Community Treatment Centers for Isolation of Asymptomatic And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Current State of In-Cabinet Response Spectra for Seismic Qualification of Equipment in Nuclear Power Plants
Transactions, SMiRT-24 BEXCO, Busan, Korea - August 20-25, 2017 Division V CURRENT STATE OF IN-CABINET RESPONSE SPECTRA FOR SEISMIC QUALIFICATION OF EQUIPMENT IN NUCLEAR POWER PLANTS Abhinav Gupta1, Sung-Gook Cho2, Kee-Jeung Hong3, Minsoo Han4 1 Professor, Dept. of Civil, Construction and Environmental Engineering, NC State University, USA 2 Director, R&D Center, Innose Tech Co. Ltd., Korea 3 Professor, School of Civil and Environmental Engineering, Kookmin University, Korea 4 Researcher, R&D Center, Innose Tech Co. Ltd., Korea INTRODUCTION South Korea experienced its biggest earthquake in recent history on September 12, 2016. The Gyeongju earthquake of magnitude (Mw) 5.4 has initiated a significant activity in the area of seismic safety for nuclear power plants. Initial reports indicate that the nature of this earthquake is similar to the recent findings from geophysical investigations in Central and Eastern United States (CEUS), i.e., the earthquake ground motions contain not only the low frequency content but also some high frequency content. As is the case with most of the nuclear plants in CEUS, the safe shutdown earthquake (SSE) for most of the Korean plants have only low frequency content (below 10 Hz). Therefore, the nuclear plants in Korea are beginning to conduct a detailed seismic safety assessment of their structures, systems, and components (SSC). In the context of seismic safety assessment, high frequency motions are not likely to cause damage to structural systems as the displacements associated with such motions are relatively very small. Yet, past experience around the world has shown that electrical instruments such as relays, breakers, and contact switches can exhibit loss of functionality due to high frequency motions. -
Investigation of Changes in Indoor Radon Concentrations Before and After Seismic Activities in Gyeongju and Pohang, Korea
International Journal of GEOMATE, April 2019, Vol.16, Issue 56, pp. 98 - 103 ISSN: 2186-2982 (P), 2186-2990 (O), Japan, DOI: https://doi.org/10.21660/2019.56.4635 Special Issue on Science, Engineering & Environment INVESTIGATION OF CHANGES IN INDOOR RADON CONCENTRATIONS BEFORE AND AFTER SEISMIC ACTIVITIES IN GYEONGJU AND POHANG, KOREA Hanyoung Joo1, Jae Wook Kim1, and Joo Hyun Moon1 1Department of Nuclear Energy System Engineering, Dongguk University, Gyeongju; Republic of Korea *Corresponding Author, Received: 27 Nov. 2018, Revised: 11 Dec. 2018, Accepted: 29 Dec. 2018 ABSTRACT: This paper made a continuous measurement of the indoor radon concentrations at a university building in Gyeongju, Rep. of Korea, to check if there is any notable pattern between the indoor radon concentrations and seismic activities. On September 12, 2016, earthquakes with a magnitude of 5.1 and 5.8 consecutively occurred in Gyeongju. 14 months later, an earthquake with a magnitude of 5.5 occurred in Pohang, about 30 km away from Gyeongju, on November 15, 2017. This study investigated the change in the indoor radon concentrations before and after earthquakes to identify if there is any pattern between them and found an interesting pattern. Prior to earthquakes, radon anomalies, which are radon concentration deviating by more than ±2σ from the seasonal average, was usually identified. When 5.0 or greater magnitude earthquakes occurred, the indoor radon concentrations decreased sharply a few days before them, and then continuously increased until the occurrence of the earthquake. Keywords: Earthquake, Gyeongju, Pohang, Indoor radon concentration, Radon abnormally 1. INTRODUCTION earthquake occurrence by detecting radon radioactivity change [9]. -