Zation of Odorant Binding and Chemosensory Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs. -
106Th Annual Meeting of the German Zoological Society Abstracts
September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416 -
Insecta: Phasmatodea) and Their Phylogeny
insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y. -
Gene Families in the Desert Locust Schistocerca Gregaria
Molecular Elements Involved in Locust Olfaction: Gene Families in the Desert Locust Schistocerca gregaria Dissertation for Obtaining the Doctoral Degree of Natural Sciences (Dr. rer. nat.) Faculty of Natural Sciences University of Hohenheim From the Institute of Physiology Prof. Dr. H. Breer Submitted by Xingcong Jiang Heze (Provinz Shandong), V.R. China 2018 Dean: Prof. Dr. Uwe Beifuß 1st reviewer: Prof. Dr. Heinz Breer 2nd reviewer: Prof. Dr. Jürgen Krieger Submitted on: Oral examination on: 10.08.2018 This work was accepted by the Faculty of Natural Sciences at the University of Hohenheim as “Dissertation for Obtaining the Doctoral Degree of Natural Sciences”. Annex 2 to the University of Hohenheim doctoral degree regulations for Dr. rer. nat. Affidavit according to Sec. 7(7) of the University of Hohenheim doctoral degree regulations for Dr. rer. nat. 1. For the dissertation submitted on the topic Molecular Elements Involved in Locust Olfaction: Gene Families in the Desert Locust Schistocerca gregaria I hereby declare that I independently completed the work. 2. I only used the sources and aids documented and only made use of permissible assistance by third parties. In particular, I properly documented any contents which I used - either by directly quoting or paraphrasing - from other works. 3. I did not accept any assistance from a commercial doctoral agency or consulting firm. 4. I am aware of the meaning of this affidavit and the criminal penalties of an incorrect or incomplete affidavit. I hereby confirm the correctness of the above declaration: I hereby affirm in lieu of oath that I have, to the best of my knowledge, declared nothing but the truth and have not omitted any information. -
Identification of Candidate Chemosensory Genes in Mythimna Separata by Transcriptomic Analysis
Du et al. BMC Genomics (2018) 19:518 https://doi.org/10.1186/s12864-018-4898-0 RESEARCH ARTICLE Open Access Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis Lixiao Du1†, Xincheng Zhao2†, Xiangzhi Liang1, Xiwu Gao3, Yang Liu1* and Guirong Wang1* Abstract Background: The oriental armyworm, Mythimna separata, is an economically important and common Lepidopteran pest of cereal crops. Chemoreception plays a key role in insect life, such as foraging, oviposition site selection, and mating partners. To better understand the chemosensory mechanisms in M. separata, transcriptomic analysis of antennae, labial palps, and proboscises were conducted using next-generation sequencing technology to identify members of the major chemosensory related genes. Results: In this study, 62 putative odorant receptors (OR), 20 ionotropic receptors (IR), 16 gustatory receptors (GR), 38 odorant binding proteins (OBP), 26 chemosensory proteins (CSP), and 2 sensory neuron membrane proteins (SNMP) were identified in M. separata by bioinformatics analysis. Phylogenetic analysis of these candidate proteins was performed. Differentially expressed genes (DEGs) analysis was used to determine the expressions of all candidate chemosensory genes and then the expression profiles of the three families of receptor genes were confirmed by real-time quantitative RT-PCR (qPCR). Conclusions: The important genes for chemoreception have now been identified in M. separata. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest. Keywords: Mythimna separata, Transcriptome, Chemosensory gene, Expression analysis Background receptor neurons (GRNs) are distributed on different Insects live in environments where they are constantly taste organs over the entire body surface of insects in- surrounded by various chemical signals, including olfac- cluding the proboscis, legs, wings, and even the female tory and taste. -
Bioinformatics-Based Identification of Chemosensory Proteins in African Malaria Mosquito, Anopheles Gambiae
