Phasmid Study Group Newsletter, 40

Total Page:16

File Type:pdf, Size:1020Kb

Phasmid Study Group Newsletter, 40 The Phasmid study Group Chair: Mrs Judith Marshall Department of Entomology, British Museum (Natural History). Cromwell Road. London SW7 SBD Treasurer/Membership: Paul Brock (Phone 0753-79447) "Papillon". 40 Thorndike Road. Slough. Berks SL2 1SR Secretary: Adrian Durkin (Phone 0562-882420) 8 Foley Road. Pedrnore. Stourbridge. W. Midlands. DY9 ORT September 1989 NEWSLETTER NO. 40 ISSN 0268-3806 Perhaps the very hot weather kept the numbers at our summer meeting at the Natural History Museum down to around 30, but 10 from across the Channel still came, from four countries. Members were armed with their own translators and with dictionaries! At long last some more English members joined the French GEP. Some 33 species were given away, 26 of them by Willy de Ruyter (No. 367). Paul Brock (No. 26) showed his latest video of some 17 species - mostly very new and some on their unusual foodplants. Paul also gave a brief talk on video techniques covering formats. equipment available and some problems. 1990 AGM - This has been booked for 27th January in the Demonstration Room at the Natural History Museum (same place, only the name has changed back!). Will any members wanting items included on the agenda please send them to the Assistant Secretary, Angela Parwani (No. 419), to reach her by 18th October. AES EXHIBITION - 7th October, 11 a.m. - 5 p.m., Kempton Park Racecourse, Staines Road, Sunbury, Surrey. Contact Paul Jennings (No. 80 - phone 0582-583954). THIRD DUTCH-BELGIAN PHASMID DISCUSSION MEETING Report by Kim D'Hulster (No. 372) This took place on 7th May 1989 at Kim's home in St-Niklaas, Belgium. Eleven PSG members were present and there were four visitors: two PSG members from Germany and two GEP members from France. Some highlights: 1. Personal problems with difficult species were discussed in detail and, where possible, solutions were suggested. 2. New species in culture should be identified as soon as possible to promote uniformity in nomenclature. 3. Each member will study one species in more detail. 4. Egg display: some ideas (glass vials, microscope slides, plastic cubic contain­ ers with magnifying lids) were discussed. 5. Photographs will be taken and drawings made of existing and certainly of new species for the archives. 6. When a member gives up a species, he or she should make sure that it stays in culture with some other members. 7. Anatomy: an accurate schematic drawing of a phasmid, naming all the parts (in Latin and with translations) will be made enabling members to use exact terminology when describing a phasmid. 8. Exchange: 46 species were exchanged or given away. A detailed three-page report is available (in Dutch or English, on request from Kim) for members who are especially interested. [The amount of study being undertaken and the degree of co-operation among all these members should be an example to us all. - Eds] 40:2 PUBLICITY INITIATIVES BY EUROPEAN MEMBERS Two of our members deserve special mention for the magnificent amount of work and enterprise they are showing in bringing both phasmids and the Group to the attention of the public. In Belgium, Willy de Ruyter (No. 367) ran a display, unaided, throughout the 10-day International Aquarimn S~lon in Houthalen. A Belgian daily newspaper referred to the main attraction being a 5-metre long aquarium with 40 different phasmid species! Willy also displayed a complete range of nymphs and eggs. He spoke to 1300 visitors, and the international jury awarded him a special certificate for one of the most interesting and popular exhibits. Meanwhile, in Holland, Johan van Gorkom (No. 250) is organising a 4-day phasmid event in conjunction with other Dutch/Belgian members and the Amsterdam Zoological Gardens. There will be 30 living species on show, plus displays of eggs and preserved sticks, videos of camouflage, defence and life histories, slides, and a one-hour talk each day: Four people will be available to answer questions. The event will be held in the Insect House and will be open to PSG members and other specialists on 13th October 1989, and to the public on 14th-16th October. For more information, contact Johan in Holland (phone 035-217719). FIFTH NORTH LONDON ENTOMOLOGICAL FAIR Report by Paul Jennings (No. 80) Eighteen species were displayed, including nine for giving away. Despite the poor turnout of exhibitors and the public, four new members were recruited. Apologies have been received from the organiser, with an offer of free tables next year. My thanks to all who helped. LIVESTOCK CO-ORDINATOR'S REPORT by Phil Bragg (No. 445) Only a few members are sending in eggs, and most requests are from new members; those from longstanding members are often for LOST species. Other requests are almost always for the well-known (in books) species. I have several outstanding requests for Orxines macklottii. NEW SPECIES - At least 27 (!) additional to those on the Species List are now in culture or being attempted. It is hoped to publish updated lists of these with the December Newsletter. STOP PRESS: Plus 41 more just caught in Ecuador!! THREE MUSEUM COLLECTIONS IN BRITAIN by Paul Brock (No. 26) For the serious stick and leaf insect enthusiast, herewith brief notes on some British collections (all have good library facilities also). How about some notes on other European museums? Natural History Museum, South Kensington, London Overall, the entomology section comprises some 24 million specimens, representing 450,000 species (the third largest collection in the world). The collection of stick and leaf insects, housed on the fourth floor with the Orthoptera collection, is extensive. Many of the specimens were collected in the 1800s and early 1900s and were worked on by Kirby, who published his catalogue in 1904. This publication includes references to type specimens in the collection, although many more have since been added. It is unfortunate that Brunner van Wattenwyl and Redtenbacher's book (1906-08) excludes reference to Kirby, thereby creating confusion in some areas. In my experience, the collection has been extremely useful in identifying species from various countries, although names may well have changed from the labelled specimens (i.e. genus amended by subsequent author, synonyms). The collection is strong in African, Asian, Australasian and some Central and South American species. The European collection is reasonable, but only common North American species are included. Recently collected worldwide material is also regularly received and period­ ically added to the main collection. Some fascinating material is held from many countries in separate drawers - unidentified and a few with inadequate data. 40:3 Hope Entomological Collections, University Museum, Oxford There are some 80 cabinet drawers of stick and leaf insects in this collection, second only in size and importance to the Natural History Museum collection. Many of the specimens in Westwood's outstanding work (1859) are housed here. The types are kept separately (approximately 200) - mainly Westwood, but also Gray, Serville and Bates. The collection is particularly strong in Asian species, more so than the Natural History Museum. Data are often insufficient; some unidentified species are housed. There is a fascinating book on the history of the collections by Audrey Z. Smith (OUP, 1986). University Museum of zoology Insect Collection, Cambridge Stick and leaf insects are not well represented in this collection, which has an emphasis on British material. However, the specimens housed here are of interest. The main section is included in 16 cabinet drawers, mainly material by Shelford from Kuching, Sarawak, 1901. Most is unidentified, although one or two drawers contain pencil suggestions (by Shelford?) as to species or "n. sp.". Many Lonchodes are included. A few other species are to be found from Australia, Africa, etc, along with type specimens (Sharp, New Britain material). The Percy Sladen collections from an expedition to the Indian Ocean (up to 1909) are kept separately and include most of the Seychelles species. The index of genera also referred to European specimens which were eventually located in a separate cabinet - a total of three specimens! SOME NOTES ON NEW AFRICAN SPECIES by Patrick van der Stigchel (No. 336) I am very pleased that more and more African species are being brought into culture. Though not very impressive, their method of egg layiRg (gluing) is quite curious. Most species seem to be more delicate than phasmids from other areas. Food, in my opinion, is not the main point. I think most failures arise because of a wrong climate in the cage. African species seem to like an airy, well-ventilated cage. I therefore use several ventilators for my cages, because there must be a current of air. African species also seem to appreciate sunlight. They can be kept at quite high temperatures, if their cages are well ventilated. Several twigs should be provided for egg laying. Now I will mention a few particular species. Burundi sp. I - This is probably a Ramulus sp. (by comparison with those in the collection in Tervuren, Belgium). This species was brought back about three years ago by a friend of No~l Mal (No. 395) - Nicolas Schlitz - from the Teza forest, Burundi. Length of female about 68 mm (head to tip of abdomen); colour light brown. Length of male about 59 mm; colour quite dark on the back, underside much lighter, legs somewhat mottled. It is remarkable that males live much longer (in my culture) than females. This species breeds quite well. I was surprised that this African species barely touches grasses or robinia (false acacia). Their favourite foodplants are bramble and raspberry. Burundi sp. 11 - Also a Ramulus sp. (perhaps the same as PSG 41) and also b rought back by Nicolas Schlitz, from Mosso, Burundi.
