Lecture 8 Phases, Evaporation & Latent Heat

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 8 Phases, Evaporation & Latent Heat LECTURE 8 PHASES, EVAPORATION & LATENT HEAT Lecture Instructor: Kazumi Tolich Lecture 8 2 ¨ Reading chapter 17.4 to 17.5 ¤ Phase equilibrium ¤ Evaporation ¤ Latent heats n Latent heat of fusion n Latent heat of vaporization n Latent heat of sublimation Phase equilibrium & vapor-pressure curve 3 ¨ If a substance has two or more phases that coexist in a steady and stable fashion, the substance is in phase equilibrium. ¨ The pressure of the gas when equilibrium is reached is called equilibrium vapor pressure. ¨ A plot of the equilibrium vapor pressure versus temperature is called vapor-pressure curve. ¨ A liquid boils at the temperature at which its vapor pressure equals the external pressure. Phase diagram 4 ¨ A fusion curve indicates where the solid and liquid phases are in equilibrium. ¨ A sublimation curve indicates where the solid and gas phases are in equilibrium. ¨ A plot showing a vapor-pressure curve, a fusion curve, and a sublimation curve is called a phase diagram. ¨ The vapor-pressure curve comes to an end at the critical point. Beyond the critical point, there is no distinction between liquid and gas. ¨ At triple point, all three phases, solid, liquid, and gas, are in equilibrium. ¤ In water, the triple point occur at T = 273.16 K and P = 611.2 Pa. Quiz: 1 5 ¨ In most substance, as the pressure increases, the melting temperature of the substance also increases because a solid is denser than the corresponding liquid. But in water, ice is less dense than liquid water. Does the fusion curve of water have a positive or negative slope? A. Positive B. Negative Quiz: 8-1 answer 6 ¨ Negative ¨ In most substances, the fusion line has a positive slope. As the pressure increases, the melting temperature of the substance also increases because a solid is denser than the corresponding liquid. ¨ In water, the slope is negative because ice is less dense. Typical substance Water Example: 1 7 ¨ The phase diagram for water is shown. a) What is the temperature T1? b) What is the temperature T2? c) What happens to the melting/freezing temperature if atmospheric pressure is decreased? d) What happens to the boiling/condensation temperature if atmospheric pressure is increased? Evaporation/ Demo: 1 8 ¨ Evaporation is a cooling process. ¨ Freezing water by evaporation ¤ When the pressure is lowered, water boils at a lower temperature. ¤ Evaporation of water lowers the temperature of water itself. Demo: 2 9 ¨ CO2 sublimation ¤ Demonstration of sublimation of CO2 Latent heats 10 ¨ The energy required to convert a substance of mass � from one phase to another is given by � = �� where � is the coefficient of latent heat. ¤ latent heat of fusion, �%, solid to liquid ¤ latent heat of vaporization, �&, liquid to gas ¤ latent heat of sublimation, �', solid to gas Example: 2 11 ¨ A heat transfer of Q = 9.5 × 105 J is required to convert a block of ice at Ti = -12 °C to Tf = 12 °C. What was the mass of the block of ice? Quiz: 2 12 ¨ Which will cause more severe burns to your skin: 100°C water or 100°C steam of a same mass? A. Water B. Steam C. Both the same Quiz: 8-2 answer 13 ¨ Steam ¨ The hot steam first has to undergo a phase change into water at 100 °C before cooling down. This releases additional energy causing more severe burns. Example: 3 14 ¨ Flesh becomes badly damaged when its temperature reaches 50.0 °C. a) Calculate the heat released as m = 12.5 g of liquid water at Ti = 100 °C is cooled to Tf = 50.0 °C. b) Calculate the heat released as m = 12.5 g of steam at Ti = 100 °C is condensed and cooled to Tf = 50.0 °C. c) Calculate the mass of flesh that can be heated from T’i = 37.0 °C (normal body temperature) to T’f = 50.0 °C. The average specific heat of flesh is cflesh = 3500 J/kg·K. Quiz: 3 15 ¨ You step out of a swimming pool on a hot day, where the air temperature is 90°F. Where will you feel cooler, in Phoenix (dry air) or in Philadelphia (humid air)? A. equally cool in both places B. Philadelphia C. Phoenix Quiz: 8-3 answer 16 ¨ Phoenix ¨ In Phoenix, where the air is dry, more of the water will evaporate from your skin because there is not much water vapor in the air. ¨ Evaporation is a phase change, where the water must absorb the heat of vaporization from your skin. ¨ That is why you feel cool as