- GEOLOGIAN TUTKIMUSKESKUS
- GEOLOGICAL SURVEY OF FINLAND
- Tutkimusraportti 144
- Report of Investigation 144
Anatoli Chepick, Vladimir Baranov, Maija Kurimo and Jukka Multala
JOINT CALIBRATION OF AIRBORNE GEOPHYSICAL INSTRUMENTS IN TEST AREAS
IN FINLAND AND RUSSIA
North West Regional Geologic Center Petersburg Geophysical Expedition
State Enterprise
Geologian tutkimuskeskus
Espoo 1998
Chepick, A., Baranov, V. , Kurimo, M. & Multala, J. 1998. Joint calibration
of airborne geophysical instruments in test areas in Finland and Russia. Geologian tutkimuskeskus, Tutkimusraportti – Geological Survey of Finland, Report of Investigation 144. 19 pages, 6 figures, 17 tables and one appendix. The North West Regional Geological Center, Petersburg Geophysical Expedition, State Enterprise (PGE)* and the Geological Survey of Finland (GSF) together made calibration measurements with their airborne geophysical systems on test areas in Russia and Finland. The study covers comparison of the calibration of airborne gamma-ray spectrometers and compensation of magnetometers. PGE uses both an MI-8 helicopter and a fixed wing Antonov-2 aircraft for airborne surveys. The RSDN-3 navigation system, based on stationary radio beacons, is also used for flight path recovery. From 1993 onwards a TNL-1000 GPS receiver has been utilized. In airborne geophysical surveys GSF has always used fixed wing aircrafts. Since 1980 the geophysical instruments have been installed in a Canadian Twin Otter turbo prop aircraft. During the survey flights the navigation was based on photo mosaic maps together with a in-house built navigation system based on the doppler counter. From 1992 onwards both the navigation and flight line recovery are based on Aschtec GPS receivers. The gamma-ray measurement system used by PGE is part of the multifunctional airborne geophysical 1990STK unit and consists of 12 NaI crystals, a total volume of 37.7 l, a 128 channel spectrometer and digital and analog recorders. The real-time energy stabilization of the crystals is based on Co-60 source. The integration time of the spectrometer can be 0.25, 0.5, 1.0, 2.0, 20 or 40 seconds. GSF used a McPhar spectrometer operating in 256 channel mode and the energy range 0.2 Me–3.0 MeV was registered once per second with 120 channels. The total volume of the six NaI crystals is 25 l. Although the calibration equations recommended by the IAEA and the equations actually used in Russia differs from each other the corrected results obtained with these two systems on test areas in Russia and in Finland are in good agreement. The pitch, roll and jaw movements of the aircraft cause during flight some additional effects on the airborne magnetic data. Different kinds of compensation systems have been developed in order to eliminate these disturbances. The compensation system which is used by PGE in their STK- magnetometer is based on electromagnetic coils. The proton magnetometers used in the Finnish installation until 1992 were compensated for mainly with asspect to the flight direction during the data processing. From 1993 onwards GSF has been using Cs-magnetometers with real-time software compensation. The usefulness of the compensation can be seen from the data obtained from the test areas in Russia and Finland.
* PGE is incorporated (Autumn 1998) into the North-West Region Geological Centre, 24/1 Odoevsky Street, St. Petersburg 199155, Russia, Phone:+7 812 352 3014, fax:+7 812 352 2417
Key words (GeoRef Thesaurus, AGI): Geophysical surveys, airborne methods, gamma-ray spectra, calibration, magnetometers, instruments, testing, Finland, Russian Federation
Maija Kurimo Geological Survey of Finland, P.O.Box 96, FIN-02151 ESPOO, FINLAND E-mail: [email protected]
Jukka Multala Geological Survey of Finland, P.O.Box 96, FIN-02151 ESPOO, FINLAND E-mail: [email protected]
ISBN 951-690-723-7 ISSN 0781-4240
Chepick, A., Baranov, V., Kurimo, M. & Multala, J. 1998. Joint calibra-
tion of airborne geophysical instruments in test areas in Finland and Russia. Geologian tutkimuskeskus, Tutkimusraportti – Geological Survey of Fin-
land, Report of Investigation 144. 19 sivua, 6 kuvaa, 17 taulukkoa ja liite.
