Upper Paleozoic and Cretaceous Stratigraphy of the Hidalgo County Area, New Mexico Eugene Greenwood, F

Total Page:16

File Type:pdf, Size:1020Kb

Upper Paleozoic and Cretaceous Stratigraphy of the Hidalgo County Area, New Mexico Eugene Greenwood, F New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/21 Upper Paleozoic and Cretaceous stratigraphy of the Hidalgo County area, New Mexico Eugene Greenwood, F. E. Kottlowski, and A. K. Armstrong, 1970, pp. 33-44 in: Tyrone, Big Hatchet Mountain, Florida Mountains Region, Woodward, L. A.; [ed.], New Mexico Geological Society 21st Annual Fall Field Conference Guidebook, 176 p. This is one of many related papers that were included in the 1970 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications. One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission. This page is intentionally left blank to maintain order of facing pages. 33 UPPER PALEOZOIC AND CRETACEOUS STRATIGRAPHY OF THE HIDALGO COUNTY AREA, NEW MEXICO By EUGENE GREENWOOD, FRANK E. KOTTLOWSKI, AND AUGUSTUS K. ARMSTRONG The main upper Paleozoic units in southwesternmost of shelf to miogeosynclinal bioclastic carbonates. The New Mexico are thick to thin Pennsylvanian sequences Escabrosa Group is separated from the underlying Upper Devonian rocks by a disconformity. This hiatus represents a making up most of the Horquilla Limestone, and the small part of Late Devonian and a significant part of Early Permian upper Horquilla, Earp, Abo, Hueco, Colina, Mississippian (Kinderhook) time. The top of the Escabrosa Epitaph, Scherrer, and Concha formations. Group is Late Mississippian (Meramec) in age and is defined No Triassic or Jurassic rocks are known in Hidalgo as the first appearance of thin-bedded, argillaceous limestone County, but marine Jurassic strata crop our far to the and shale beds. southeast in Chihuahua. The major Cretaceous formations Paleontologic and field studies indicate no significant in the Hachita area are the Hell-to-Finish, U-Bar, Mojado, hiatus within the Escabrosa Group. The contact between and Ringbone. Deposition of the Ringbone Formation ap- the Escabrosa Group and the overlying Paradise Formation pears to have extended into early Tertiary time. The Hidal- is gradational. The shale, silt, and shallow water, thin- go volcanic sequence, unconformable on the Ringbone, is bedded limestone of the Paradise Formation reflect devel- probably of early Tertiary age. In the Grant and Luna opment of the Chester-age highlands of central New Mex- Counties area, Cretaceous units are the Sarten Sandstone, ico and the resulting influx of terrigenous sediments into Beartooth orthoquartzite, Colorado Shale, some of the beds the Paradise sea (Armstrong, 1967). Extensive erosion in called the Lobo Formation, and thick unnamed units. southwestern and central New Mexico in late Chester and Descriptions of the Mississippian strata* are by Augustus Early Pennsylvanian time removed a considerable thickness K. Armstrong, U.S. Geological Survey, Menlo Park, of the of Mississippian strata and produced everywhere a pro- Pennsylvanian and Permian beds are by Eugene Green- nounced unconformity between Mississippian and Pennyl- wood, Midland, and of the Mesozoic rocks by Frank E. vanian strata. Kottlowski, New Mexico Bureau of Mines and Mineral KEATING FORMATION Resources. The type section of the Keating Formation (Figs. 2, 3) MISSISSIPPIAN STRATA was established by Armstrong (1962, p. 5) in sec. 20, T. 26 S., R. 30 E., on the southeast side of Blue Mountain, Chiri- This brief resume covers the Escabrosa Group and Par- cahua Mountains, Cochise County, southeastern Arizona. adise Formation of extreme southwestern New Mexico. The name was derived from Keating Canyon, a few miles For detailed information on the Mississippian strata of the north of the type section. The thickest sections in New region see Laudon and Bowsher (1949) and Armstrong Mexico are in the Klondike Hills, where the formation is (1958, 1962, and 1963). Formal systematic faunal studies 700 feet thick, and on the north side of the Big Hatchet and documentation of stratigraphic zonation used are in Mountains, where it is 590 feet thick. The Keating Forma- E. J. Zeller (1957), Armstrong (1958, 1962), and Hernon tion thins to the