Rice Culture in Agriculture: an Indian Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Rice Culture in Agriculture: an Indian Perspective The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today, IRRI is one of the 15 nonprofit international research centers supported by the Consultative Group on International Agricultural Research (CGIAR - www.cgiar.org). IRRI receives support from several CGIAR members, including the World Bank, European Union, Asian Development Bank, International Fund for Agricultural Development, Rockefeller Foundation, Food and Agriculture Organization of the United Nations, and agencies of the following countries: Australia, Brazil, Canada, Denmark, France, Germany, India, Iran, Japan, Malaysia, Norway, People's Republic of China, Republic of Korea, Republic of the Philippines, Sweden, Switzerland, Thailand, United Kingdom, United States, and Vietnam. The responsibility for this publication rests with the International Rice Research Institute. © National Academy of Agricultural Sciences, New Delhi, 2007 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims of damages. Mailing address: DAPO Box 7777, Metro Manila, Philippines Phone: +63 (2) 580-5600 Fax: +63 (2) 580-5699 Email: [email protected] Web: www.irri.org. Rice Knowledge Bank: www.knowledgebank.irri.org Courier address: Suite 1009, Security Bank Center 6776 Ayala Avenue, Makati City, Philippines Tel. +63 (2) 891-1236, 891-1174, 891-1258, 891-1303 Suggested Citation: Aggarwal PK, Ladha JK, Singh RK, Devakumar C, Hardy B, editors. 2007. Science, technology, and trade for peace and prosperity. Proceedings of the 26th International Rice Research Conference, 9-12 October 2006, New Delhi, India. Los Baños (Philippines) and New Delhi (India): International Rice Research Institute, Indian Council of Agricultural Research, and National Academy of Agricultural Sciences. Printed by Macmillan India Ltd. 782 p. Cover design: Juan Lazaro IV Page makeup and composition: Ariel Paelmo Figures and illustrations: Ariel Paelmo Foreword Foreword The demand for rice worldwide has increased dramatically over the last 50 years because of increases in population. In many regions, the supply of rice has generally kept pace with the increase in demand, largely due to the introduction of modern high-yielding varieties, expansion of irrigation, and the use of synthetic nitrogen fertilizers. Rice is now grown globally on about 150 million hectares, with an annual production of about 600 million tons. It is the staple food for more than half of the world population, and its production is a source of income and livelihood for millions of people across the world. In Asia alone, where nearly 90% of the world’s rice is produced and consumed, more than 2 billion people obtain 60% to 70% of their energy intake from rice and its products. As the population of rice-growing regions of the world increases, demand for rice becomes higher. It is estimated that the rice grain requirement by 2020 in the region will be almost 30–50% more than now. The additional quantities will have to be produced from the same land resources, or less, because of the increase in competition for land and other resources by nonagricultural sectors. There is growing evidence of a gradual deterioration in natural resources, a decline in soil fertility, changes in water-table depth, deterioration in the quality of irrigation water, and rising salinity. This situation is further complicated by global climate change, which is likely to lead to reduced yields and increased production instability. As these proceedings were going to press, the climatic calamities of drought and cyclones were taking their toll on global rice supplies. The world faces sharply rising rice prices and global stocks are plummeting to levels not seen for nearly 30 years. Many nations today thus face the second-generation challenge of producing more rice at less cost in a deteriorating environment. Rice research and development therefore need to address the Millennium Development Goals on poverty alleviation, food and nutritional security, and environmental conservation. Opportunities are emerging from recent technological developments in space, information, communication, and biotechnology for tackling these goals. The 2nd International Rice Congress, IRC2006, was organized to discuss these developments and to provide a common platform for sharing knowledge and expertise on research, extension, production, processing, trade, consumption, and related activities with all stakeholders of rice. The Congress was organized by the Indian Council of Agricultural Research and the National Academy of Agricultural Sciences (India) and