Recommended publications
  • Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Methane Production in Terrestrial Arthropods (Methanogens/Symbiouis/Anaerobic Protsts/Evolution/Atmospheric Methane) JOHANNES H
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5441-5445, June 1994 Microbiology Methane production in terrestrial arthropods (methanogens/symbiouis/anaerobic protsts/evolution/atmospheric methane) JOHANNES H. P. HACKSTEIN AND CLAUDIUS K. STUMM Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, NL-6525 ED Nimegen, The Netherlands Communicated by Lynn Margulis, February 1, 1994 (receivedfor review June 22, 1993) ABSTRACT We have screened more than 110 represen- stoppers. For 2-12 hr the arthropods (0.5-50 g fresh weight, tatives of the different taxa of terrsrial arthropods for depending on size and availability of specimens) were incu- methane production in order to obtain additional information bated at room temperature (210C). The detection limit for about the origins of biogenic methane. Methanogenic bacteria methane was in the nmol range, guaranteeing that any occur in the hindguts of nearly all tropical representatives significant methane emission could be detected by gas chro- of millipedes (Diplopoda), cockroaches (Blattaria), termites matography ofgas samples taken at the end ofthe incubation (Isoptera), and scarab beetles (Scarabaeidae), while such meth- period. Under these conditions, all methane-emitting species anogens are absent from 66 other arthropod species investi- produced >100 nmol of methane during the incubation pe- gated. Three types of symbiosis were found: in the first type, riod. All nonproducers failed to produce methane concen- the arthropod's hindgut is colonized by free methanogenic trations higher than the background level (maximum, 10-20 bacteria; in the second type, methanogens are closely associated nmol), even if the incubation time was prolonged and higher with chitinous structures formed by the host's hindgut; the numbers of arthropods were incubated.
    [Show full text]
  • Phasmid Study Group Newsletter, 30
    ISSN 0268-3806 Chairman: Mrs Judith Marshall Department of Entomology British Museum (Natural History) Cromwell Road, London SW7 5BD Membership: Paul Brock (Phone 0753-79447) "Papillon", 40 Thorndike Road Slough, Berks SL2 lSR NEWSLETTER NO. 30 March 1987 ANNUAL GENERAL MEETING REPORT About 40 members attended, and over 20 species were given away. The venue had to be altered to the Centre for Life Studies (kindly opened up by Peter Curry, No. 91) because of the sudden imposition of a heavy charge by the British Museum (Natural History). Hopefully you were all informed of this change in time. Finance - Paul Brock (No. 26) reported that the unexpectedly large number of members increased the 1986 surplus to £279, making the Group's General Fund now £866. Newsletters - Michael and Frances (No. 3) reminded members that contributions are always needed, but that longer articles may be delayed until the right amount of space becomes available. Short, or even very short, items are particularly needed. A Species Report on Phenacephorus cornucervi (PSG 73) has been provided by Chris Raper (No. 216). But of course your own notes on this species are still required and, in this case, should be sent to the Editors for insertion~ The meeting agreed to some of the Group's General Fund being spent on a computer or typewriter for the Editors' use. Library - David Robinson (No. 29) reported that his computer search for phasmid literature has been funded for another year. However, articles are classified by author only, so he is unable to select papers on a specified subject.