north in the Peloncillo Mountains. It is (1935). The classification of carbonate rocks used is Dun- readily divisible into two lithic members, A and B (in ham's (1962). ascending order). Member A contains a brachiopod and coral fauna (Fig. ESCABROSA GROUP 4) of latest Kinderhook and early Osage age. It rests with The Escabrosa Limestone of Mississippian age was a disconformity on marine shales and carbonates of the named by Girty (in Ransome, 1904) for the lower Car- Late Devonian Percha Shale. boniferous section in the Escabrosa Cliffs, west of Bisbee, Carbonates of member A are the initial phase of a car- Cochise County, southeastern Arizona. The Escabrosa bonate transgression over a weathered and peneplaned Limestone in the Chiricahua Mountains of southeastern Devonian surface. The lowest beds contain appreciable Arizona and southwestern New Mexico was elevated by amounts of calcareous shale, silt, and fine-sand-size quartz Armstrong (1962, p. 5) to the Escabrosa Group and di- disseminated in the limestone. The higher beds of member vided into two newly named formations: the Keating A arc almost pure carbonate rocks composed of bryozoan, Formation with two members, A and B; and the overlying echinoderm, brachiopod, and coral lime wackestones and Hachita Formation (Fig. 1). This nomenclature was ex- packstones with occasional lenticular bodies of oolite pack- tended into Luna, Hidalgo, and Grant Counties, south- stones. * Publication of the Mississippian chapter is authorized by the Director of the U.S. Geological Survey. western New Mexico. Within this region the Escabrosa Group is a thick sequence The most characteristic features of member A are its T. 26 S., R. 30 E., at the south end of Blue Mountain, massive bedding and chert-free carbonate rocks. Chiricahua Mountains. The Hachita Formation is litho- In contrast, member B is characterized by thin-bedded logically and topographically the most characteristic part mudstone and wackestone to packstone with dark-gray to of the Escabrosa Group. The lower two-thirds of the black lenticular chert. The chert bodies are generally paral- Hachita Formation is almost devoid of bedding and is com- lel to the bedding but are commonly grown together in posed of crinoid fragments to the virtual exclusion of other coalescing masses. Field observations and thin-section study organic remains. The upper third of the formation is darker indicate that the chert formed by diagenetic or post-diagen- gray, has persistent massive bedding, and is composed to a etic replacement of the original carbonate. large extent of crinoid packstone, although it also contains The gradational contact between members A and B is a appreciable amounts of brachiopod and bryozoan remains. zone 10 to 30 feet thick in which the bedding becomes thin- The thickest known section of the Hachita Formation, ner and the percentage of chert increases upward. 380 feet, is at the northern end of the Big Hatchet Moun- The lower beds of member B are soft pellet lime mud- tains. The formation thins to the north and west, apparently stone and pellet packstone; higher horizons contain progres- because of differential depositional rates. sively larger percentages of echinoderm bioclasts. The up- per beds of member B generally are echinoderm packstone and grainstone. PARADISE FORMATION The Paradise Formation was named by Stoyanow (1926) for outcrops a few miles east of the old mining camp of HACHITA FORMATION Paradise, on the east side of the Chiricahua Mountains. He The type section of the Hachita Formation (Figs. 2, 3) described the Paradise Formation as 134 feet thick and was established by Armstrong (1962, p. 10) in S1/2 sec. 20, "composed of black and gray, moderately thick and thin- bedded crystalline limestone, olive and yellow
Recommended publications
  • Hydrogeology of Jurassic and Triassic Wetlands in the Colorado Plateau and the Origin of Tabular Sandstone Uranium Deposits
    Hydrogeology of Jurassic and Triassic Wetlands in the Colorado Plateau and the Origin of Tabular Sandstone Uranium Deposits U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1548 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re­ leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from • ANCHORAGE, Alaska-Rm.
