0L the Requirements for the Degree • U 33

Total Page:16

File Type:pdf, Size:1020Kb

0L the Requirements for the Degree • U 33 A Monograph of Usnea from Sao Tome and Principe A thesis submitted to the faculty of % San Francisco State University MS In partial fulfillment of E><0L the requirements for the Degree • U 33 Master of Science In Biology: Ecology and Systematic Biology by Miko Rain Abraham Nadel San Francisco, California December 2015 Copyright by Miko Rain Abraham Nadel 2015 CERTIFICATION OF APPROVAL I certify that I have read Monograph of Usnea from Sao Tome and Principe by Miko Rain Abraham Nadel, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Biology: Ecology and Systematic Biology at San Francisco State University. DennisE. DesL6rdin, Ph.D. Professor ofjsiology San Francisco State University Jose R. de la Torre, Ph.D. Associate Professor of Biology San Francisco State University Robert C. Drewes, Ph.D. Curator of Herpetology, Emeritus California Academy of Sciences A Monograph of Usnea from Sao Tome and Principe Miko Rain Abraham Nadel San Francisco, California 2015 A systematic monograph of the lichen genus Usnea from the remote, under-explored islands of Sao Tome and Principe (ST&P) in tropical West Africa is presented, treating 11 species representing 2 subgenera, Usnea and Eumitria. Ten of the 11 species are reported as new for ST&P, including U. firmula, U. baileyi, U. pectinata, U. aff. flammea, U. sanguinea, U. picta, U. krogiana and three undetermined, potentially new species, Usnea species A, B and C. Usnea articulata is confirmed for the main island of Sao Tome. Determinations were made using morphological data, chemistry via thin layer chromatography, and a molecular phylogeny based on nDNA Internal Transcribed Spacer (ITS) sequences. Usnea baileyi, U. pectinata, U. articulata and Usnea species C represent species complexes consisting of two or more morphotypes each. Comprehensive descriptions, photographs, and a dichotomous key to the species are provided. correct representation of the content of this thesis De nnjs E. Desjarefm; Chair, Thesis Committee Date ACKNOWLEDGEMENTS I’d like to express my deepest appreciation to the many people who supported me on this journey of exploration and education. Thank you to Dr. Bob Drewes for the incredible opportunity to travel to such an amazing place for my collections and to those in ST&P who provided us with all the support in the field. Thanks also to Dr. Dennis Desjardin for agreeing to work with me despite my strange fascination with lichen, as well as Dr. Jose de la Torre for serving on my committee. Thank you to those who were able to give their time, experience and/or resources in helping me learn and become a better scientist, including: James Shevock, Doug Glavich, Dr. Bruce McCune, Dr. Frank Cipriano, Dr. Yoshihito Ohmura, Dr. Irwin Brodo, and Dr. Felix Schumm. I’m also immensely grateful for my father and the rest of my family, loved ones and friends and especially my grandmother, Ruth “Dolly” Nadel, who taught me to persevere and to believe in myself from a very young age when life was challenging. Thank you to all my colleagues at San Francisco State University for assistance along the way whether teaching me, or allowing me to learn by teaching you, every little bit helped. Lastly, thank you to the groups that granted me funds towards my research; The California Academy of Sciences, The California Lichen Society, The American Bryological and Lichenological Society, and The Mycological Society of San Francisco. v TABLE OF CONTENTS List of Table....................................................................................................................................... vii List of Figures....................................................................................................................................viii List of Appendices.............................................................................................................................. ix Introduction.......................................................................................................................................... 1 Usnea in Sao Tome and Principe......................................................................................... 2 Materials and Method..........................................................................................................................5 Literature Review..................................................................................................................5 Specimen and Exterior Data Collection................................................................................. 5 Morphological Analysis.......................................................................................................... 6 DNA Extraction, Amplification and Sequencing....................................................................7 Sequencing Data Analysis.................................................................................................... 8 Chemical Analysis..................................................................................................................9 Results............................................................................................................................................... 11 Phylogenetic Results............................................................................ 11 Subgenus Eumitria..................................................................................................12 Subgenus Dolichousnea.........................................................................................13 Subgenus Usnea.....................................................................................................13 Thin Layer Chromatography Results....................................................................................15 Taxonomy.................................................................................................................... 17 Key to species.........................................................................................................17 Species descriptions................................................................................................20 Usnea firmula............................................................................................ 20 Usnea baileyi............................................................................................. 22 Usnea pectinata........................................................................................ 