sponsored by the International Rice Research Institute, Philippines, and Government of India. A comprehensive event for the world’s most important crop, this Rice Congress had simultaneous conferences, symposia, workshops, and exhibitions based on the theme “Science, technology, and trade for peace and prosperity.” The main events of the Congress were the 26th International Rice Research Conference, 2nd International Rice Commerce Conference, 2nd International Rice Technology and Cultural Exhibition, and 2nd International Ministerial Round-Table Meeting. The deliberations of the Asian Ministers led to a Delhi Declaration that highlighted the need to establish a comprehensive partnership among the participants through strengthened dialogue on a regular basis for the development of rice research and trade with greater emphasis on the social, cultural, and human dimension. The International Rice Research Conference (IRRC), organized every two years by the International Rice Research Institute, is the world’s premier rice research event. This 26th Conference in 2006 focused on “Innovations for efficiency enhancement” in view of the increasing need to conserve resource use in rice. All important aspects of rice research and related environmental and economic impacts were covered in several sessions by plenary lectures, invited lead papers, poster papers, and workshops by the experts. These proceedings provide a summary of the key plenary and invited papers presented during the IRRC on various themes. We hope the knowledge base in these proceedings will help address the challenge of producing more rice with greater ecological efficiency and profitability in a changing global environment. M.S. Swaminathan Mangala Rai Robert S. Zeigler Chair Co-Chair Co-Chair vi Foreword Contents FOREWORD ..................................................................................................... v PLENARY SESSIONS Science and Shaping the Future of Rice ................................................. 3 M.S. Swaminathan Bringing Hope, Improving Lives ............................................................ 15 Robert S. Zeigler Public Policy and International Collaboration for Sustaining .................. 23 and Expanding the Rice Revolution Joachim von Braun Competing Claims for Natural Resources and the Need for System ......... 43 Transitions in Rice Cultivation M.J. Kropff, P.S. Bindraban, and M.A. Slingerland Rice Breeding for the 21st Century ........................................................ 63 Gurdev S. Khush Rice Production and Hybrid Rice Research in China .............................. 77 Cheng Shihua, Cao Liyong, and Zhai Huqu Rice Culture in Agriculture: An Indian Perspective ................................. 89 Mangala Rai SESSION 1.1 Genetic Resources, Gene Discovery, and Allele Mining ......................... 101 The Complete Rice Genome Sequence: A Gold Mine ............................. 103 for Innovation in Rice Research Takuji Sasaki Identifying Favorable Alleles in Host Defense Genes for Broad- .............. 111 Spectrum Resistance in Rice H. Leung, B. Liu, R. Mauleon, F. Qiu, G. Carrillo, C. Vera Cruz, K. McNally, S.S. Han, J. Roh, P. Manosalva, R. Davidson, J. Leach, K. Satoh, and S. Kikuchi Comparative Analysis of Rice and Wheat Genomes as a Tool ................. 121 for Gene Discovery Nagendra K. Singh, Vivek Dalal, Kamlesh Batra, Archana Singh, Mahavir Yadav, Rekha Dixit, Irfan A. Ghazi, Awadhesh Pandit, Harvinder Singh, Pradeep K. Singh, Kishor Gaikwad, Trilochan Mohapatra, and Tilak Raj Sharma SESSION 1.2 Novel Plant Types and Harnessing Heterosis ......................................... 137 Hybrid Rice in the Tropics: Where Do We Go from Here? ...................... 139 Sant S. Virmani Physiological and Morphological Traits Associated with High ................. 149 Yield Potential in Rice Takeshi Horie, Koki Homma, and Hiroe Yoshida New Plant Type of Japonica Rice for Yield Improvement in Korea ........... 161 Huhn-Pal Moon, Kyung-Ho Kang, and Jeom-Ho Lee SESSION 1:3 Breeding for Aerobic and Unfavorable Conditions ................................ 175 Breeding for Enhanced Tolerance of Salinity and Mineral ....................... 177 Stresses in Rice B. Mishra Breeding Rice with Tolerance of Highly Variable Abiotic Stresses: .......... 197 Submergence and Drought G.N. Atlin, R. Venuprasad, J. Bernier, A. Kumar, S. Verulkar, R.K. Sahu, H.R. Lafitte, R. Serraj, J. Cairns, P.K. Sinha, N.P. Mandal, H.E. Shashidhar, R. Chandrababu, S. Robin, J.L. Dwivedi, and S. Rathi Salinity, Submergence, and Nutrient Deficiency in Rice: Bases ............... 209 of Tolerance and Progress Through Breeding Abdelbagi M.