    [Show full text]
  • The Depositional Environment and Petrographic Analysis of the Lower Cretaceous Morita Formation, Bisbee Group, Southeastern Arizona and Northern Sonora, Mexico
    The depositional environment and petrographic analysis of the Lower Cretaceous Morita Formation, Bisbee Group, southeastern Arizona and northern Sonora, Mexico Item Type text; Thesis-Reproduction (electronic); maps Authors Jamison, Kermit Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 12:34:21 Link to Item http://hdl.handle.net/10150/557979 THE DEPOSITIONAL ENVIRONMENT AND PETROGRAPHIC ANALYSIS OF THE LOWER CRETACEOUS MORITA FORMATION, BISBEE GROUP, SOUTHEASTERN ARIZONA AND NORTHERN SONORA, MEXICO by HERMIT JAMISON A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN GEOLOGY In the Graudate College THE UNIVERSITY OF ARIZONA 1 9 8 3 Call N o . BINDING INSTRUCTIONS INTERLIBRARY INSTRUCTIONS Dept. i *9 7 9 1 Author: J ttm ilO Il, K e 1983 548 Title: RUSH____________________ PERMABIND- PAMPHLET GIFT________________ _____ COLOR: M .S . POCKET FOR MAP COVERS Front Both Special Instructions - Bindery or Repair PFFFPFKirF 3 /2 2 /8 5 Other-----------------------------— . r- STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknow­ ledgement of source is made.
    [Show full text]
  • Lexicon of Geologic Names of Southern Arizona Larry Mayer, 1978, Pp
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/29 Lexicon of geologic names of southern Arizona Larry Mayer, 1978, pp. 143-156 in: Land of Cochise (Southeastern Arizona), Callender, J. F.; Wilt, J.; Clemons, R. E.; James, H. L.; [eds.], New Mexico Geological Society 29th Annual Fall Field Conference Guidebook, 348 p. This is one of many related papers that were included in the 1978 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • A Proposed Low Distortion Projection for the City of Las Cruces and Dona Ana County Scott Farnham, PE, PS City Surveyor, City of Las Cruces NM October 2020
    A Proposed Low Distortion Projection for the City of Las Cruces and Dona Ana County Scott Farnham, PE, PS City Surveyor, City of Las Cruces NM October 2020 Introduction As part of the ongoing modernization of the U.S. National Spatial Reference System (NSRS), the National Geodetic Survey (NGS) will replace our horizontal and vertical datums (NAD83 and NAVD88) with new geometric datums assigned in the North American Terrestrial Reference Frame of 2022 (NATRF2022). The City of Las Cruces / Dona Ana County and the City of Albuquerque / Bernalillo County submitted proposals to NGS to incorporate Low Distortion Projections (LDP) as part of the New Mexico State Plane Coordinate Systems. Approval by NGS was obtained on June 17, 2019 for the proposed systems (see approval notice). Design of the LDP is the responsibility of the submitting agencies and must be submitted to NGS on or prior to March 31, 2021. Mark Marrujo1 with NMDOT is submitting final LDP design forms to NGS for the State of New Mexico. The City of Las Cruces (City) is designing a new Low Distortion Projection for Public Works Department, Engineering and Architecture projects to NGS criteria. To meet NGS LDP minimum size and shape criterion, the LDP area extends to Dona Ana County (County) boundary lines. This report presents design analysis and conclusions of the proposed City / County local NGS LDP system for stakeholders’ review prior to NGS final design submittal. NGS NM SPCS2022 Zones and Stakeholder Organizations NGS is designing new State Plane Coordinate Systems (SPCS2022) for New Mexico. The default SPCS2022 designs for the State are a statewide single zone and the three State Plane Zones: West, Central, and East.