24 Usnea aff. flammea................................................................................... 27 Usnea sanguinea...................................................................................... 28 Usnea species A ....................................................................................... 30 Usnea species B ....................................................................................... 32 Usnea articulata........................................................................................ 34 Usnea picta............................................................................................... 37 Usnea species C....................................................................................... 38 Usnea krogiana......................................................................................... 41 Discussion.................................................................................................................................. 43 References........................................................................................................................................66 Appendices........................................................................................................................................76 vii LIST OF PLATES Plate Page 1. Usneafirmula.................................................................................................................45 2. Usnea baileyi.................................................................................................................46 3. Usnea pectinata 1........................................................................................................47 4. Usnea pectinata 2 ........................................................................................................48 5. Usnea aff. flammea....................................................................................................... 49 6. Usnea sanguinea...........................................................................................................50 7. Usnea species A ........................................................................................................ 51 8. Usnea species B ........................................................................................................ 52 9. Usnea articulata.............................................................................................................53 10. Usnea picta....................................................................................................................54 11. Usnea species C............................................................................................................55 12. Usnea krogiana..............................................................................................................56 LIST OF FIGURES Figures Page 1. Usnea phylogeny .........................................................................................................57
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Fossil Usnea and Similar Fruticose Lichens from Palaeogene Amber
    The Lichenologist (2020), 52, 319–324 doi:10.1017/S0024282920000286 Standard Paper Fossil Usnea and similar fruticose lichens from Palaeogene amber Ulla Kaasalainen1 , Jouko Rikkinen2,3 and Alexander R. Schmidt1 1Department of Geobiology, University of Göttingen, Göttingen, Germany; 2Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland and 3Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland Abstract Fruticose lichens of the genus Usnea Dill. ex Adans. (Parmeliaceae), generally known as beard lichens, are among the most iconic epiphytic lichens in modern forest ecosystems. Many of the c. 350 currently recognized species are widely distributed and have been used as bioin- dicators in air pollution studies. Here we demonstrate that usneoid lichens were present in the Palaeogene amber forests of Europe. Based on general morphology and annular cortical fragmentation, one fossil from Baltic amber can be assigned to the extant genus Usnea. The unique type of cortical cracking indirectly demonstrates the presence of a central cord that keeps the branch intact even when its cortex is split into vertebrae-like segments. This evolutionary innovation has remained unchanged since the Palaeogene, contributing to the considerable ecological flexibility that allows Usnea species to flourish in a wide variety of ecosystems and climate regimes. The fossil sets the minimum age for Usnea to 34 million years (late Eocene). While the other similar fossils from Baltic and Bitterfeld ambers cannot be definitely assigned to the same genus, they underline the diversity of pendant lichens in Palaeogene amber forests. Key words: Ascomycota, Baltic amber, Bitterfeld amber, lichen fossils (Accepted 16 April 2020) Introduction et al.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Mycobiology Research Article
    Mycobiology Research Article Lichen Mycota in South Korea: The Genus Usnea 1 1 1 1 2 1, Udeni Jayalal , Santosh Joshi , Soon-Ok Oh , Young Jin Koh , Florin Criçs an and Jae-Seoun Hur * 1 Korean Lichen Research Institute, Sunchon National University, Suncheon 540-742, Korea 2 Faculty of Biology and Geology, Babeçs -Bolyai University, Cluj-Napoca, 400015, Romania Abstract Usnea Adans. is a somewhat rare lichen in South Korea, and, in nearly two decades, no detailed taxonomic or revisionary study has been conducted. This study was based on the specimens deposited in the lichen herbarium at the Korean Lichen Research Institute, and the samples were identified using information obtained from recent literature. In this study, a total of eight species of Usnea, including one new record, Usnea hakonensis Asahina, are documented. Detailed descriptions of each species with their morphological, anatomical, and chemical characteristics are provided. A key to all known Usnea species in South Korea is also presented. Keywords Key, New record, Parmeliaceae, South Korea, Usnea The lichen genus Usnea Adans. belongs to the family [6] proposed another subgenus Dolichousnea (Y. Ohmura) Parmeliaceae [1] (Lecanorales, Ascomycota), with ca. 300 Articus from the subgenus Usnea. The subgenus Eumitria species, and shows a world-wide distribution [2, 3]. Due to (Stirt.) Zahlbr. and sections Usnea Dill. ex Adans. and a fruticose habit and a beard like appearance, it is easily Ceratinae (Motyka) Y. Ohmura were segregated from the recognized, but difficult to identify up to species level due subgenus Usnea based on the molecular analysis reported to the presence of varying characteristics [4, 5].