the water evaporates. ¨ You may also feel colder when you are taking a shower with a bathroom door open compared to when the door is closed. Quiz: 4 17 ¨ The graph shows the temperature of a 1.0-g sample of material as heat is added to it. The material is initially a solid at 10ºC. The pressure remains constant, and there is no chemical change. What is the coefficient of latent heat of fusion for the material in cal/g? Quiz: 8-4 answer 18 ¨ 50 cal/g ¨ The coefficient of latent heat of fusion is the energy required to convert a substance of unit mass from one phase to another. Q Q 50 cal L = = m 1.0 g Quiz: 5 19 ¨ The graph shows the temperature of a 1.0-g sample of material as heat is added to it. The material is initially a solid at 10ºC. The pressure remains constant, and there is no chemical change. What is the specific heat of the solid ()* phase in ? +,-° Quiz: 8-5 answer 20 ()* ¨ 0.25 +,-° ¨ The specific heat is the energy required to raise the temperature of a substance of unit mass by 1C°. Q 0 45 ()* ()* ¨ � = = = 0.25 1,23 4.5 + 85 °- +,-° ΔT Water protects buds from cold weather 21 ¨ When temperature falls a few degrees below 0 °C, fruit crop is in danger of being ruined. ¨ To protect the buds, farmers spray the trees with water. ¨ Water has large latent heat of fusion. ¨ Before the buds can freeze, the water must be cooled to 0 °C and then freeze. ¨ In this process, the water gives up heat and keeps the temperature of the buds from going below 0 °C. ¨ The layer of ice over the buds acts like insulation because ice is not a good conductor of heat..
Recommended publications
  • Lecture Notes: BCS Theory of Superconductivity
    Lecture Notes: BCS theory of superconductivity Prof. Rafael M. Fernandes Here we will discuss a new ground state of the interacting electron gas: the superconducting state. In this macroscopic quantum state, the electrons form coherent bound states called Cooper pairs, which dramatically change the macroscopic properties of the system, giving rise to perfect conductivity and perfect diamagnetism. We will mostly focus on conventional superconductors, where the Cooper pairs originate from a small attractive electron-electron interaction mediated by phonons. However, in the so- called unconventional superconductors - a topic of intense research in current solid state physics - the pairing can originate even from purely repulsive interactions. 1 Phenomenology Superconductivity was discovered by Kamerlingh-Onnes in 1911, when he was studying the transport properties of Hg (mercury) at low temperatures. He found that below the liquifying temperature of helium, at around 4:2 K, the resistivity of Hg would suddenly drop to zero. Although at the time there was not a well established model for the low-temperature behavior of transport in metals, the result was quite surprising, as the expectations were that the resistivity would either go to zero or diverge at T = 0, but not vanish at a finite temperature. In a metal the resistivity at low temperatures has a constant contribution from impurity scattering, a T 2 contribution from electron-electron scattering, and a T 5 contribution from phonon scattering. Thus, the vanishing of the resistivity at low temperatures is a clear indication of a new ground state. Another key property of the superconductor was discovered in 1933 by Meissner.
    [Show full text]
  • Supercritical Fluid Extraction of Positron-Emitting Radioisotopes from Solid Target Matrices
    XA0101188 11. United States of America Supercritical Fluid Extraction of Positron-Emitting Radioisotopes From Solid Target Matrices D. Schlyer, Brookhaven National Laboratory, Chemistry Department, Upton, Bldg. 901, New York 11973-5000, USA Project Description Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. What is a supercritical fluid? Above a certain temperature, a vapor can no longer be liquefied regardless of pressure critical temperature - Tc supercritical fluid r«gi on solid a u & temperature Fig. 1. Phase diagram depicting regions of solid, liquid, gas and supercritical fluid behavior. The critical point is defined by a critical pressure (Pc) and critical temperature (Tc) for a particular substance. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid[l,2,3]. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples [4-10]. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well [11,12].