Article Bioinformatics-Based Identi¯cation of Chemosensory Proteins in African Malaria Mosquito, Anopheles gambiae Zhengxi Li1*, Zuorui Shen1, Jingjiang Zhou2, and Lin Field2 1 Department of Entomology, China Agricultural University, Beijing 100094, China; 2 Biological Chemistry Division, Rothamsted Research, Harpenden, Herts. AL5 2JQ, UK. Chemosensory proteins (CSPs) are identi¯able by four spatially conserved Cys- teine residues in their primary structure or by two disul¯de bridges in their ter- tiary structure according to the previously identi¯ed olfactory speci¯c-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that ¯ve out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identi¯cation of Anopheles CSPs, though all of these candidates need additional experimental veri¯cation. Key words: chemosensory protein, proteomics, bioinformatics, olfaction, African malaria mosqui- to, Anopheles gambiae Introduction Anopheles gambiae (A. gambiae) is the principal vec- (OBPs) and olfactory speci¯c-D (OS-D) related pro- tor of malaria that a²icts more than 500 million peo- teins (3 ; 4 ). OS-D related proteins (average 13 kDa) ple and causes more than 1 million deaths each year. were ¯rst identi¯ed by subtractive hybridisation ex- Analysis of the whole genome of A. gambiae revealed periments using antennae of Drosophila melanogaster strong evidence for about 14,000 protein-coding tran- (5 ; 6 ). Many OS-D homologues were subsequently scripts, which need further annotation and experi- identi¯ed based on sequence similarity in di®erent in- mental veri¯cation (1 ). -
Methane Production in Terrestrial Arthropods (Methanogens/Symbiouis/Anaerobic Protsts/Evolution/Atmospheric Methane) JOHANNES H
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5441-5445, June 1994 Microbiology Methane production in terrestrial arthropods (methanogens/symbiouis/anaerobic protsts/evolution/atmospheric methane) JOHANNES H. P. HACKSTEIN AND CLAUDIUS K. STUMM Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, NL-6525 ED Nimegen, The Netherlands Communicated by Lynn Margulis, February 1, 1994 (receivedfor review June 22, 1993) ABSTRACT We have screened more than 110 represen- stoppers. For 2-12 hr the arthropods (0.5-50 g fresh weight, tatives of the different taxa of terrsrial arthropods for depending on size and availability of specimens) were incu- methane production in order to obtain additional information bated at room temperature (210C). The detection limit for about the origins of biogenic methane. Methanogenic bacteria methane was in the nmol range, guaranteeing that any occur in the hindguts of nearly all tropical representatives significant methane emission could be detected by gas chro- of millipedes (Diplopoda), cockroaches (Blattaria), termites matography ofgas samples taken at the end ofthe incubation (Isoptera), and scarab beetles (Scarabaeidae), while such meth- period. Under these conditions, all methane-emitting species anogens are absent from 66 other arthropod species investi- produced >100 nmol of methane during the incubation pe- gated. Three types of symbiosis were found: in the first type, riod. All nonproducers failed to produce methane concen- the arthropod's hindgut is colonized by free methanogenic trations higher than the background level (maximum, 10-20 bacteria; in the second type, methanogens are closely associated nmol), even if the incubation time was prolonged and higher with chitinous structures formed by the host's hindgut; the numbers of arthropods were incubated. -
Phasmid Study Group Newsletter, 30
ISSN 0268-3806 Chairman: Mrs Judith Marshall Department of Entomology British Museum (Natural History) Cromwell Road, London SW7 5BD Membership: Paul Brock (Phone 0753-79447) "Papillon", 40 Thorndike Road Slough, Berks SL2 lSR NEWSLETTER NO. 30 March 1987 ANNUAL GENERAL MEETING REPORT About 40 members attended, and over 20 species were given away. The venue had to be altered to the Centre for Life Studies (kindly opened up by Peter Curry, No. 91) because of the sudden imposition of a heavy charge by the British Museum (Natural History). Hopefully you were all informed of this change in time. Finance - Paul Brock (No. 26) reported that the unexpectedly large number of members increased the 1986 surplus to £279, making the Group's General Fund now £866. Newsletters - Michael and Frances (No. 3) reminded members that contributions are always needed, but that longer articles may be delayed until the right amount of space becomes available. Short, or even very short, items are particularly needed. A Species Report on Phenacephorus cornucervi (PSG 73) has been provided by Chris Raper (No. 216). But of course your own notes on this species are still required and, in this case, should be sent to the Editors for insertion~ The meeting agreed to some of the Group's General Fund being spent on a computer or typewriter for the Editors' use. Library - David Robinson (No. 29) reported that his computer search for phasmid literature has been funded for another year. However, articles are classified by author only, so he is unable to select papers on a specified subject. -
De Novo Transcriptome Identifies Olfactory Genes in Diachasmimorpha Longicaudata