    [Show full text]
  • Bulletin of the California Lichen Society
    Bulletin of the California Lichen Society Volume 22 No. 1 Summer 2015 Bulletin of the California Lichen Society Volume 22 No. 1 Summer 2015 Contents Beomyces rufus discovered in southern California .....................................................................................1 Kerry Knudsen & Jana Kocourková Acarospora strigata, the blue Utah lichen (blutah) ....................................................................................4 Bruce McCune California dreaming: Perspectives of a northeastern lichenologist ............................................................6 R. Troy McMullin Lichen diversity in Muir Woods National Monument ..............................................................................13 Rikke Reese Næsborg & Cameron Williams Additional sites of Umbilicaria hirsuta from Southwestern Oregon, and the associated lichenicolous fungus Arthonia circinata new to North America .....................................................................................19 John Villella & Steve Sheehy A new lichen field guide for eastern North America: A book review.........................................................23 Kerry Knudsen On wood: A monograph of Xylographa: A book review............................................................................24 Kerry Knudsen News and Notes..........................................................................................................................................26 Upcoming Events........................................................................................................................................30
    [Show full text]
  • From Genbank to GBIF: Phylogeny-Based Predictive Niche Modeling Tests Accuracy of Taxonomic Identifications in Large Occurrence Data Repositories
    RESEARCH ARTICLE From GenBank to GBIF: Phylogeny-Based Predictive Niche Modeling Tests Accuracy of Taxonomic Identifications in Large Occurrence Data Repositories B. Eugene Smith1, Mark K. Johnston2, Robert Lücking1,3* 1 Integrative Research Center & Gantz Family Collections Center, Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois, 60605–2496, United States of America, 2 Science Action Center, Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois, 60605– 2496, United States of America, 3 Botanical Garden and Botanical Museum, Königin-Luise-Str. 6–8, 14195, Berlin, Germany * [email protected]; [email protected] OPEN ACCESS Abstract Citation: Smith BE, Johnston MK, Lücking R (2016) From GenBank to GBIF: Phylogeny-Based Predictive Accuracy of taxonomic identifications is crucial to data quality in online repositories of species Niche Modeling Tests Accuracy of Taxonomic occurrence data, such as the Global Biodiversity Information Facility (GBIF), which have accu- Identifications in Large Occurrence Data mulated several hundred million records over the past 15 years. These data serve as basis for Repositories. PLoS ONE 11(3): e0151232. doi:10.1371/journal.pone.0151232 large scale analyses of macroecological and biogeographic patterns and to document environ- mental changes over time. However, taxonomic identifications are often unreliable, especially Editor: Stefan Lötters, Trier University, GERMANY for non-vascular plants and fungi including lichens, which may lack critical revisions of voucher Received: April 12, 2015 specimens. Due to the scale of the problem, restudy of millions of collections is unrealistic and Accepted: February 25, 2016 other strategies are needed. Here we propose to use verified, georeferenced occurrence data Published: March 11, 2016 of a given species to apply predictive niche modeling that can then be used to evaluate unveri- fied occurrences of that species.
