Growing Bamboo for Commercial Purposes in the Southeastern US
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carbon Sequestration Potential of Oil Palm Plantations in Southern Philippines
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041822; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Carbon Sequestration Potential of Oil Palm Plantations in Southern Philippines ∗ Sheila Mae C. Borbon, Michael Arieh P. Medina , Jose Hermis P. Patricio, and Angela Grace Toledo-Bruno Department of Environmental Science, College of Forestry and Environmental Science Central Mindanao University, University Town, Musuan, Bukidnon, Philippines Abstract. Aside from the greenhouse gas reduction ability of palm oil-based biofuel as alternative to fossil fuels, another essential greenhouse gas mitigation ability of oil palm plantation is in terms of offsetting anthropogenic carbon emissions through carbon sequestration. In this context, this study was done to determine the carbon sequestration potential of oil palm plantations specifically in two areas in Mindanao, Philippines. Allometric equation was used in calculating the biomass of oil palm trunk. Furthermore, destructive methods were used to determine the biomass in other oil palm parts (fronds, leaves, and fruits). Carbon stocks from the other carbon pools in the oil palm plantations were measured which includes understory, litterfall, and soil. Results revealed that the average carbon stock in the oil palm plantations is 40.33 tC/ha. Majority of the carbon stock is found in the oil palm plant (53%), followed by soil (38%), litterfall (6%), and understory, (4%). The average carbon sequestration rate of oil palm plants is estimated to be 4.55 tC/ha/year. -
Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L
United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Research Station Ecosystems General Technical Report RMRS-GTR-42- volume 6 Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L. 2008. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 355 p. Abstract—This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradi- cation or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between wildland fire and nonnative invasive plants, identify the nonnative invasive species currently of greatest concern in major bioregions of the United States, and describe emerging fire-invasive issues in each bioregion and throughout the nation. This volume can help increase understanding of plant invasions and fire and can be used in fire management and ecosystem-based management planning. The volume’s first part summarizes fundamental concepts regarding fire effects on invasions by nonnative plants, effects of plant invasions on fuels and fire regimes, and use of fire to control plant invasions. The second part identifies the nonnative invasive species of greatest concern and synthesizes information on the three topics covered in part one for nonnative inva- sives in seven major bioregions of the United States: Northeast, Southeast, Central, Interior West, Southwest Coastal, Northwest Coastal (including Alaska), and Hawaiian Islands. -
Solid Bamboo Installation Instructions
Installation Instructions Pre-Finished Solid Bamboo Portfolio Naturals | Synergy MPL | Signature Naturals | Craftsman II | Wright Bamboo Industry Designation of Solid 4. Bamboo flooring installation should be one of the last items completed on the construction project. Limit Bamboo: foot traffic on the finished bamboo floor. The customary construction of solid bamboo traditionally describes Grading Standards 1. Flat - Three layers of bamboo strips laminated edge General Rules: to edge on top of one another. In solid flat grain, Bamboo flooring shall be tongue and grooved and end the grain of the bamboo layers all run in the same matched, unless otherwise indicated, as Välinge Self direction. Locking. Flooring shall not be considered of standard grade unless properly dried. The drying standard for 2. Vertical - Multiple layers of bamboo strips laminated Teragren Bamboo solid bamboo product shall be 7 to top to bottom and laid on their sides. Exposing the 9% moisture content by volume with a plus or minus narrow edge of the bamboo strip to the surface of the factor of 2% for storage conditions in various climate plank. zones. 3. Strand Woven Bamboo - Multiple layers woven Grading Rules: together, and all running in same direction from top to Teragren Bamboo floors are not graded in the same bottom of plank, therefore the behavior of this type of way as hardwood flooring. Bamboo has many construction most closely resembles the properties of similarities to wood but different grading standards are solid hardwood – thus the designation. applied. The main stem of a bamboo is called a culm. The Attention culm is the support structure for the branches and leaves, and contains the main vascular system for the Before starting installation, read all instructions transport of water, nutrients and food. -