Recommended publications
  • Improvement of a RD6 Rice Variety for Blast Resistance and Salt Tolerance Through Marker-Assisted Backcrossing
    agronomy Article Improvement of a RD6 Rice Variety for Blast Resistance and Salt Tolerance through Marker-Assisted Backcrossing Korachan Thanasilungura 1, Sukanya Kranto 2, Tidarat Monkham 1, Sompong Chankaew 1 and Jirawat Sanitchon 1,* 1 Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] (K.T.); [email protected] (T.M.); [email protected] (S.C.) 2 Ratchaburi Rice Research Center, Muang, Ratchaburi 70000, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-81567-4364 Received: 24 July 2020; Accepted: 30 July 2020; Published: 1 August 2020 Abstract: RD6 is one of the most favorable glutinous rice varieties consumed throughout the north and northeast of Thailand because of its aroma and softness. However, blast disease and salt stress cause decreases in both yield quantity and quality during cultivation. Here, gene pyramiding via marker-assisted backcrossing (MAB) using combined blast resistance QTLs (qBl 1, 2, 11, and 12) and Saltol QTL was employed in solving the problem. To pursue our goal, the RD6 introgression line (RGD07005-12-165-1), containing four blast-resistant QTLs, were crossed with the Pokkali salt tolerant variety. Blast resistance evaluation was thoroughly carried out in the fields, from BC2F2:3 to BC4F4, using the upland short-row and natural field infection methods. Additionally, salt tolerance was validated in both greenhouse and field conditions. We found that the RD6 “BC4F4 132-12-61” resulting from our breeding programme successfully resisted blast disease and tolerated salt stress, while it maintained the desirable agronomic traits of the original RD6 variety.
    [Show full text]
  • Boosting Agricultural Efficiency and Output Through Targeted Interventions
    PA R T I V Boosting Agricultural Efficiency and Output through Targeted Interventions CHAPTER 1 5 Increasing Rice Productivity and Strengthening Food Security through New Rice for Africa (NERICA) Aliou Diagne, Soul-Kifouly Gnonna Midingoyi, Marco Wopereis, and Inoussa Akintayo espite Africa’s potentially rich land and water capita rice consumption in West Africa increased from resources, its farmers are among the poorest in the 14 kilograms in the 1970s to 22 kilograms in the 1980s and world. Because the vast majority of people in more than 39 kilograms in 2009. For Africa as whole, annual DAfrica der ive their livelihoods from agriculture, the weak per capita rice consumption increased from 11 kilograms in state of the sector has profound implications for poverty.1 the 1970s to 21 kilograms in 2009 (figure 15.1). Since the Agricultural innovation in Africa needs to internalize the early 1970s rice has been the number one source of caloric region’s biophysical, institutional, and socioeconomic con- intake in West Africa and the third most important source straints and establish efficient value chains to support sus- of calories (after maize and cassava) for the continent as a tainable growth and reduce poverty. whole (figure 15.2). Agricultural research can catalyze agricultural innova- Domestic rice production grew at the rate of 6 percent a tion and the development of the value chain. A prime exam- year between 2001 and 2005.5 But production still falls far ple is the New Rice for Africa (NERICA) varieties developed short of demand. As a result, Africa imports up to 40 per- by the Africa Rice Center (AfricaRice2) and partners, which cent of its rice consumption.
    [Show full text]
  • The Rice Crisis: Markets, Policies and Food Security
    ‘This book, with chapters from many prominent experts, Crisis Rice The presents new evidence from the recent rice price crisis and draws lessons for preventing the next crisis. It is a unique set of references on global food security and the world rice market.’ shenggen Fan, director General, international Food Policy Research institute (iFPRi) ‘This book is a must-read for those who wish to understand the world rice market, trade policies and food security concerns. The Rice Crisis It provides a careful and detailed analysis of the causes and consequences of the 2007 and 2008 global rice crisis. It is written by knowledgeable experts from the key MaRkeTs, PoliCies and Food seCuRiT y rice economy nations.’ Professor eric J. wailes, university of arkansas, usa r-...... he recent escalation of world food prices – particularly for cereals T– prompted mass public indignation and demonstrations in many countries, from the price of tortilla flour in Mexico to that of rice in the Philippines and pasta in Italy. The crisis has important implications for future government trade and food security policies, as countries -3 re-evaluate their reliance on potentially more volatile world markets to augment domestic supplies of staple foods. This book examines how government policies caused and responded to soaring world prices in the particular case of rice, which is the world’s most important source of calories for the poor. Comparable case studies of policy reactions in different countries (principally across Asia, but also including the USA and Africa) provide the understanding necessary to evaluate the impact of trade policy on the food security of poor farmers and consumers.