    [Show full text]
  • Piedmont Lichen Inventory
    PIEDMONT LICHEN INVENTORY: BUILDING A LICHEN BIODIVERSITY BASELINE FOR THE PIEDMONT ECOREGION OF NORTH CAROLINA, USA By Gary B. Perlmutter B.S. Zoology, Humboldt State University, Arcata, CA 1991 A Thesis Submitted to the Staff of The North Carolina Botanical Garden University of North Carolina at Chapel Hill Advisor: Dr. Johnny Randall As Partial Fulfilment of the Requirements For the Certificate in Native Plant Studies 15 May 2009 Perlmutter – Piedmont Lichen Inventory Page 2 This Final Project, whose results are reported herein with sections also published in the scientific literature, is dedicated to Daniel G. Perlmutter, who urged that I return to academia. And to Theresa, Nichole and Dakota, for putting up with my passion in lichenology, which brought them from southern California to the Traingle of North Carolina. TABLE OF CONTENTS Introduction……………………………………………………………………………………….4 Chapter I: The North Carolina Lichen Checklist…………………………………………………7 Chapter II: Herbarium Surveys and Initiation of a New Lichen Collection in the University of North Carolina Herbarium (NCU)………………………………………………………..9 Chapter III: Preparatory Field Surveys I: Battle Park and Rock Cliff Farm……………………13 Chapter IV: Preparatory Field Surveys II: State Park Forays…………………………………..17 Chapter V: Lichen Biota of Mason Farm Biological Reserve………………………………….19 Chapter VI: Additional Piedmont Lichen Surveys: Uwharrie Mountains…………………...…22 Chapter VII: A Revised Lichen Inventory of North Carolina Piedmont …..…………………...23 Acknowledgements……………………………………………………………………………..72 Appendices………………………………………………………………………………….…..73 Perlmutter – Piedmont Lichen Inventory Page 4 INTRODUCTION Lichens are composite organisms, consisting of a fungus (the mycobiont) and a photosynthesising alga and/or cyanobacterium (the photobiont), which together make a life form that is distinct from either partner in isolation (Brodo et al.
    [Show full text]
  • Evaluation of In-Vitro Antioxidant Activity of Isolated Compounds of Lichen, Usnea Undulata E
    Research Article E.Susithra et al. / Journal of Pharmacy Research 2011,4(2),352-355 ISSN: 0974-6943 Available online through http://jprsolutions.info Evaluation of In-vitro Antioxidant activity of isolated compounds of lichen, Usnea undulata E. Susithra*1a, K.Mallikarjuna Rao1b, K.V. Ramseshu2, S.Meena2 a1*Department of Phytochemistry, Annamacharya College of Pharmacy, Kadapa, Rajampet-516 126, Andhra Pradesh, India. b1Department of Pharmaceutics, Annamacharya College of Pharmacy, Kadapa, Rajampet-516 126, Andhra Pradesh, India. 2K.M College of Pharmacy, Uthangudi, Madurai 625 107, Tamilnadu, India .Received on: 15-11-2010; Revised on: 10-12-2010; Accepted on:13-01-2011 ABSTRACT The aim of the present study was to assess the In-vitro potential anti-oxidant and anti- inflammatory activities of isolated compounds (SU-I, SU-II, SU-III) of lichen, Usnea undulata, by different methods viz. DPPH radical scavenging assay, Hydroxyl radical scavenging assay Nitric oxide scavenging assay and Hydrogen peroxide assay. The Lichen material was extracted by continuous hot percolation method using solvents of increasing polarity and the obtained extracts were column chromatographed using silica gel (100-200 mesh) pooled and processed further. Accordingly, three compounds were isolated and characterized. The free radical scavenging activity of the isolated compounds was estimated by IC50 values at various concentrations of 20 to 80µg/ml. At 80µg/ml, DPPH radical scavenging assay, Hydroxyl radical scavenging assay, Nitric oxide assay and Hydrogen peroxide assay showed maximum inhibition of 80.31%, 81.20%, 83.83% and 84.31% respectively for the compound SU-I. These results clearly indicate that SU-I is effective in scavenging free radicals, thus proving its potential for powerful antioxidant activity.