    [Show full text]
  • A Comparative Study on Muscle and Leg Properties of Male and Female
    International Journal of Veterinary Sciences and Animal Husbandry 2020; 5(1): 72-82 ISSN: 2456-2912 VET 2020; 5(1): 72-82 A comparative study on muscle and leg properties of © 2020 VET www.veterinarypaper.com male and female stick insects and their impact on the Received: 16-11-2019 Accepted: 21-12-2019 insects behaviour Ali Asghar Pilehvarian Associate professor of Biology Ali Asghar Pilehvarian Department, Payame Noor University, Tehran, Iran Abstract The physiological, mechanical and morphological properties of the specialized metathoracic leg and flexor muscle of the male and those homologous but unspecialized ones of the female stick insects, Eurycantha calcarata were examined, to find the correlation between the properties of the muscles and legs with the animal behavior. The intact insects, isotonic and isometric transducer, pen recorder and oscilloscope were used. The initial contraction of the muscle was a rapid contraction with the duration of 70 to 130 msec. Its delayed contraction was much longer remaining in contraction, more than 30 sec. The muscle of the male was much more developed, faster, produced more force and did more initial and delayed work than the muscle of the female. Also the produced power output and work output by the muscle of the male were higher than those of the female, due to its greater size. The muscle produced the highest tension at the femur-tibia joint angle of 1.22 rad. The muscles, as compared with other insect muscles, produced relatively high power and were considered to be relatively fast. Keywords: Physiology, Morphology, Behaviour, Leg, Muscle, Stick insect.
    [Show full text]
  • Phyllium Giganteum Male by Mark Jackson the Stick
    The Phasmid Study Group JUNE 2014 NEWSLETTER No 132 ISSN 0268-3806 © Paul Brock Haaniella scabra male, head & thorax. (See Page 28). Page Content INDEX Page Content 2. The Colour Page 16. Phyllium giganteum Male 3. Editorial 16. The Stick “Tip Exchange” 3. Obituary: Michael Lazenby 17. Rare Fossils of Phasmids 3. The PSG Committee 17. New Book on LHISI 4. Livestock Report 18. Phyllium giganteum Sexual Reproduction? 4. PSG Crossword Puzzle 20. Sticky the Movie 5. Agenda for PSG Summer Meeting 21. Insect Man at Prances 6. Sticks 21. Crossword Puzzle Answers 6. Correction to December PSG Newsletter 22. PSG Winter Meeting & AGM 2014 7. PSG Winter Meeting 2014 23. Contributions to the Newsletter 8. Phasmid Growth Study 23. How to Join the PSG 9. Stick Talk 24. Giant Female Phasmid Captured in Australia 9. UV Light for Phasmid Cages? 25. National Insect Week 23-29 June 2014 9. PSG Membership Forms 25. Diary Dates 10. Harper’s Magazine Article on Phasmids 26. Sticks do not Stick 15. Unusual Mating Behaviour Bacteria horni 27. Penang Butterfly Farm 15. PSG Summer Meeting 2014 28. Photos of Phasmids. It is to be directly understood that all views, opinions or theories, expressed in the pages of "The Newsletter“ are those of the author(s) concerned. All announcements of meetings, and requests for help or information, are accepted as bona fide. Neither the Editor, nor Officers of "The Phasmid Study Group", can be held responsible for any loss, embarrassment or injury that might be sustained by reliance thereon. THE COLOUR PAGE! Marmessoidea male.