North West Regional Geological Center, Petersburg Geophysical Expedition, State Enterprise (PGE)* ja Geologian tutkimuskeskus (GTK) suorittivat vuosina 1990–1991 aerogeofysikaalisia kalibrointimittauksia venäläisillä ja suomalaisilla mittalaitteilla sekä Suomessa että Venäjällä, Laatokan pohjoispuolella sijaitsevilla testialueilla. Tutkimus keskittyi sekä gammasäteilyn mittauslaitteistojen kalibrointien että magnetometrien kompensointien vertailuun. PGE käyttää lentomittauksiinsa sekä MI-8 helikopteria että Antonov-2 lentokonetta. Navigoinnin apuvälineenä on ollut RSDN-3, kiinteisiin radiolähettimiin perustuva systeemi. Vuodesta 1993 alkaen on paikannuksessa käytetty TNL-1000 GPS vastaanotinta. GTK on käyttänyt lentomittauksissaan aina kiinteäsiipistä lentokonetta. Vuodesta 1980 lähtien mittauslaitteet ovat olleet asennettuina kanadalaiseen Twin Otter potkuriturbiinikoneeseen. Navigointi on perustunut ilmakuvakarttoihin sekä itse kehitettyyn navigointiyksikköön, jonka perustana on doppler-laskin. Vuodesta 1992 alkaen navigointi ja lennon jälkeinen paikantaminen on tapahtunut GPS- vastaanottimien avulla. PGE:n käyttämä gammasäteilyn mittaussysteemi 1990STK koostuu 12 NaI kiteestä, yhteistilavuudeltaan 37,7 litraa, 128 kanavaisesta spektrometristä, digitaalisesta rekisteröintiyksiköstä sekä analogipiirturista, joka on kalibroitu näyttämään suoraan kaliumin, uraanin ja toriumin pitoisuuksia. Kiteiden reaaliaikainen energiastabilointi tapahtuu Co-60 avulla. Spektrometrin summausaikana voidaan käyttää 0,25, 0,5, 1,0, 2,0, 20 tai 40 sekuntia. Aerogammaspektrometrin kalibrointiyhtälöiden käyttöä havainnollistetaan esimerkkien avulla. Vertaamalla Venäjällä ja Suomessa tehtyjä mittauksia huomataan, että tulosten erot ovat pieniä. GTK käyttää 256 kanavaista McPhar spektrometriä, jonka 120 kanavaa
(0,2 MeV–3,0 MeV) rekisteröidään kerran sekunnissa. Mittalaitteen antureina ovat 6 NaI kidettä, yhteistilavuudeltaan 25 litraa. International Atomic Energy Agencyn (IAEA) suositusten mukaiset korjausyhtälöt ja niiden sisältämien kalibrointivakioiden ratkaisemiseksi tarvittavat mittaukset esitellään. Suomessa ja Venäjällä suoritetut mittaukset osoittavat, että kalibroiduilla mittalaitteilla saadaan luotettavia tuloksia. Lentokoneen liikkeet aiheuttavat häiriöitä koneeseen kiinnitettyyn magnetometriin. Näiden häiriöiden eliminoimiseksi on kehitetty erilaisia kompensointimenetelmiä. PGE:n käyttämän STK-magnetometrin kompensointi tapahtuu sähkömagneettisten kelojen avulla. GTK:n vuoteen 1992 asti käyttämät protonimagnetometrien mittausarvot kompensoitiin lähinnä mittauslinjojen lentosuunnan perusteella. Vuonna 1993 käyttöönotettujen Csmagnetometrien mittausarvot kompensoidaan lennon aikana reaaliajassa matemaattisesti. Kompensoinnin tarpeellisuutta havainnollistetaan PGE:n ja GTK:n Venäjällä ja Suomessa suoritettujen mittaustulosten avulla.