    [Show full text]
  • Havasu Canyon Watershed Rapid Watershed Assessment Report June, 2010
    Havasu Canyon Watershed Rapid Watershed Assessment Report June, 2010 Prepared by: USDA Natural Resources Conservation Service University of Arizona, Water Resources Research Center In cooperation with: Coconino Natural Resource Conservation District Arizona Department of Agriculture Arizona Department of Environmental Quality Arizona Department of Water Resources Arizona Game & Fish Department Arizona State Land Department USDA Forest Service USDA Bureau of Land Management Released by: Sharon Megdal David L. McKay Director State Conservationist University of Arizona United States Department of Agriculture Water Resources Research Center Natural Resources Conservation Service Principle Investigators: Dino DeSimone – NRCS, Phoenix Keith Larson – NRCS, Phoenix Kristine Uhlman – Water Resources Research Center Terry Sprouse – Water Resources Research Center Phil Guertin – School of Natural Resources The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disa bility, po litica l be lie fs, sexua l or ien ta tion, an d mar ita l or fam ily s ta tus. (No t a ll prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal employment opportunity provider and employer. Havasu Canyon Watershed serve as a platform for conservation 15010004 program delivery, provide useful 8-Digit Hydrologic Unit information for development of NRCS Rapid Watershed Assessment and Conservation District business plans, and lay a foundation for future cooperative watershed planning.
    [Show full text]
  • Michael Kenney Paleozoic Stratigraphy of the Grand Canyon
    Michael Kenney Paleozoic Stratigraphy of the Grand Canyon The Paleozoic Era spans about 250 Myrs of Earth History from 541 Ma to 254 Ma (Figure 1). Within Grand Canyon National Park, there is a fragmented record of this time, which has undergone little to no deformation. These still relatively flat-lying, stratified layers, have been the focus of over 100 years of geologic studies. Much of what we know today began with the work of famed naturalist and geologist, Edwin Mckee (Beus and Middleton, 2003). His work, in addition to those before and after, have led to a greater understanding of sedimentation processes, fossil preservation, the evolution of life, and the drastic changes to Earth’s climate during the Paleozoic. This paper seeks to summarize, generally, the Paleozoic strata, the environments in which they were deposited, and the sources from which the sediments were derived. Tapeats Sandstone (~525 Ma – 515 Ma) The Tapeats Sandstone is a buff colored, quartz-rich sandstone and conglomerate, deposited unconformably on the Grand Canyon Supergroup and Vishnu metamorphic basement (Middleton and Elliott, 2003). Thickness varies from ~100 m to ~350 m depending on the paleotopography of the basement rocks upon which the sandstone was deposited. The base of the unit contains the highest abundance of conglomerates. Cobbles and pebbles sourced from the underlying basement rocks are common in the basal unit. Grain size and bed thickness thins upwards (Middleton and Elliott, 2003). Common sedimentary structures include planar and trough cross-bedding, which both decrease in thickness up-sequence. Fossils are rare but within the upper part of the sequence, body fossils date to the early Cambrian (Middleton and Elliott, 2003).