Physical, Chemical, and Mechanical Properties
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2004 Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing Xiaobo Li Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation Li, Xiaobo, "Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing" (2004). LSU Master's Theses. 866. https://digitalcommons.lsu.edu/gradschool_theses/866 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. PHYSICAL, CHEMICAL, AND MECHANICAL PROPERTIES OF BAMBOO AND ITS UTILIZATION POTENTIAL FOR FIBERBOARD MANUFACTURING A Thesis Submitted to the Graduate Faulty of the Louisiana State University and Agriculture and Mechanical College In Partial Fulfillment of the Requirements for the Degree of Master of Science In The School of Renewable Natural Resources By Xiaobo Li B.S. Beijing Forestry University, 1999 M.S. Chinese Academy of Forestry, 2002 May, 2004 Acknowledgements The author would like to express his deep appreciation to Dr. Todd F. Shupe for his guidance and assistance throughout the course of this study. He will always be grateful to Dr. Shupe’s scientific advice, detailed assistance, and kind encouragement. The author would always like to express his sincere gratitude to Dr. Chung Y. -
Gum Naval Stores: Turpentine and Rosin from Pine Resin
- z NON-WOOD FORESTFOREST PRODUCTSPRODUCTS ~-> 2 Gum naval stores:stores: turpentine and rosinrosin from pinepine resinresin Food and Agriculture Organization of the Unaed Nations N\O\ON- -WOODWOOD FOREST FOREST PRODUCTSPRODUCTS 22 Gum navalnaval stores:stores: turpentine• and rosinrosin from pinepine resinresin J.J.W.J.J.W. Coppen andand G.A.G.A. HoneHone Mi(Mf' NANATURALTURAL RESRESOURCESOURCES INSTITUTEIN STITUTE FFOODOOD ANDAN D AGRICULTUREAGRIC ULTURE ORGANIZATIONORGANIZATION OFOF THETH E UNITEDUNITED NATIONSNATIONS Rome,Rome, 19951995 The designationsdesignations employedemployed andand thethe presentationpresentation of of materialmaterial inin thisthis publication do not imply the expression of any opinionopinion whatsoever onon thethe partpart ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concernconcerninging thethe legal status of any countrycountry,, territory, city or areaareaorofits or of its auauthorities,thorities, orconcerningor concerning the delimitationdelirnitation of itsits frontiers or boundaries.boundaries. M-37M-37 IISBNSBN 92-5-103684-5 AAllll rights reserved.reserved. No part of this publication may be reproduced, stored in a retrretrievalieval systemsystem,, oror transmitted inin any form or byby anyany means,means, electronic,electronic, mechanimechanicai,cal, photocphotocopyingopying oror otherwise, withoutwithout thethe prior permission ofof the copyright owner. AppApplicationslications forfor such permission,permission, with a statementstatement -
Creating a Forest Garden Working with Nature to Grow Edible Crops
Creating a Forest Garden Working with Nature to Grow Edible Crops Martin Crawford Contents Foreword by Rob Hopkins 15. Ground cover and herbaceous perennial species Introduction 16. Designing the ground cover / perennial layer 17. Annuals, biennials and climbers Part 1: How forest gardens work 18. Designing with annuals, biennials and climbers 1. Forest gardens Part 3: Extra design elements and maintenance 2. Forest garden features and products 3. The effects of climate change 19. Clearings 4. Natives and exotics 20. Paths 5. Emulating forest conditions 21. Fungi in forest gardens 6. Fertility in forest gardens 22. Harvesting and preserving 23. Maintenance Part 2: Designing your forest garden 24. Ongoing tasks 7. Ground preparation and planting Glossary 8. Growing your own plants 9. First design steps Appendix 1: Propagation tables 10. Designing wind protection Appendix 2: Species for windbreak hedges 11. Canopy species Appendix 3: Plants to attract beneficial insects and bees 12. Designing the canopy layer Appendix 4: Edible crops calendar 13. Shrub species 14. Designing the shrub layer Resources: Useful organisations, suppliers & publications Foreword In 1992, in the middle of my Permaculture Design Course, about 12 of us hopped on a bus for a day trip to Robert Hart’s forest garden, at Wenlock Edge in Shropshire. A forest garden tour with Robert Hart was like a tour of Willy Wonka’s chocolate factory with Mr Wonka himself. “Look at this!”, “Try one of these!”. There was something extraordinary about this garden. As you walked around it, an awareness dawned that what surrounded you was more than just a garden – it was like the garden that Alice in Alice in Wonderland can only see through the door she is too small to get through: a tangible taste of something altogether new and wonderful yet also instinctively familiar. -