* PGE liitettiin (syksyllä 1998) North-West Region Geological Centre,
24/1 Odoevsky Street, St. Petersburg 199155, Russia, Phone:+7 812 352 3014, fax:+7 812 352 2417
Avainsanat (Fingeo-sanasto, GTK): Geofysikaaliset tutkimukset, lentomittaukset, gammasädespektri, kalibrointi, magnetometrit, laitteet, kokeet, Suomi, Venäjä
Maija Kurimo, Geologian tutkimuskeskus, PL 96, 02151 ESPOO Sähköposti: [email protected]
Jukka Multala, Geologian tutkimuskeskus, PL 96, 02151 ESPOO Sähköposti: [email protected]
CONTENTS
Introduction .................................................................................................................................................... 5 Aircraft and navigation systems ..................................................................................................................... 5
Russian systems .......................................................................................................................................... 5 Finnish systems .......................................................................................................................................... 5
Calibration of airborne gamma-ray instruments ............................................................................................. 6
Calibration procedure ................................................................................................................................. 6 Russian instrumentation ............................................................................................................................. 6 Finnish instrumentation .............................................................................................................................. 8 Calibration facilities ................................................................................................................................... 8 Measurements in Russia ............................................................................................................................. 9 Measurements in Finland ......................................................................................................................... 10 Calibration coefficients for Russian installation ...................................................................................... 11 Calibration coefficients for Finnish installation ....................................................................................... 12 Conclusions .............................................................................................................................................. 13
Comparison of compensation of airborne magnetometers ........................................................................... 14
Russian instrumentation ........................................................................................................................... 14 Compensation procedure for the STK station magnetometer................................................................... 14 Finnish instrumentation ............................................................................................................................ 15 Compensation procedure for Finnish magnetometers .............................................................................. 15 Compensation procedure of Finnish Cs magnetometers .......................................................................... 17 Test measurements with the Finnish proton magnetometer ..................................................................... 17 Measurements in Finland with Russian instruments ................................................................................ 18 Conclusions .............................................................................................................................................. 18
Technical advice and recommendations ....................................................................................................... 19 Literature ...................................................................................................................................................... 19 Appendix 1. Review map of calibratin test flights over the test ranges in Finland and West Karelia.
Geologian tutkimuskeskus, Tutkimusraportti — Geological Survey of Finland, Report of Investigation 144, 1998
Joint calibration of airborne geophysical instruments in test areas in Finland and Russia
INTRODUCTION
During 1990–1991 specialists from the Geolog- netic measurement, followed by directions as how ical Survey of Finland (GSF) and Petersburg Geo- to optimize standardization procedures for airborne physical Expedition (PGE) of Sevzapgeologia State instrument output used by PGE and GSF in geoGeological Enterprise, acting within the frame- physical projects.
- work of topic 4.2 "Airborne Geophysics" of Finn-
- This calibration project forms the basis for an-
ish–Russian scientific and technological coopera- other PGE and GSF joint project in which aerogeotion in geology, carried out calibration test flights physical maps will be compiled for the region over the test areas in Finland and West Karelia, for straddling the Finnish Russian border, using and which purpose the airborne geophysical measuring combining aerogeophysical data acquired by both
- units of both parties were employed.
- PGE and GSF.
- The present report outlines the progress made in
- The authors Anatoli Chepick and Vladimir Bara-
implementing the joint program of instrument cal- nov from PGE as well as Maija Kurimo and Jukka ibration and comprises separate considerations of MultalafromGSFwouldliketothankallthosefellow airborne gammaspectrometry and airborne mag- workers who made this project and report possible.