    [Show full text]
  • Equation of State and Phase Transitions in the Nuclear
    National Academy of Sciences of Ukraine Bogolyubov Institute for Theoretical Physics Has the rights of a manuscript Bugaev Kyrill Alekseevich UDC: 532.51; 533.77; 539.125/126; 544.586.6 Equation of State and Phase Transitions in the Nuclear and Hadronic Systems Speciality 01.04.02 - theoretical physics DISSERTATION to receive a scientific degree of the Doctor of Science in physics and mathematics arXiv:1012.3400v1 [nucl-th] 15 Dec 2010 Kiev - 2009 2 Abstract An investigation of strongly interacting matter equation of state remains one of the major tasks of modern high energy nuclear physics for almost a quarter of century. The present work is my doctor of science thesis which contains my contribution (42 works) to this field made between 1993 and 2008. Inhere I mainly discuss the common physical and mathematical features of several exactly solvable statistical models which describe the nuclear liquid-gas phase transition and the deconfinement phase transition. Luckily, in some cases it was possible to rigorously extend the solutions found in thermodynamic limit to finite volumes and to formulate the finite volume analogs of phases directly from the grand canonical partition. It turns out that finite volume (surface) of a system generates also the temporal constraints, i.e. the finite formation/decay time of possible states in this finite system. Among other results I would like to mention the calculation of upper and lower bounds for the surface entropy of physical clusters within the Hills and Dales model; evaluation of the second virial coefficient which accounts for the Lorentz contraction of the hard core repulsing potential between hadrons; inclusion of large width of heavy quark-gluon bags into statistical description.
    [Show full text]
  • Pressure Vs Temperature (Boiling Point)
    Boiling Points and Vapor Pressure Background Boiling Points and Vapor Pressure Background: Definitions Vapor Pressure: The equilibrium pressure of a vapor above its liquid; the pressure of the vapor resulting from the evaporation of a liquid above a sample of the liquid in a closed container. Boiling Point: The temperature at which the vapor pressure of a liquid is equal to the atmospheric (or applied) pressure. As the temperature of the liquid increases, the vapor pressure will increase, as seen below: https://www.chem.purdue.edu/gchelp/liquids/vpress.html Vapor pressure is interpreted in terms of molecules of liquid converting to the gaseous phase and escaping into the empty space above the liquid. In order for the molecules to escape, the intermolecular forces (Van der Waals, dipole- dipole, and hydrogen bonding) have to be overcome, which requires energy. This energy can come in the form of heat, aka increase in temperature. Due to this relationship between vapor pressure and temperature, the boiling point of a liquid decreases as the atmospheric pressure decreases since there is more room above the liquid for molecules to escape into at lower pressure. The graph below illustrates this relationship using common solvents and some terpenes: Pressure vs Temperature (boiling point) Ethanol Heptane Isopropyl Alcohol B-myrcene 290.0 B-caryophyllene d-Limonene Linalool Pulegone 270.0 250.0 1,8-cineole (eucalyptol) a-pinene a-terpineol terpineol-4-ol 230.0 p-cymene 210.0 190.0 170.0 150.0 130.0 110.0 90.0 Temperature (˚C) Temperature 70.0 50.0 30.0 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 760 10.0 -10.0 -30.0 Pressure (torr) 1 Boiling Points and Vapor Pressure Background As a very general rule of thumb, the boiling point of many liquids will drop about 0.5˚C for a 10mmHg decrease in pressure when operating in the region of 760 mmHg (atmospheric pressure).
    [Show full text]
  • It's Just a Phase!