G C A T T A C G G C A T genes Article De Novo Transcriptome Identifies Olfactory Genes in Diachasmimorpha longicaudata (Ashmead) 1, 2, 2 2 3,4, 5, Liangde Tang y, Jimin Liu y, Lihui Liu , Yonghao Yu , Haiyan Zhao * and Wen Lu * 1 Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; [email protected] 2 Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; [email protected] (J.L.); [email protected] (L.L.); [email protected] (Y.Y.) 3 Department of Entomology, College of Tobacco Science, Guizhou University, Guiyang 550025, China 4 Guangxi Academy of Agricultural Sciences, Nanning 530007, China 5 College of Agriculture, Guangxi University, Nanning 530007, China * Correspondence: [email protected] (H.Z.); [email protected] (W.L.) Authors contribute equally. y Received: 3 January 2020; Accepted: 22 January 2020; Published: 29 January 2020 Abstract: Diachasmimoorpha longicaudata (Ashmead, D. longicaudata) (Hymenoptera: Braconidae) is a solitary species of parasitoid wasp and widely used in integrated pest management (IPM) programs as a biological control agent in order to suppress tephritid fruit flies of economic importance. Although many studies have investigated the behaviors in the detection of their hosts, little is known of the molecular information of their chemosensory system. We assembled the first transcriptome of D. longgicaudata using transcriptome sequencing and identified 162,621 unigenes for the Ashmead insects in response to fruit flies fed with different fruits (guava, mango, and carambola). -
A Comparative Study on Muscle and Leg Properties of Male and Female
International Journal of Veterinary Sciences and Animal Husbandry 2020; 5(1): 72-82 ISSN: 2456-2912 VET 2020; 5(1): 72-82 A comparative study on muscle and leg properties of © 2020 VET www.veterinarypaper.com male and female stick insects and their impact on the Received: 16-11-2019 Accepted: 21-12-2019 insects behaviour Ali Asghar Pilehvarian Associate professor of Biology Ali Asghar Pilehvarian Department, Payame Noor University, Tehran, Iran Abstract The physiological, mechanical and morphological properties of the specialized metathoracic leg and flexor muscle of the male and those homologous but unspecialized ones of the female stick insects, Eurycantha calcarata were examined, to find the correlation between the properties of the muscles and legs with the animal behavior. The intact insects, isotonic and isometric transducer, pen recorder and oscilloscope were used. The initial contraction of the muscle was a rapid contraction with the duration of 70 to 130 msec. Its delayed contraction was much longer remaining in contraction, more than 30 sec. The muscle of the male was much more developed, faster, produced more force and did more initial and delayed work than the muscle of the female. Also the produced power output and work output by the muscle of the male were higher than those of the female, due to its greater size. The muscle produced the highest tension at the femur-tibia joint angle of 1.22 rad. The muscles, as compared with other insect muscles, produced relatively high power and were considered to be relatively fast. Keywords: Physiology, Morphology, Behaviour, Leg, Muscle, Stick insect. -
Insects As a Global Food Resource: the History of Talking About It at the University of Wisconsin
INSECTS AS A GLOBAL FOOD RESOURCE: THE HISTORY OF TALKING ABOUT IT AT THE UNIVERSITY OF WISCONSIN Gene R. DeFoliart Preface It suddenly occurred to me on the morning of May 25th, 2000 that this book had to be written. I had arrived in Fairbanks, Alaska, the night before to spend 12 days visiting my youngest daughter, Linda, and her husband, Dave. The stimulus for this sudden awakening may have occurred a few days earlier, however, when I had stumbled across an old file in my campus office that detailed what became verbal warfare back in 1988 with a subcommittee of the Curriculum Committee of the UW College of Agricultural and Life Sciences, when I had tried to get approval for a 1-credit course on insects as a food resource. I had forgotten how much hard work it was. Talking about insects as food was definitely swimming against the current of prevailing public opinion in the United States even though insects have been historically important as food in most of the rest of the world. I began to remember that almost everything about this project had been hard work. But, at the same time, it has also been great fun. And, sometimes, doors have opened so unexpectedly that I became convinced that this project has a green light somewhere in the realms of the powers that be. My objective here is to take you, the reader, with me on this journey, trying to get Americans and Europeans to thinking of insects as perfectly respectable food. Portions of the first two chapters may seem a bit redundant, but it helps establish a baseline against which future progress in changing the American attitude can be discerned. -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.