AIRCRAFT AND NAVIGATION SYSTEMS
Russian systems
The gamma-ray spectrometer has been installed path recovery. An Antonov-2 aircraft is also used in a Russian MI-8 helicopter. The nominal cruising for geophysical mapping with a cruising speed of speed is about 160 km/h and maximum flight time about 160 km/h and maximum flight time of 7 4 hours without refueling. Navigation is with the hours. From 1993 onwards a TNL-1000 GPS-reRSDN-3 radionavigation system (indicator Balti- ceiver has been in use. ca). Black and white film camera is used for flight
Finnish systems
The Geological Survey of Finland commenced several modifications were made to its electrical the second phase of its national aerogeophysical systems in order to reduce the electrical noice level.
- mapping project in 1972 using a 200 metres line
- The flight time navigation has been based upon
spacing and a nominal terrain clearence of 30 visual navigation with photomosaic maps and a metres. Since 1980 these measurements have been custom-built left-right indicator based on a Decca done using a twin engine DHC-6/300 Twin Otter doppler unit. For the flight path recovery a modified (OH-KOG) owned by the Karair company. During Panasonic 6200 VHS video recorder has been used. the survey flights the cruising speed is about 50 m/s The system also includes a radar altimeter (Collins), (180 km/h). The Twin Otter was selected for the barometric altimeter, cabin and outside thermomemeasuring platform as the most suitable fixed wing ters, accelerometerandsphericsmonitor. Duringthe aircraft for low level STOL operations. The aircraft survey flight data is recorded on a PC hard disk offers several major advantages in terms of utility which is afterwards copied to a 150 Mb cassette.
- and cost, including excellent performance reserves,
- In 1992 two GPS-receivers were acquired. One
low-speed handling characteristics and operational is installed in the aircraft and the other is located flexibility to operate from unpaved airstrips with- within the survey area. This so called Differential
- out any ground equipment.
- GPS-system (DGPS) provides accuracy of better
During the manufacturing of the Twin Otter than 10 metres on every single measurement.
5
Geologian tutkimuskeskus, Tutkimusraportti — Geological Survey of Finland, Report of Investigation 144, 1998 Anatoli Chepick, Vladimir Baranov, Maija Kurimo and Jukka Multala
CALIBRATION OF AIRBORNE GAMMA-RAY INSTRUMENTS
Calibration procedure
Table 1. Energy ranges of the four windows to be used in
The calibrations of the two systems were essentially carried out according to the International Atomic Energy Agency’s (IAEA) recommendations. The physical background to the calibration procedure is therefore not repeated here in detail as it can be found in (International Atomic Energy Agency 1991). Only the equations for different corrections are given below.
In order to calibrate airborne gamma-ray spectrometer output to ground concentrations of potassium, uranium and thorium it is recommended that the windows shown in Table 1 be used.
The first correction that must be applied to the gamma-ray spectrometer data is the background correction, which takes account of the influence of both atmospheric radiation and any radiation emanating from the aircraft. The background values of the four windows are usually measured during flights over lakes or the sea. Some airborne systems have special upward oriented crystals for monitoring background radiation. The detailed procedure for calibrating upward directed crystals can be found in IAEA 1991. Calibration in this project was done however without upward directed crystals.
airborne gammaray spectrometry measurements according to the IAEA recommendations. (International Atomic Energy Agency 1991, p 13).
Window name Energy range Radio nuclide Major Peak
- MeV
- MeV
Thorium Uranium Potassium
2.41–2.81 1.66–1.86 1.37–1.57
Tl-208 Bi-214 K-40
2.614 1.765 1.46
- Total count
- 0.41–2.81
(Standard Temperature 0oC and Pressure 1013.25 mbar) is determined using Equation 4, in which Ht is the observed radar altitude, T is the measured air
o
temperature in C, P is the barometric pressure in mbar, and H is the effective or equivalent height at STP.