    [Show full text]
  • The Phasmid Study Group the Phasmid Study Group Newsletter No
    The Newsletter of The Phasmid Study Group The Phasmid Study Group Newsletter No. 114 June 2008 ISSN 0268-3806 Oreophoetes peruana Copright Laurence Livermore Index News, Information & Updates .......................................................................................................................................................................................................3 Editorial.....................................................................................................................................................................................................................................3 Diary Dates...............................................................................................................................................................................................................................3 Contents of Phasmid Studies, 17(1) .......................................................................................................................................................................................4 Wants & Exchange List............................................................................................................................................................................................................4 Culture Survey 2008 ................................................................................................................................................................................................................6 Sticks in the
    [Show full text]
  • Bug Care Card Template
    Bug Care Card Template: Common name (Common name in TRACKS if different from above) (Scientific name) Group # Current blank to write in population Population: Caution: Warnings (venomous, can fly, can bite, can pinch etc) Misting: Necessary misting amount for this species (Daily, As needed or Never) Feeding blank to write in feeding days Schedule: (EOD, M/W/F, Group A, B or C etc) OR Browse last changed date: (depending on diet) Diet: Classification- (Browse Eater, Carnivore or Herbivore) Breeding Whether they breed ON or notes OFF exhibit; special care of (ON or OFF juveniles (remove from exhibit): exhibit, leave on exhibit etc) Substrate Blank to write in date of OR Water change change done: Arizona giant water bug Arizona giant water bug*Juveniles* (Abedus herberti) (Abedus herberti) G29024 G29024 Current Current Population: Population: Caution: Can bite, RARELY do; mild Caution: Can bite, RARELY do; mild venom venom Feeding Feeding Schedule: Schedule: Diet: Carnivore Diet: Carnivore Breeding OFF; remove nymphs from Breeding OFF; remove nymphs from notes exhibit and place in nursery notes exhibit and place in nursery (ON or OFF tank (ON or OFF tank exhibit): exhibit): Water Water change change done: done: Asian forest scorpion Atlas beetle (Heterometrus longimanus) (Chalcosoma atlas) G29020 G28810 Current Current Population: Population: Caution! Can sting & pinch! Mild Caution! Can pinch! (may bury in venom substrate and not be visible) Misting: Daily, 2x/day in summer Misting: Daily, 2x/day in summer Feeding Feeding Schedule: Schedule:
    [Show full text]
  • Zation of Odorant Binding and Chemosensory Proteins
    Int. J. Biol. Sci. 2011, 7 848 Ivyspring International Publisher International Journal of Biological Sciences 2011; 7(6):848-868 Research Paper Ultrastructural Characterization of Olfactory Sensilla and Immunolocali- zation of Odorant Binding and Chemosensory Proteins from an Ectopara- sitoid Scleroderma guani (Hymenoptera: Bethylidae) Xiangrui Li1,3, Daguang Lu2, Xiaoxia Liu1, Qingwen Zhang1,, Xuguo Zhou3, 1. Department of Entomology, China Agricultural University, Beijing 100193, China 2. Chinese Academy of Agricultural Science, Beijing,100081, China 3. Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA Corresponding author: Dr. Qingwen Zhang, Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China. Phone: 86-10-62733016 Fax: 86-10-62733016 Email: [email protected] or Dr. Xuguo "Joe" Zhou, Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091 Phone: 859-257-3125 Fax: 859-323-1120 Email: [email protected] © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2011.04.14; Accepted: 2011.05.23; Published: 2011.07.17 Abstract The three-dimensional structures of two odorant binding proteins (OBPs) and one chemosensory protein (CSP) from a polyphagous ectoparasitoid Scleroderma guani (Hy- menoptera: Bethylidae) were resolved bioinformatically. The results show that both SguaOBP1 and OBP2 are classic OBPs, whereas SguaCSP1 belongs to non-classic CSPs which are considered as the “Plus-C” CSP in this report.
    [Show full text]
  • ©Zoologische Staatssammlung München;Download: Http
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 1994 Band/Volume: 017 Autor(en)/Author(s): Carlberg Ulf Artikel/Article: Bibliography of Phasmida (Insecta). VII. 1985-1989 179- 191 ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at Allred, M. L., Stark, B. P. & Lentz, D. L. 1986. Egg capsule morphology of Anisomorpha buprestoides (Phasmatodea: Pseudophasmatidae). - Ent. News 97: 169-174 Baccetti, B. 1985. Evolution of the sperm cell. In: Metz, C. B. & Monroy, A. (Eds.), Biology of Fertilization, vol. 2, pp. 3-58. New York (Academic Press) - - 1987a. Spermatozoa and stick insect phylogeny. - In: Mazzini & Scali (Eds.) 1987: 177-123 - - (Ed.) 1987b. Evolutionary Biology of Orthopteroid Insects. Chichester (EUis Horwood), 1-612 pp. - - 1987c. Spermatozoa and phylogeny in orthopteroid insects. - In: Baccetti (Ed.) 1987c: 12-112 Bart, A. 1988. Proximal leg regeneration in Cmmisius morosus: growth, intercalation and proximaliza- tion. - Development 102: 71-84 Bässler, U. 1985. Proprioceptive control of stick insect Walking. - In: Gewecke & Wendler (Eds.) 1985: 43-48 - - 1986a. On the definition of central pattern generator and its sensory control. - Biol. Cybern. 54: 65-69 - - 1986b. Afferent control of Walking movements in the stick insect C/;n/af/fna impigra. 1. Decerebrated - 345-349 animals on a treadband. J. Comp Physiol. A 158: - - - 1986c. Ibid. 11. Reflex reversal and the release of the swing phase in the restrained foreleg. J. Comp. Physiol. A 158: 351-362 - - 1987a. Timing and shaping influences on the motor Output for Walking in stick insects.