    [Show full text]
  • Agricultural and Food
    REGISTERED GEOGRAPHICAL INDICATIONS INDIA- AGRICULTURAL AND FOOD S. Application Geographical Goods (As State No No. Indications per Sec 2 (f) of GIG Act 1999 ) 1 143 Guntur Sannam Chilli Agricultural Andhra Pradesh 2 121 Tirupathi Laddu Food stuff Andhra Pradesh 3 433 Bandar Laddu Food Stuff Andhra Pradesh 4 375 Arunachal Orange Agricultural Arunachal Pradesh 5 115 &118 Assam (Orthodox) Agricultural Assam 6 435 Assam Karbi Anglong Agricultural Assam Ginger 7 438 Tezpur Litchi Agricultural Assam 8 439 Joha Rice of Assam Agricultural Assam 9 558 Boka Chaul Agricultural Assam 10 609 Kaji Nemu Agricultural Assam 11 572 Chokuwa Rice of Assam Agricultural Assam 12 551 Bhagalpuri Zardalu Agricultural Bihar 13 553 Katarni Rice Agricultural Bihar 14 554 Magahi Paan Agricultural Bihar 15 552 Shahi Litchi of Bihar Agricultural Bihar 16 584 Silao Khaja Food Stuff Bihar 17 611 Jeeraphool Agricultural Chhattisgarh 18 618 Khola Chilli Agricultural Goa 19 185 Gir Kesar Mango Agricultural Gujarat 20 192 Bhalia Wheat Agricultural Gujarat 21 25 Kangra Tea Agricultural Himachal Pradesh 22 432 Himachali Kala Zeera Agricultural Himachal Pradesh 23 85 Monsooned Malabar Agricultural India Arabica Coffee (Karnataka & Kerala) 24 49 & 56 Malabar Pepper Agricultural India (Kerala, Karnataka & Tamilnadu) 25 385 Nagpur Orange Agricultural India (Maharashtra & Madhya Pradesh) 26 145 Basmati Agricultural India (Punjab / Haryana / Himachal Pradesh / Delhi / Uttarkhand / Uttar Pradesh / Jammu & Kashmir) 27 241 Banaganapalle Mangoes Agricultural India (Telangana & Andhra
    [Show full text]
  • 1. Advanced Rice Varieties for Africa (ARICA)
    19 Intellectual assets generated by AfricaRice under TAAT 1. Advanced Rice Varieties for Africa (ARICA) is a new generation of improved high-yielding rice varieties that poses genetic material which consistently out-yields other rice varieties available to farmers. ARICAs have been widely tested by the Africa-wide Rice Breeding Task Force in multi-location participatory varietal selection (PVS) across Africa, with the active participation of farmers. ARICAs came from lines developed by AfricaRice, CIAT, IRRI, and national agricultural research systems (NARS). A total of 18 ARICA varieties have been nominated as of April 2016: 5 ARICAs in 2013, 7 in 2014, and 6 in 2016. Where piloted ARICA was tested and or piloted in 30 African countries by the Africa-wide Rice Breeding Task Force using PVS. The current 18 ARICA varieties are available in Benin, Burkina Faso, Côte d’Ivoire, Ethiopia, Gambia, Ghana, Guinea Bissau, Mali, Nigeria and Uganda. Number of farmers that technology was piloted with Over 3000 farmers were involved in PVS for the 18 ARICA varieties. Success factors For a variety to be widely adopted by users, one of the most critical factors is that the variety should out-perform existing ones. The process of ARICA nomination through the Africa-wide 1 Rice Breeding Task Force ensures credibility for the descriptions of a new variety. The 18 ARICAs have been nominated based on particular advantages - iron toxicity tolerant; cold tolerant; salt tolerant; and good grain quality (high milling recovery, low chalky, short cooking time). ARICA 1, ARICA 2 and ARICA 3 respectively showed 20–44%, 50–111%, and 2–69% higher yield than NERICA-L 19 which is in wide use.