    BASIS Lesson Plan Lesson Name: It’s Just a Phase! Grade Level Connection(s) NGSS Standards: Grade 2, Physical Science FOSS CA Edition: Grade 3 Physical Science: Matter and Energy Module *Note to teachers: Detailed standards connections can be found at the end of this lesson plan. Teaser/Overview Properties of matter are illustrated through a series of demonstrations and hands-on explorations. Students will learn to identify solids, liquids, and gases. Water will be used to demonstrate the three phases. Students will learn about sublimation through a fun experiment with dry ice (solid CO2). Next, they will compare the propensity of several liquids to evaporate. Finally, they will learn about freezing and melting while making ice cream. Lesson Objectives ● Students will be able to identify the three states of matter (solid, liquid, gas) based on the relative properties of those states. ● Students will understand how to describe the transition from one phase to another (melting, freezing, evaporation, condensation, sublimation) ● Students will learn that matter can change phase when heat/energy is added or removed Vocabulary Words ● Solid: A phase of matter that is characterized by a resistance to change in shape and volume. ● Liquid: A phase of matter that is characterized by a resistance to change in volume; a liquid takes the shape of its container ● Gas: A phase of matter that can change shape and volume ● Phase change: Transformation from one phase of matter to another ● Melting: Transformation from a solid to a liquid ● Freezing: Transformation
    [Show full text]
  • Lecture 5 Non-Aqueous Phase Liquid (NAPL) Fate and Transport
    Lecture 5 Non-Aqueous Phase Liquid (NAPL) Fate and Transport Factors affecting NAPL movement Fluid properties: Porous medium: 9 Density Permeability 9 Interfacial tension Pore size 9 Residual saturation Structure Partitioning properties Solubility Ground water: Volatility and vapor density Water content 9 Velocity Partitioning processes NAPL can partition between four phases: NAPL Gas Solid (vapor) Aqueous solution Water to gas partitioning (volatilization) Aqueous ↔ gaseous Henry’s Law (for dilute solutions) 3 Dimensionless (CG, CW in moles/m ) C G = H′ CW Dimensional (P = partial pressure in atm) P = H CW Henry’s Law Constant H has dimensions: atm m3 / mol H’ is dimensionless H’ = H/RT R = gas constant = 8.20575 x 10-5 atm m3/mol °K T = temperature in °K NAPL to gas partitioning (volatilization) NAPL ↔ gaseous Raoult’s Law: CG = Xt (P°/RT) Xt = mole fraction of compound in NAPL [-] P° = pure compound vapor pressure [atm] R = universal gas constant [m3-atm/mole/°K] T = temperature [°K] Volatility Vapor pressure P° is measure of volatility P° > 1.3 x 10-3 atm → compound is “volatile” 1.3 x 10-3 > P° > 1.3 x 10-13 atm → compound is “semi-volatile” Example: equilibrium with benzene P° = 76 mm Hg at 20°C = 0.1 atm R = 8.205 x 10-5 m3-atm/mol/°K T = 20°C (assumed) = 293°K Assume 100% benzene, mole fraction Xt = 1 3 CG = Xt P°/(RT) = 4.16 mol/m Molecular weight of benzene, C6H6 = 78 g/mol 3 3 CG = 4.16 mol/m × 78 g/mol = 324 g/m = 0.32 g/L 6 CG = 0.32 g/L x 24 L/mol / (78 g/mol) x 10 = 99,000 ppmv One mole of ideal gas = 22.4 L at STP (1 atm, 0 C), Corrected to 20 C: 293/273*22.4 = 24.0 L/mol Gas concentration in equilibrium with pure benzene NAPL Example: equilibrium with gasoline Gasoline is complex mixture – mole fraction is difficult to determine and varies Benzene = 1 to several percent (Cline et al., 1991) Based on analysis reported by Johnson et al.
    [Show full text]
  • Lecture 11. Surface Evaporation and Soil Moisture (Garratt 5.3) in This
    Atm S 547 Boundary Layer Meteorology Bretherton Lecture 11. Surface evaporation and soil moisture (Garratt 5.3) In this lecture… • Partitioning between sensible and latent heat fluxes over moist and vegetated surfaces • Vertical movement of soil moisture • Land surface models Evaporation from moist surfaces The partitioning of the surface turbulent energy flux into sensible vs. latent heat flux is very important to the boundary layer development. Over ocean, SST varies relatively slowly and bulk formulas are useful, but over land, the surface temperature and humidity depend on interactions of the BL and the surface. How, then, can the partitioning be predicted? For saturated ideal surfaces (such as saturated soil or wet vegetation), this is relatively straight- forward. Suppose that the surface temperature is T0. Then the surface mixing ratio is its saturation value q*(T0). Let z1 denote a measurement height within the surface layer (e. g. 2 m or 10 m), at which the temperature and humidity are T1 and q1. The stability is characterized by an Obhukov length L. The roughness length and thermal roughness lengths are z0 and zT. Then Monin-Obuhkov theory implies that the sensible and latent heat fluxes are HS = ρLvCHV1 (T0 - T1), HL = ρLvCHV1 (q0 - q1), where CH = fn(V1, z1, z0, zT, L)" We can eliminate T0 using a linearized version of the Clausius-Clapeyron equations: q0 - q*(T1) = (dq*/dT)R(T0 - T1), (R indicates a reference temp. near (T0 + T1)/2) HL = s*HS +!LCHV1(q*(T1) - q1), (11.1) s* = (L/cp)(dq*/dT)R (= 0.7 at 273 K, 3.3 at 300 K) This equation expresses latent heat flux in terms of sensible heat flux and the saturation deficit at the measurement level.