- 273.15
- P
H=Ht ———— * ——–—
T+273.15 1013.25
(4)
- (5)
- Ni = Nc*eµ (H-Ho)
i
Expression 5 is used to correct the background and stripping corrected count rates Nc to the nominal survey altitude Ho. H is the effective (air pressure and temperature corrected) altitude and µi
the linear absorption coefficient of the air for window i. The constants µi are usually determined by
flying at different altitudes over a test area.
After the background correction has been performed the so called stripping correction should be applied to the data. This correction eliminates the influence of Compton scattering and is done according formulae 1–3.
The corrected count rates are finally converted to percentages for potassium, ppm (parts per million) for eU and eTh (equivalent uranium and thorium) using equations 6, 7 and 8. kK, kU and kTh are the three sensitivity coefficients, while K, U, and Th are the fully corrected count rates of potassium, uranium and thorium windows.
Thc = (Thb - a*Ub)/(1-a*a) Uc = (Ub - a*Thb)/(1-a*a) Kc = Kb - ß*Thc - g*Uc
(1) (2) (3)
The a, α, ß and γ are the four stripping coefficients to be determined with four calibration blocks or pads of known concentrations of K, U and Th. Thb, Ub and Kb are the background corrected count rates of the thorium, uranium and potassium windows.
- K% = kK * K
- (6)
(7) (8) eUppm = kU * U
- eThppm = kTh * Th
- The equivalent height of the aircraft at STP
Russian instrumentation
During the flights over the test ranges in Russia ma radiation of rocks and their respective concenand Finland records were taken with the multifunc- trations of radioelements; geomagnetic field intentional airborne geophysical STK unit which can, sity; horizontal component of VLF-station EM specially, measure the following parameters: gam- field; absolute and relative flight altitudes; terrain
6
Geologian tutkimuskeskus, Tutkimusraportti — Geological Survey of Finland, Report of Investigation 144, 1998
Joint calibration of airborne geophysical instruments in test areas in Finland and Russia
topography along a flight line; time at each way- rates (accumulation time 0.25 s) and provides a point of flight route; photograph landmarks and digital/analog output of these results, transmitting
- radionavigation parameters.
- the digital data into the magnetic logger. In addi-
The station control unit provides registration of tion the spectrometer facilitates the introduction of the measuring channels at time intervals of 0.25, various corrections into the measurement results 0.5, 1.0, 2.0, 20 and 40 seconds, and digital data presented in analog form, allows calculation of U,
- transmission into a magnetic logger.
- Th and K concentrations (U and Th in ppm, K in %),
The model 1990 STK unit consists of six gam- and records the measurement results on analog ma-ray detector units with a total volume of 37.7 record. U-Th-K concentrations are calculated in liters. Each unit incorporates: two Na(Tl) scintilla- analog form by using an airborne computing device tion detectors (dimensions of single crystals are that performs addition with specific weighted coef200 x 100 mm), a 128 channel amplitude analyzer ficients of voltages from the output of the differenand a digital system for the automatic stabilization tial channels, and also makes altimetric correcof the energy range scale with reference to Co-60 tions, residual background subtractions and autobeta-gamma coincidence. The detector unit output matic reduction of the measurements to ground comprises the pulses corresponding to 7 energy level. Adjustment of the airborne computing deintervals which represent, respectively, 1 radio- vice is defined by the manufacturer that defines metric channel, 4 differential channels in the range dimensionless calibration coefficients Bji with refof 1.12, 1.76 and 2.62 MeV photopeak values, a erence to the spectrometric performances of the cosmic radiation channel with low threshold at 3 airborne gamma-ray spectrometer (j=Th, U, K; i= MeV, and a channel to provide a stabilizing effect I, Σ, III).
- at the Co-60 photopeak value of 1.33 MeV.
- Measuring ranges for basic parameters of the
Measuring energy ranges for the STK differen- STK airborne gamma-ray spectrometer are listed in tial and radiometric channels are as follows: DK-I table 2. (Th-window) 2.37–2.95 MeV; DK-Σ (two U-win-
The calibration survey flown in 1991 utilized