268-3806 Oreophoetes peruana Copright Laurence Livermore Index News, Information & Updates .......................................................................................................................................................................................................3 Editorial.....................................................................................................................................................................................................................................3 Diary Dates...............................................................................................................................................................................................................................3 Contents of Phasmid Studies, 17(1) .......................................................................................................................................................................................4 Wants & Exchange List............................................................................................................................................................................................................4 Culture Survey 2008 ................................................................................................................................................................................................................6 Sticks in the
    [Show full text]
  • Bug Care Card Template
    Bug Care Card Template: Common name (Common name in TRACKS if different from above) (Scientific name) Group # Current blank to write in population Population: Caution: Warnings (venomous, can fly, can bite, can pinch etc) Misting: Necessary misting amount for this species (Daily, As needed or Never) Feeding blank to write in feeding days Schedule: (EOD, M/W/F, Group A, B or C etc) OR Browse last changed date: (depending on diet) Diet: Classification- (Browse Eater, Carnivore or Herbivore) Breeding Whether they breed ON or notes OFF exhibit; special care of (ON or OFF juveniles (remove from exhibit): exhibit, leave on exhibit etc) Substrate Blank to write in date of OR Water change change done: Arizona giant water bug Arizona giant water bug*Juveniles* (Abedus herberti) (Abedus herberti) G29024 G29024 Current Current Population: Population: Caution: Can bite, RARELY do; mild Caution: Can bite, RARELY do; mild venom venom Feeding Feeding Schedule: Schedule: Diet: Carnivore Diet: Carnivore Breeding OFF; remove nymphs from Breeding OFF; remove nymphs from notes exhibit and place in nursery notes exhibit and place in nursery (ON or OFF tank (ON or OFF tank exhibit): exhibit): Water Water change change done: done: Asian forest scorpion Atlas beetle (Heterometrus longimanus) (Chalcosoma atlas) G29020 G28810 Current Current Population: Population: Caution! Can sting & pinch! Mild Caution! Can pinch! (may bury in venom substrate and not be visible) Misting: Daily, 2x/day in summer Misting: Daily, 2x/day in summer Feeding Feeding Schedule: Schedule:
    [Show full text]
  • Zation of Odorant Binding and Chemosensory Proteins
    Int. J. Biol. Sci. 2011, 7 848 Ivyspring International Publisher International Journal of Biological Sciences 2011; 7(6):848-868 Research Paper Ultrastructural Characterization of Olfactory Sensilla and Immunolocali- zation of Odorant Binding and Chemosensory Proteins from an Ectopara- sitoid Scleroderma guani (Hymenoptera: Bethylidae) Xiangrui Li1,3, Daguang Lu2, Xiaoxia Liu1, Qingwen Zhang1,, Xuguo Zhou3, 1. Department of Entomology, China Agricultural University, Beijing 100193, China 2. Chinese Academy of Agricultural Science, Beijing,100081, China 3. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA Corresponding author: Dr. Qingwen Zhang, Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China. Phone: 86-10-62733016 Fax: 86-10-62733016 Email: [email protected] or Dr. Xuguo "Joe" Zhou, Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091 Phone: 859-257-3125 Fax: 859-323-1120 Email: [email protected] © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2011.04.14; Accepted: 2011.05.23; Published: 2011.07.17 Abstract The three-dimensional structures of two odorant binding proteins (OBPs) and one chemosensory protein (CSP) from a polyphagous ectoparasitoid Scleroderma guani (Hy- menoptera: Bethylidae) were resolved bioinformatically. The results show that both SguaOBP1 and OBP2 are classic OBPs, whereas SguaCSP1 belongs to non-classic CSPs which are considered as the “Plus-C” CSP in this report.
    [Show full text]
  • ©Zoologische Staatssammlung München;Download: Http
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 1994 Band/Volume: 017 Autor(en)/Author(s): Carlberg Ulf Artikel/Article: Bibliography of Phasmida (Insecta). VII. 1985-1989 179- 191 ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at Allred, M. L., Stark, B. P. & Lentz, D. L. 1986. Egg capsule morphology of Anisomorpha buprestoides (Phasmatodea: Pseudophasmatidae). - Ent. News 97: 169-174 Baccetti, B. 1985. Evolution of the sperm cell. In: Metz, C. B. & Monroy, A. (Eds.), Biology of Fertilization, vol. 2, pp. 3-58. New York (Academic Press) - - 1987a. Spermatozoa and stick insect phylogeny. - In: Mazzini & Scali (Eds.) 1987: 177-123 - - (Ed.) 1987b. Evolutionary Biology of Orthopteroid Insects. Chichester (EUis Horwood), 1-612 pp. - - 1987c. Spermatozoa and phylogeny in orthopteroid insects. - In: Baccetti (Ed.) 1987c: 12-112 Bart, A. 1988. Proximal leg regeneration in Cmmisius morosus: growth, intercalation and proximaliza- tion. - Development 102: 71-84 Bässler, U. 1985. Proprioceptive control of stick insect Walking. - In: Gewecke & Wendler (Eds.) 1985: 43-48 - - 1986a. On the definition of central pattern generator and its sensory control. - Biol. Cybern. 54: 65-69 - - 1986b. Afferent control of Walking movements in the stick insect C/;n/af/fna impigra. 1. Decerebrated - 345-349 animals on a treadband. J. Comp Physiol. A 158: - - - 1986c. Ibid. 11. Reflex reversal and the release of the swing phase in the restrained foreleg. J. Comp. Physiol. A 158: 351-362 - - 1987a. Timing and shaping influences on the motor Output for Walking in stick insects.
    [Show full text]