    [Show full text]
  • Geology of the Central Organ Mountains Dona Aña County, New Mexico Thomas G
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/26 Geology of the central Organ Mountains Dona Aña County, New Mexico Thomas G. Glover, 1975, pp. 157-161 in: Las Cruces Country, Seager, W. R.; Clemons, R. E.; Callender, J. F.; [eds.], New Mexico Geological Society 26th Annual Fall Field Conference Guidebook, 376 p. This is one of many related papers that were included in the 1975 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Cultural Resources Overview Desert Peaks Complex of the Organ Mountains – Desert Peaks National Monument Doña Ana County, New Mexico
    Cultural Resources Overview Desert Peaks Complex of the Organ Mountains – Desert Peaks National Monument Doña Ana County, New Mexico Myles R. Miller, Lawrence L. Loendorf, Tim Graves, Mark Sechrist, Mark Willis, and Margaret Berrier Report submitted to the Wilderness Society Sacred Sites Research, Inc. July 18, 2017 Public Version This version of the Cultural Resources overview is intended for public distribution. Sensitive information on site locations, including maps and geographic coordinates, has been removed in accordance with State and Federal antiquities regulations. Executive Summary Since the passage of the National Historic Preservation Act (NHPA) in 1966, at least 50 cultural resource surveys or reviews have been conducted within the boundaries of the Desert Peaks Complex. These surveys were conducted under Sections 106 and 110 of the NHPA. More recently, local avocational archaeologists and supporters of the Organ Monument-Desert Peaks National Monument have recorded several significant rock art sites along Broad and Valles canyons. A review of site records on file at the New Mexico Historic Preservation Division and consultations with regional archaeologists compiled information on over 160 prehistoric and historic archaeological sites in the Desert Peaks Complex. Hundreds of additional sites have yet to be discovered and recorded throughout the complex. The known sites represent over 13,000 years of prehistory and history, from the first New World hunters who gazed at the nighttime stars to modern astronomers who studied the same stars while peering through telescopes on Magdalena Peak. Prehistoric sites in the complex include ancient hunting and gathering sites, earth oven pits where agave and yucca were baked for food and fermented mescal, pithouse and pueblo villages occupied by early farmers of the Southwest, quarry sites where materials for stone tools were obtained, and caves and shrines used for rituals and ceremonies.
    [Show full text]
  • 1989 NMGS Spring Meeting: Abstract-2118
    STRATIGRAPHY OF THE CRETACEOUS BISBEE GROUP IN THE CENTRAL PELONCILLO MOUNTAINS, HIDALGO COUNTY, NEW MEXICO Steven N. Hayden1 and Spencer G. Lucas2 1Department of Geology, University of New Mexico, Albuquerque, NM, 87131 2New Mexico Museum of Natural History, P.o. Box 7010, Albuquerque, NM, 87194 Gillerman (1958, NMBMMR Bulletin 57) named four formations for strata of the Bisbee Group (Aptian-Albian) exposed in the central Peloncillo Mountains. The type section of Gillerman's McGhee Peak Formation is on McGhee Peak in the SW1/4 SE1/4 SW1/4, sec. 34, T24S, R31W and consists of 107 m of interbedded siliceous conglomerate, sandstone and siltstone. We correlate these strata with the Glance Conglomerate and Morita Formation of the Bisbee Group, but because of interbedding of Glance and Morita lithologies we are unable to recognize separate formations. The McGhee Peak Formation is homotaxial with the Hell to Finish Formation of the Big and Little Hatchet mountains to the east, but we refer to this interval in the central Peloncillo Mountains as the Glance/Morita Formation. We designate a type section for Gillerman's Carbonate Hill Formation in the NE1/4 SE1/4 SW1/4, sec. 34, T24S,R21 W where it consists of 49 m of brownish gray to graylimestone and siltstone. In other sections near the Carbonate Hill Mine (E1/2, sec. 34; T24S, R21W) it may be as much as 90 m thick and contains a late Aptian marine invertebrate fauna dominated by Ostrea, Exogyra, turritelloid gastropods and parahoplitid ammonoids. Gillerman's Carbonate Hill Formation is equivalent to the Mural Formation of the Bisbee Group and the oyster limestone and reef limestone members of the U-Bar Formation in the Big Hatchet Mountains.