    [Show full text]
  • Rice Scientific Classification Kingdom: Plantae Division: Magnoliophyta
    Rice From Wikipedia, the free encyclopedia Rice Oryza sativa Scientific classification Kingdom: Plantae Division: Magnoliophyta Class: Liliopsida Order: Poales Family: Poaceae Genus: Oryza Species • Oryza glaberrima • Oryza sativa Rice refers to two species ( Oryza sativa and Oryza glaberrima ) of grass , native to tropical and subtropical southern & southeastern Asia and to Africa , which together provide more than one fifth of the calories consumed by humans [1]. (The term "wild rice" can refer to wild species of Oryza, but conventionally refers to species of the related genus Zizania , both wild and domesticated.) Rice is an annual plant , growing to 1–1.8 m tall, occasionally more, with long slender leaves 50–100 cm long and 2–2.5 cm broad. The small wind-pollinated flowers are produced in a branched arching to pendulous inflorescence 30–50 cm long. The seed is a grain (caryopsis) 5–12 mm long and 2–3 mm thick. Contents • 1 Cultivation • 2 Preparation as food o 2.1 Cooking • 3 History o 3.1 Etymology o 3.2 History of cultivation • 4 World production and trade • 5 Rice Pests • 6 Cultivars Cultivation The planting of rice is often a labour intensive process Rice is a dietary staple for a large part of the world's human population , making it the most consumed cereal grain . Rice is the world's third largest crop, behind maize ("corn") and wheat . Rice cultivation is well suited to countries and regions with low labour costs and high rainfall , as it is very labour-intensive to cultivate and requires plenty of water for irrigation , much like the licorice crops found in Eastern Europe.
    [Show full text]
  • Technology and the Africa Rice Center
    Daniels Fund Ethics Initiative University of New Mexico http://danielsethics.mgt.unm.edu Debate Technology and the Africa Rice Center ISSUE: Should genetic modification be used to further economic development? In Africa, the rice industry is represented by the Africa Rice Center, formerly known as West Africa Rice Development Association (WARDA). The mission of the center is to contribute to poverty alleviation and food security in Africa, through research, development, and partnership activities aimed at increasing the productivity and profitability of the rice sector in ways that ensure the sustainability of the farming environment. The association started in 1970 and today boasts twenty-two African nations as members and partners with many international organizations, including the United Nations, European Commission, and the World Health Organizations. In carrying out its mission, the center recognizes three key barriers, including (1) low productivity and sustainability of rice, (2) poor quality of the marketed product, and (3) unfavorable market and policy environment. To overcome these issues, the center established a strategic plan, including the use of research and development protocols to bridge genetic diversity and produce new variations of rice and disease-resistant crops. The center's current technologies allowed for the introduction of NERICA (New Rice for Africa) rice varieties. NERICA was created by crossing O. glaberrima and O. sativa, two species of rice that demonstrate different strengths and weaknesses when grown in Africa. Rice farmers had long hoped to combine the best traits of the two species, but efforts had been fruitless. In the early 1990s, WARDA breeders turned to biotechnology in an attempt to overcome the infertility problem.
    [Show full text]
  • On Income and Poverty Among Rice Farming Households in Nigeria: a Local Average Treatment Effect (LATE) Approach
    Quarterly Journal of International Agriculture 50 (2011), No. 3: 267-291 Impact of Improved Rice Technology (NERICA varieties) on Income and Poverty among Rice Farming Households in Nigeria: A Local Average Treatment Effect (LATE) Approach Paul Martin Dontsop Nguezet University of Ibadan and International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria Aliou Diagne Africa Rice Center (AfricaRice) ex WARDA/ADRAO, Cotonou, Benin Victor Olusegun Okoruwa University of Ibadan, Nigeria Vivian Ojehomon National Cereals Research Institute, Bida, Nigeria Abstract This study examines the impact of the adoption of New Rice for Africa varieties (NERICAs) on income and poverty among Nigerian rice farming households. It used instrumental variables estimators to estimate the Local Average Treatment Effect (LATE) of adopting NERICA on income and poverty reduction, using the cross- sectional data of 481 farmers from the upland, lowland and irrigated rice ecologies The findings reveal a robust, positive and significant impact of NERICA variety adoption on farm household income and welfare measured by per capita expenditure and poverty reduction. The empirical results suggest that adoption of NERICA varieties helped raise household per capita expenditure and income by averages of 49.1% and 46.0%, respectively, thereby reducing the probability of adoptive households falling below the poverty line. The study suggests that increased investment in NERICA dissemination, with complementary measures, is a reasonable policy instrument to raise incomes and reduce poverty among rice farming households. Keywords: impact, NERICA varieties, income, poverty, local average treatment effect, Nigeria JEL: C13, O33, Q12, Q16 Quarterly Journal of International Agriculture 50 (2011), No. 3; DLG-Verlag Frankfurt/M.