    [Show full text]
  • As Pests of Agriculture and Forestry, with a Generalised Theory of Phasmid Outbreaks Edward Baker*
    Baker Agric & Food Secur (2015) 4:22 DOI 10.1186/s40066-015-0040-6 REVIEW Open Access The worldwide status of phasmids (Insecta: Phasmida) as pests of agriculture and forestry, with a generalised theory of phasmid outbreaks Edward Baker* Abstract Stick insects have been reported as significant phytophagous pests of agricultural and timber crops since the 1880s in North America, China, Australia and Pacific Islands. Much of the early literature comes from practical journals for farmers, and even twentieth Century reports can be problematic to locate. Unlike the plaguing Orthoptera, there has been no synthesis of the pest status of this enigmatic order of insects. This paper provides a literature synthesis of those species known to cause infestation or that are known to damage plants of economic importance; summarises historical and modern techniques for infestation management; and lists known organisms with potential for use as biological control agents. A generalised theory of outbreaks is presented and suggestions for future research efforts are made. Keywords: Pests, Infestation, Agriculture, Forestry Background a significant factor in the scale of phasmid outbreaks— in most species, females lay several hundred eggs [6]. In “The unexampled multiplication and destructive- addition, their wasteful eating habits [7] and their often ness of this insect at Esperance farm is but one of the rapid growth [8] means they consume a large quantity many illustrations of the fact, long since patent to all of vegetation [9]. Considerable efforts have been put close students of economic entomology, that species into controlling the three species of Australian phasmid normally harmless may suddenly become very inju- known to cause periodic infestation [10].
    [Show full text]
  • Methane Production in Terrestrial Arthropods (Methanogens/Symbiouis/Anaerobic Protsts/Evolution/Atmospheric Methane) JOHANNES H
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5441-5445, June 1994 Microbiology Methane production in terrestrial arthropods (methanogens/symbiouis/anaerobic protsts/evolution/atmospheric methane) JOHANNES H. P. HACKSTEIN AND CLAUDIUS K. STUMM Department of Microbiology and Evolutionary Biology, Faculty of Science, Catholic University of Nijmegen, Toernooiveld, NL-6525 ED Nimegen, The Netherlands Communicated by Lynn Margulis, February 1, 1994 (receivedfor review June 22, 1993) ABSTRACT We have screened more than 110 represen- stoppers. For 2-12 hr the arthropods (0.5-50 g fresh weight, tatives of the different taxa of terrsrial arthropods for depending on size and availability of specimens) were incu- methane production in order to obtain additional information bated at room temperature (210C). The detection limit for about the origins of biogenic methane. Methanogenic bacteria methane was in the nmol range, guaranteeing that any occur in the hindguts of nearly all tropical representatives significant methane emission could be detected by gas chro- of millipedes (Diplopoda), cockroaches (Blattaria), termites matography ofgas samples taken at the end ofthe incubation (Isoptera), and scarab beetles (Scarabaeidae), while such meth- period. Under these conditions, all methane-emitting species anogens are absent from 66 other arthropod species investi- produced >100 nmol of methane during the incubation pe- gated. Three types of symbiosis were found: in the first type, riod. All nonproducers failed to produce methane concen- the arthropod's hindgut is colonized by free methanogenic trations higher than the background level (maximum, 10-20 bacteria; in the second type, methanogens are closely associated nmol), even if the incubation time was prolonged and higher with chitinous structures formed by the host's hindgut; the numbers of arthropods were incubated.
    [Show full text]