    [Show full text]
  • Introduction to Unconventional Superconductivity Manfred Sigrist
    Introduction to Unconventional Superconductivity Manfred Sigrist Theoretische Physik, ETH-Hönggerberg, 8093 Zürich, Switzerland Abstract. This lecture gives a basic introduction into some aspects of the unconventionalsupercon- ductivity. First we analyze the conditions to realized unconventional superconductivity in strongly correlated electron systems. Then an introduction of the generalized BCS theory is given and sev- eral key properties of unconventional pairing states are discussed. The phenomenological treatment based on the Ginzburg-Landau formulations provides a view on unconventional superconductivity based on the conceptof symmetry breaking.Finally some aspects of two examples will be discussed: high-temperature superconductivity and spin-triplet superconductivity in Sr2RuO4. Keywords: Unconventional superconductivity, high-temperature superconductivity, Sr2RuO4 INTRODUCTION Superconductivity remains to be one of the most fascinating and intriguing phases of matter even nearly hundred years after its first observation. Owing to the breakthrough in 1957 by Bardeen, Cooper and Schrieffer we understand superconductivity as a conden- sate of electron pairs, so-called Cooper pairs, which form due to an attractive interaction among electrons. In the superconducting materials known until the mid-seventies this interaction is mediated by electron-phonon coupling which gises rise to Cooper pairs in the most symmetric form, i.e. vanishing relative orbital angular momentum and spin sin- glet configuration (nowadays called s-wave pairing). After the introduction of the BCS concept, also studies of alternative pairing forms started. Early on Anderson and Morel [1] as well as Balian and Werthamer [2] investigated superconducting phases which later would be identified as the A- and the B-phase of superfluid 3He [3]. In contrast to the s-wave superconductors the A- and B-phase are characterized by Cooper pairs with an- gular momentum 1 and spin-triplet configuration.
    [Show full text]
  • Phase Diagrams a Phase Diagram Is Used to Show the Relationship Between Temperature, Pressure and State of Matter
    Phase Diagrams A phase diagram is used to show the relationship between temperature, pressure and state of matter. Before moving ahead, let us review some vocabulary and particle diagrams. States of Matter Solid: rigid, has definite volume and definite shape Liquid: flows, has definite volume, but takes the shape of the container Gas: flows, no definite volume or shape, shape and volume are determined by container Plasma: atoms are separated into nuclei (neutrons and protons) and electrons, no definite volume or shape Changes of States of Matter Freezing start as a liquid, end as a solid, slowing particle motion, forming more intermolecular bonds Melting start as a solid, end as a liquid, increasing particle motion, break some intermolecular bonds Condensation start as a gas, end as a liquid, decreasing particle motion, form intermolecular bonds Evaporation/Boiling/Vaporization start as a liquid, end as a gas, increasing particle motion, break intermolecular bonds Sublimation Starts as a solid, ends as a gas, increases particle speed, breaks intermolecular bonds Deposition Starts as a gas, ends as a solid, decreases particle speed, forms intermolecular bonds http://phet.colorado.edu/en/simulation/states- of-matter The flat sections on the graph are the points where a phase change is occurring. Both states of matter are present at the same time. In the flat sections, heat is being removed by the formation of intermolecular bonds. The flat points are phase changes. The heat added to the system are being used to break intermolecular bonds. PHASE DIAGRAMS Phase diagrams are used to show when a specific substance will change its state of matter (alignment of particles and distance between particles).