    [Show full text]
  • Aromatic & Medicinal Rice Varieties of Kerala.Indd
    “palliyals”(single crop terrace lands ) during Rabi. pests.Sixteen species of birds have been reported from these Njavara -(Navara)-70-75 Days, Plants tall, lanky lodging paddy fi elds.The diversity of fi sh is also reported to be high in Aromatic and medicinal Panicles are short to medium in legth. Suitable for Khariff crop kundu vayals. rice varieties of Kerala in uplands and summer crop inn wetlands. Yellow and black glumed types occur. The yellow type has golden yellow lemma GANDHAKASALA ad palea white it is black in the other. Seed coats are brown in Kerala was once rich with traditional rice varieties that grow in color,endosperm non waxy and grains non-scented. Gandhakasala Rice is a long duration variety with tall plants and various agro- climatic conditions of the state. More than 2000 Chennellu -120-125 Days,Yellow and red glumed types occur. has a low grain yield of 2.0-2.7 tonnes per hectare.It is mainly traditional rice varieties including scented ad medicinal varieties The yellow type has golden yellowg grains with purple apiculus cultivated organically.Gandhakasala Rice cultivar is 150 to155cm contribute much variation to India’s bowl of rice diversity. But while the red type has bright red grains.Seed coats are brown with lesser no.of tillers (average 6 to 8 tillers) and very long many of these varieties are not cultivated any more owing to the in color,endosperm non waxy and grains non-scented.Red type panicles(27-28.4cm) with 105 to110 small, short bold ,awnless drastic reduction of paddy cultivation in the state.
    [Show full text]
  • Report of Rapid Impact Assessment of Flood/ Landslides on Biodiversity Focus on Community Perspectives of the Affect on Biodiversity and Ecosystems
    IMPACT OF FLOOD/ LANDSLIDES ON BIODIVERSITY COMMUNITY PERSPECTIVES AUGUST 2018 KERALA state BIODIVERSITY board 1 IMPACT OF FLOOD/LANDSLIDES ON BIODIVERSITY - COMMUnity Perspectives August 2018 Editor in Chief Dr S.C. Joshi IFS (Retd) Chairman, Kerala State Biodiversity Board, Thiruvananthapuram Editorial team Dr. V. Balakrishnan Member Secretary, Kerala State Biodiversity Board Dr. Preetha N. Mrs. Mithrambika N. B. Dr. Baiju Lal B. Dr .Pradeep S. Dr . Suresh T. Mrs. Sunitha Menon Typography : Mrs. Ajmi U.R. Design: Shinelal Published by Kerala State Biodiversity Board, Thiruvananthapuram 2 FOREWORD Kerala is the only state in India where Biodiversity Management Committees (BMC) has been constituted in all Panchayats, Municipalities and Corporation way back in 2012. The BMCs of Kerala has also been declared as Environmental watch groups by the Government of Kerala vide GO No 04/13/Envt dated 13.05.2013. In Kerala after the devastating natural disasters of August 2018 Post Disaster Needs Assessment ( PDNA) has been conducted officially by international organizations. The present report of Rapid Impact Assessment of flood/ landslides on Biodiversity focus on community perspectives of the affect on Biodiversity and Ecosystems. It is for the first time in India that such an assessment of impact of natural disasters on Biodiversity was conducted at LSG level and it is a collaborative effort of BMC and Kerala State Biodiversity Board (KSBB). More importantly each of the 187 BMCs who were involved had also outlined the major causes for such an impact as perceived by them and suggested strategies for biodiversity conservation at local level. Being a study conducted by local community all efforts has been made to incorporate practical approaches for prioritizing areas for biodiversity conservation which can be implemented at local level.