Effects of Different Bamboo Forest Spaces on Psychophysiological
Article Effects of Different Bamboo Forest Spaces on Psychophysiological Stress and Spatial Scale Evaluation Wei Lin, Qibing Chen *, Xiaoxia Zhang, Jinying Tao, Zongfang Liu, Bingyang Lyu , Nian Li, Di Li and Chengcheng Zeng College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (W.L.); [email protected] (X.Z.); [email protected] (J.T.); [email protected] (Z.L.); [email protected] (B.L.); [email protected] (N.L.); [email protected] (D.L.); [email protected] (C.Z.) * Correspondence: [email protected]; Tel.: +86-0288-265-2175 Received: 10 May 2020; Accepted: 28 May 2020; Published: 1 June 2020 Abstract: Forests are large-scale green space resources that may exert a positive impact on human physiology and psychology. Forests can be divided into mixed forest and pure forest, according to the number of dominant tree species. Pure forest offers specific advantages for the study of spatial structure and scale. In this study, a type of pure forest (i.e., bamboo forest) was adopted as a research object to investigate differences in the physiological and psychological responses of psychologically pressured college students to different types of forest space. We recruited 60 participants and randomly assigned them to three experimental groups: forest interior space (FIS), forest external space (FES) and forest path space (FPS). All participants were asked to perform the same pre-test task but different post-test tasks. The pre-test involved performing a pressure-inducing task, whereas the post-test involved viewing photographs of each space type. The same indicators were measured in both the pre- and post-test, including a β/α index from each lobe, positive emotion, negative emotion and total mood disturbance (TMD) values, according to the profile of mood states (POMS), in addition to spatial scale preferences obtained through a questionnaire and interviews. -
5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No
$5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 30 Spring 2010 This is the thirtieth year that the American Bamboo Society Several existing cultivar names are not fully in accord with (ABS) has compiled a Source List of bamboo plants and requirements for naming cultivars. In the interests of products. The List includes more than 450 kinds (species, nomenclature stability, conflicts such as these are overlooked subspecies, varieties, and cultivars) of bamboo available in to allow continued use of familiar names rather than the the US and Canada, and many bamboo-related products. creation of new ones. The Source List editors reserve the right to continue recognizing widely used names that may The ABS produces the Source List as a public service. It is not be fully in accord with the International Code of published on the ABS website: www.AmericanBamboo.org. Nomenclature for Cultivated Plants (ICNCP) and to Paper copies are sent to all ABS members and can also be recognize identical cultivar names in different species of the ordered from ABS for $5.00 postpaid. Some ABS chapters same genus as long as the species is stated. and listed vendors also sell the Source List. Please see page 3 for ordering information and pages 54 and following for Many new bamboo cultivars still require naming, more information about the American Bamboo Society, its description, and formal publication. Growers with new chapters, and membership application. cultivars should consider publishing articles in the ABS magazine, “Bamboo.” Among other requirements, keep in The vendor sources for plants, products, and services are mind that new cultivars must satisfy three criteria: compiled annually from information supplied by the distinctiveness, uniformity, and stability. -
Bamboo Cheryl Kaiser1 and Matt Ernst2 Introduction Bamboo Is the General Name Used for a Number of Perennial, Woody-Stemmed Grasses