    [Show full text]
  • U.S. Department of the Interior U.S. Geological Survey
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Prepared in cooperation with New Mexico Bureau of Mines and Mineral Resources 1997 MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Cover: View looking south to the east side of the northeastern Organ Mountains near Augustin Pass, White Sands Missile Range, New Mexico. Town of White Sands in distance. (Photo by Susan Bartsch-Winkler, 1995.) MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO By SUSAN BARTSCH-WINKLER, Editor ____________________________________________________ U. S GEOLOGICAL SURVEY OPEN-FILE REPORT 97-521 U.S. Geological Survey Prepared in cooperation with New Mexico Bureau of Mines and Mineral Resources, Socorro U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Shaefer, Interim Director For sale by U.S. Geological Survey, Information Service Center Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government MINERAL AND ENERGY RESOURCES OF THE MIMBRES RESOURCE AREA IN SOUTHWESTERN NEW MEXICO Susan Bartsch-Winkler, Editor Summary Mimbres Resource Area is within the Basin and Range physiographic province of southwestern New Mexico that includes generally north- to northwest-trending mountain ranges composed of uplifted, faulted, and intruded strata ranging in age from Precambrian to Recent.
    [Show full text]
  • GRAND CANYON GUIDE No. 6
    GRAND CANYON GUIDE no. 6 ... excerpted from Grand Canyon Explorer … Bob Ribokas AN AMATEUR'S REVIEW OF BACKPACKING TOPICS FOR THE T254 - EXPEDITION TO THE GRAND CANYON - MARCH 2007 Descriptions of Grand Canyon Layers Grand Canyon attracts the attention of the world for many reasons, but perhaps its greatest significance lies in the geologic record that is so beautifully preserved and exposed here. The rocks at Grand Canyon are not inherently unique; similar rocks are found throughout the world. What is unique about the geologic record at Grand Canyon is the great variety of rocks present, the clarity with which they're exposed, and the complex geologic story they tell. Paleozoic Strata: Kaibab depositional environment: Kaibab Limestone - This layer forms the surface of the Kaibab and Coconino Plateaus. It is composed primarily of a sandy limestone with a layer of sandstone below it. In some places sandstone and shale also exists as its upper layer. The color ranges from cream to a greyish-white. When viewed from the rim this layer resembles a bathtub ring and is commonly referred to as the Canyon's bathtub ring. Fossils that can be found in this layer are brachiopods, coral, mollusks, sea lilies, worms and fish teeth. Toroweap depositional environment Toroweap Formation - This layer is composed of pretty much the same material as the Kaibab Limestone above. It is darker in color, ranging from yellow to grey, and contains a similar fossil history. Coconino depositional environment: Coconino Sandstone - This layer is composed of pure quartz sand, which are basically petrified sand dunes. Wedge-shaped cross bedding can be seen where traverse-type dunes have been petrified.
    [Show full text]
  • Changes in Stratigraphic Nomenclature by the U.S. Geological Survey
    Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, By GEORGE V. COHEE, ROBERT G. BATES, and WILNA B. WRIGHT CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1294-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Listing of nomenclatural changes- --- ----- - - ---- -- -- -- ------ --- Ortega Quartzite and the Big Rock and Jawbone Conglomerate Members of the Kiawa Mountain Formation, Tusas Mountains, New Mexico, by Fred Barker---------------------------------------------------- Reasons for abandonment of the Portage Group, by Wallace de Witt, Jr-- Tlevak Basalt, west coast of Prince of Wales Island, southeastern Alaska, by G. Donald Eberlein and Michael Churkin, Jr Formations of the Bisbee Group, Empire Mountains quadrangle, Pima County, Arizona, by Tommy L. Finnell---------------------------- Glance Conglomerate- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Willow Canyon Formation ....................................... Apache Canyon Formation-- ................................... Shellenberger Canyon Formation- - --__----- ---- -- -- -- ----------- Turney Ranch Formation---- ------- ------ -- -- -- ---- ------ ----- Age--_------------------------------------------------------- Pantano Formation, by Tommy L. Finnell----------_-----------------
    [Show full text]