    [Show full text]
  • Kuttanad Report.Pdf
    Measures to Mitigate Agrarian Distress in Alappuzha and Kuttanad Wetland Ecosystem A Study Report by M. S. SWAMINATHAN RESEARCH FOUNDATION 2007 M. S. SWAMINATHAN RESEARCH FOUNDATION FOREWORD Every calamity presents opportunities for progress provided we learn appropriate lessons from the calamity and apply effective remedies to prevent its recurrence. The Alappuzha district along with Kuttanad region has been chosen by the Ministry of Agriculture, Government of India for special consideration in view of the prevailing agrarian distress. In spite of its natural wealth, the district has a high proportion of population living in poverty. The M. S. Swaminathan Research Foundation was invited by the Union Ministry of Agriculture to go into the economic and ecological problems of the Alappuzha district as well as the Kuttanad Wetland Ecosystem as a whole. The present report is the result of the study undertaken in response to the request of the Union Ministry of Agriculture. The study team was headed by Dr. S. Bala Ravi, Advisor of MSSRF with Drs. Sudha Nair, Anil Kumar and Ms. Deepa Varma as members. The Team was supported by a panel of eminent technical advisors. Recognising that the process of preparation of such reports is as important as the product, the MSSRF team held wide ranging consultations with all concerned with the economy, ecological security and livelihood security of Kuttanad wetlands. Information on the consultations held and visits made are given in the report. The report contains a malady-remedy analysis of the problems and potential solutions. The greatest challenge in dealing with multidimensional problems in our country is our inability to generate the necessary synergy and convergence among the numerous government, non-government, civil society and other agencies involved in the implementation of the programmes such as those outlined in this report.
    [Show full text]
  • Registration Details of Geographical Indications
    REGISTRATION DETAILS OF GEOGRAPHICAL INDICATIONS Goods S. Application Geographical Indications (As per Sec 2 (f) State No No. of GI Act 1999 ) FROM APRIL 2004 – MARCH 2005 Darjeeling Tea (word & 1 1 & 2 Agricultural West Bengal logo) 2 3 Aranmula Kannadi Handicraft Kerala 3 4 Pochampalli Ikat Handicraft Telangana FROM APRIL 2005 – MARCH 2006 4 5 Salem Fabric Handicraft Tamil Nadu 5 7 Chanderi Sarees Handicraft Madhya Pradesh 6 8 Solapur Chaddar Handicraft Maharashtra 7 9 Solapur Terry Towel Handicraft Maharashtra 8 10 Kotpad Handloom fabric Handicraft Odisha 9 11 Mysore Silk Handicraft Karnataka 10 12 Kota Doria Handicraft Rajasthan 11 13 & 18 Mysore Agarbathi Manufactured Karnataka 12 15 Kancheepuram Silk Handicraft Tamil Nadu 13 16 Bhavani Jamakkalam Handicraft Tamil Nadu 14 19 Kullu Shawl Handicraft Himachal Pradesh 15 20 Bidriware Handicraft Karnataka 16 21 Madurai Sungudi Handicraft Tamil Nadu 17 22 Orissa Ikat Handicraft Odisha 18 23 Channapatna Toys & Dolls Handicraft Karnataka 19 24 Mysore Rosewood Inlay Handicraft Karnataka 20 25 Kangra Tea Agricultural Himachal Pradesh 21 26 Coimbatore Wet Grinder Manufactured Tamil Nadu 22 28 Srikalahasthi Kalamkari Handicraft Andhra Pradesh 23 29 Mysore Sandalwood Oil Manufactured Karnataka 24 30 Mysore Sandal soap Manufactured Karnataka 25 31 Kasuti Embroidery Handicraft Karnataka Mysore Traditional 26 32 Handicraft Karnataka Paintings 27 33 Coorg Orange Agricultural Karnataka 1 FROM APRIL 2006 – MARCH 2007 28 34 Mysore Betel leaf Agricultural Karnataka 29 35 Nanjanagud Banana Agricultural
    [Show full text]