    [Show full text]
  • Testing DNA Barcoding in Usnea (Parmeliaceae) in Colombia Using the Internal Transcribed Spacer (ITS)
    Plant and Fungal Systematics 65(2): 358–385, 2020 ISSN 2544-7459 (print) DOI: https://doi.org/10.35535/pfsyst-2020-0026 ISSN 2657-5000 (online) Testing DNA barcoding in Usnea (Parmeliaceae) in Colombia using the internal transcribed spacer (ITS) Bibiana Moncada1,3, Harrie J. M. Sipman2 & Robert Lücking2,3* Abstract. We tested the functionality of ITS-based DNA barcoding in lichen fungi using Article info Colombian samples of the genus Usnea as an example. New ITS sequences were generated Received: 13 Aug. 2020 for 15 samples from five localities in two different ecoregions, representing varying mor- Revision received: 11 Nov. 2020 phologies and medullary chemistries. We employed five strategies to identify the samples: Accepted: 11 Nov. 2020 (1) BLASTn on the NCBI BLAST site with the original identifications of the best match- Published: 29 Dec. 2020 ing reference sequences; (2) as previous, but with revised identifications of the reference Associate Editor sequences based on a separately published revision of ITS sequences published for the Camille Truong genus; (3) local BLASTn in BioEdit using a separately published, revised and curated set of ITS reference sequences for the genus; (4) multiple alignment based phylogenetic analysis within the framework of all available ITS sequences for Usnea s.str.; and (5) integrative taxonomy, combining molecular phylogeny and comparative analysis of phenotype and chemical data. Using the latter approach as reference, we found that NCBI BLASTn with original identifications performed poorly, resulting in an identification success rate of only 7% (a single sample). NCBI BLASTn with revised identifications more than tripled iden- tification success (23%), but was still unsatisfactory.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Journal of Biogeography Supporting Information Community Change And
    1 Journal of Biogeography 2 Supporting Information 3 Community change and species richness reductions in rapidly advancing treelines 4 Sarah Greenwood, Jan-Chang Chen, Chaur-Tzuhn Chen and Alistair S. Jump 5 Supporting Information 6 Appendix S1 7 Table S1: Explanation of treeline forms/structures used in the sampling design. 8 1 Treeline form Description Transects Sampling Mean locations transect along length (m) transects Abrupt advancing Treelines with an abrupt edge that 11 3: Interior 50 show evidence of advance. A dense forest, mid band of young trees is apparent at the forest, treeline edge of the forest and aerial photograph analysis shows advances of treeline in recent decades (Greenwood et al. 2014). Diffuse advancing Treelines that show evidence of 11 4: Interior 100 recent advance occurring in a diffuse forest, mid manner; regeneration has occurred forest, treeline, over a long distance at low density. tree limit Young trees can be seen scattered upslope at very low density beyond the treeline, forming the tree-limit at their upper limits. Aerial photographs provide evidence of recent advances of treeline (Greenwood et al. 2014) Static Treelines that show no evidence of 11 3: Interior 50 recent advance. Mature trees occur at forest, mid the edge of the forest and the treeline forest, treeline is abrupt in nature, no evidence of advance is apparent in aerial photographs (Greenwood et al. 2014). 9 10 2 11 Appendix S2 12 Literature and methods for lichen identification and accession numbers for GenBank 13 Literature used for species identification 14 Aproot, A., Lai, M-J. & Sparrius, L.
    [Show full text]
  • BLS Bulletin 108 Summer 2011.Pdf
    BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2011 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: E.
    [Show full text]