Center for Crop Diversification Crop Profile CCD-CP-77 Bamboo Cheryl Kaiser1 and Matt Ernst2 Introduction Bamboo is the general name used for a number of perennial, woody-stemmed grasses. Native cane (Arundinaria gigantea), which is commonly referred to as river cane, grows naturally in Kentucky and throughout much of the Southeast. It is one of three bamboo species native to North America. There are more than a hundred introduced species that can be grown in the U.S., with growth habits ranging from low-growing groundcovers to full-sized trees that reach a height of over 30 feet at maturity. Bamboos are well known for their vigorous growth and variety of uses. They are a popular landscape plant because they grow rapidly, are evergreens, and marketing this crop before considering production. create a tropical or exotic atmosphere. They are often Markets for new and niche crops, such as bamboo, can marketed as alternative, fast-growing privacy screens. easily become oversaturated with local supply. While bamboo has become the focus of increased attention Edible young bamboo shoots are used in cooking, as a potential alternative crop, there are a number while mature canes (or culms) are harvested for of serious limitations to commercial production. A timber uses that include fences, stakes, fishing poles, major concern is its reputation for being invasive and crafts, flooring, and furniture. Bamboos are promoted difficult to eliminate. Introduced bamboo species have for environmental benefits because they are capable escaped from some reported Kentucky plantings and of removing high levels of carbon dioxide from the spread into nearby woods and fields. -
Field Identification of the 50 Most Common Plant Families in Temperate Regions
Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae -
Plant List 2020.Xlsx
Clumping Plant List SPECIES Container Price Bambusa beecheyana var. pubescens 15, 25-gallon $75, 125 Bambusa chungii 15, 25-gallon $75, 125 Bambusa chungii var. barbelatta 15, 25-gallon $75, 125 Bambusa dissimilis 15, 25-gallon $75, 125 Bambusa dolichoclada 'Blue' 15, 25-gallon $75, 125 Bambusa eutuldoides 15, 25-gallon $75, 125 Bambusa eutuldoides 'Viridivittata' 15, 25-gallon $75, 125 Bambusa lako 15-gallon $85 Bambusa malingensis 'Sea Breeze' 15, 25-gallon $75, 125 Bambusa multiplex 'Hedge' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Alphonse Karr' 7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Chinese Goddess' 3,7,15,25, 50,100 $15, 25, 50, 100, 175 Bambusa multiplex 'Fernleaf' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Giant Culm' 7-gallon $40 Bambusa multiplex 'Golden Godddess' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex 'Goldstripe' call for availability Bambusa multiplex 'Laos' 7,15,25-gallon $30, $60, 120 Bambusa multiplex 'Midori Green' 15-gallon $75 Bambusa multiplex 'Rosa' call for availability Bambusa multiplex 'Silverstripe' 3,7,15,25-gallon $15, 25, 50, 100 Bambusa multiplex Silverstripe 'Luckystripe' 15, 25-gallon $80, 120 Bambusa multiplex 'Stripestem Fernleaf' call for availability Bambusa multiplex 'Superhedge' call for availability Bambusa multiplex 'Tiny Fern' 3-gallon $15 Bambusa multiplex 'Willowy' call for availability Bambusa oldhamii 15, 25-gallon $75, 125 Bambusa oldhamii 'Hirose' 15, 25-gallon $75, 125 Bambusa pervariabilis 15, 25-gallon $75, 125 Bambusa pervariabilis 'Viridistriatus' -
Internode Morphometrics and Allometry of Tonkin Cane Pseudosasa Amabilis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Received: 1 July 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3483 ORIGINAL RESEARCH Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis Liang Cheng1 | Cang Hui2 | Gadi V. P. Reddy3 | Yu-Long Ding1 | Pei-Jian Shi1 1Department of New Energy Science and Technology, Bamboo Research Institute, Abstract Nanjing Forestry University, Nanjing, Jiangsu, Pseudosasa amabilis (McClure) (Poales: Gramineae) is a typical bamboo species natu- China rally distributed in large area of south China and famous for its culm strength. Although 2Centre for Invasion Biology, Department of Mathematical Sciences, African Institute bamboos were found to share the same development rule, the detailed internode mor- for Mathematical Sciences, Stellenbosch phology of bamboo culm was actually not fully expressed. We explored internode University, Matieland, South Africa morphology of P. amabilis using 11 different physical parameters in different dimen- 3Western Triangle Agricultural Research Centre, Montana State University, Conrad, sions (1–4). As Taylor’s power law (TPL) is generally applicable to describe relationship MT, USA between mean and variance of population density, here we used TPL to evaluate the Correspondence differences between internodes, and further, the relationship between dimension and Pei-Jian Shi, Department of New Energy TPL. Results showed that length (L), hollow radius (HR), hollow area (HA), hollow Science and Technology, Bamboo Research Institute, Nanjing Forestry University, Nanjing, cylinder volume (HCV), total cylinder volume (TCV), density (De), and weight (W) Jiangsu, China. all presented positive skewed distribution in varying degrees.