    [Show full text]
  • States of Matter
    States of Matter A Museum of Science Traveling Program Description States of Matter is a 60- minute presentation about the characteristics of solids, liquids, gases, and the temperature- dependent transitions between them. It is designed to build on NGSS-based curricula. NGSS: Next Generation Science Standards Needs We bring all materials and equipment, including a video projector and screen. Access to 110- volt electricity is required. Space Requirements The program can be presented in assembly- suitable spaces like gyms, multipurpose rooms, cafeterias, and auditoriums. Goals: Changing State A major goal is to show that all substances will go through phase changes and that every substance has its own temperatures at which it changes state. Goals: Boiling Liquid nitrogen boils when exposed to room temperature. When used with every day objects, it can lead to unexpected results! Goals: Condensing Placing balloons in liquid nitrogen causes the gas inside to condense, shrinking the balloons before the eyes of the audience! Latex-free balloons are available for schools with allergic students. Goals: Freezing Nitrogen can also be used to flash-freeze a variety of liquids. Students are encouraged to predict the results, and may end up surprised! Goals: Behavior Changes When solids encounter liquid nitrogen, they can no longer change state, but their properties may have drastic—sometimes even shattering— changes. Finale Likewise, the properties of gas can change at extreme temperatures. At the end of the program, a blast of steam is superheated… Finale …incinerating a piece of paper! Additional Content In addition to these core goals, other concepts are taught with a variety of additional demonstrations.
    [Show full text]
  • Superconductivity in Pictures
    Superconductivity in pictures Alexey Bezryadin Department of Physics University of Illinois at Urbana-Champaign Superconductivity observation Electrical resistance of some metals drops to zero below a certain temperature which is called "critical temperature“ (H. K. O. 1911) How to observe superconductivity Heike Kamerling Onnes - Take Nb wire - Connect to a voltmeter and a current source - Put into helium Dewar - Measure electrical resistance R (Ohm) A Rs V Nb wire T (K) 10 300 Dewar with liquid Helium (4.2K) Meissner effect – the key signature of superconductivity Magnetic levitation Magnetic levitation train Fundamental property of superconductors: Little-Parks effect (’62) The basic idea: magnetic field induces non-zero vector-potential, which produces non- zero superfluid velocity, thus reducing the Tc. Proves physical reality of the vector- potential Discovery of the proximity Non-superconductor (normal metal, i.e., Ag) effect: A supercurrent can flow through a thin layers of a non- superconducting metals “sandwitched” between two superconducting metals. tin Superconductor (tin) Explanation of the supercurrent in SNS junctions --- Andreev reflection tin A.F. Andreev, 1964 Superconducting vortices carry magnetic field into the superconductor (type-II superconductivity) Amazing fact: unlike real tornadoes, superconducting vortices (also called Abrikosov vortices) are all exactly the same and carry one quantum of the Magnetic flux, h/(2e). By the way, the factor “2e”, not just “e”, proves that superconducting electrons move in pairs.
    [Show full text]
  • 8. Gas-Phase Kinetics
    8. Gas-Phase Kinetics The unimolecular decomposition of gaseous di-tert-butyl peroxide is studied by monitoring the increase in the total pressure that results from the formation of three moles of gaseous products for each mole of reactant. The reaction is studied as a function of initial pressure, in the range 30-80 torr, and at two temperatures — ~150˚C and ~165˚C. General Reading 1. Oxtoby, Nachtrieb, and Freeman, Chemistry: Science of Change (2nd edit.); Sections 15.1-15.3 and 15.5-15.6. 2. Shoemaker, Garland, and Nibler, Experiments in Physical Chemistry (6th edit.); pp. 280-290 (Experiment 24); pp. 630-631 (manometers). [See also especially ref. 15 listed on p. 290.] 3. Levine, Physical Chemistry (4th edit.); Section 17.10 (unimolecular reaction theory). Theory Gas-phase decomposition reactions often exhibit first-order kinetics. Yet it is now understood that the mechanisms for these reactions are actually bimolecular in nature. The reaction is initiated by collisional activation (bimolecular) to an energy that is high enough to undergo decomposition, A + A ® A + A* k1 (1) where A* represents the activated molecule. The observed first-order behavior is a consequence of a competition between the reverse of this process (collisional deactivation), A* + A ® A + A k2 (2) and the decay of A* to products, A* ® products kA (3) When the rate of Process (2) is much greater than that of (3), the concentration of A* is maintained essentially at its equilibrium level. Then Process (3) becomes the rate-determining step, and the reaction exhibits first-order kinetics. This qualitative description can also be reached more quantitatively by employing the steady-state approximation, whereby the rates of change for reaction intermediates are set equal to zero.
    [Show full text]