The Delaware Wetland Plant Field Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aquatic Plants for Aquarium
TISSUE CULTURE PLANTS FOR AQUALIFE NATURE IN AQURIUM LIVE PLANTS AQURIUM PLANTS LIST OF TISSUE CULTURE Sristi Biotech PLANTS AQUATIC PLANTS QUALITY TISSUE CULTURE PLANTS 1. Alternanthera reineckii ‘Mini’ SB101 2. Alternanthera sessilis SB102 3. Cryptocoryne wendtii Green SB103 4. Cryptocoryne parva SB104 5. Cryptocoryne flamingo SB105 6. Cryptocoryne axelrodi SB106 QUATITY TISSUE CULTURE PLANTS 7. Cryptocoryne mioya SB107 8. Cryptocoryne tropica SB108 9. Cryptocoryne lucens SB109 Tissue Culture Aquatic Plants 10. Rotala rotuendifolia ‘HRA’ SB110 Sristi Biotech has tissue culture facility for last 15 11. Rotala indica ‘red’ SB111 years. Sristi Biotech Exports plants to different 12. Rotala Nanjenshan SB112 countries in Europe and Africa. On demand of various 13. Anubias nana SB113 14. Micranthemun umbrosum clients Sristi Biotech started research in Aquatic ‘Monte carlo’ SB114 Plants and after research, trial and innovation started 15. Staurogyne repens SB115 distribution of tissue culture aquatic plants in 16. Glossostigma elatinoides SB116 domestic and International Market. 17. Peacock moss SB117 18. Eleocharis acicularis ‘Mini’ SB118 19. Hdrocotyle verticillata SB119 Contact : +919163920605 20. Bacopa caroliniana SB120 Email: 21. Bucephelendra phantom SB121 Website: 22. Bucephelendra ‘wavy Green’ SB122 WhatsApp:9163920605 23. Eleocharis parvula SB123 24. Proserpinaca palustris SB124 25. Utricularia graminifolia’ UG’ SB125 26. Hygrophila ‘Araguaia’ SB126 Sristi Biotech AQUATIC PLANTS Alternanthera reineckii 'Mini' is very hardy Hygrophila ‘araguaia’ Araguaia” is a river system plant and it is particularly suitable for small in Brazil and it is under this name that the plant aquariums or as a foreground plant in larger has become known. There are many signs,it is aquascapes. plant is a Hygrophila plant SB101 RS:250/- SB126 RS:250 Alternanthera sessilis Utricularia graminifolia’ UG’ Alternanthera sessilis is an aquatic plant known Utricularia graminifolia from Asia belongs to the by several common names, it can very fast bladderwort family. -
Bolboschoenus Glaucus (Lam.) S.G. Smith, a New Species in the Flora of the Ancient Near East
Veget Hist Archaeobot DOI 10.1007/s00334-011-0305-3 ORIGINAL ARTICLE Bolboschoenus glaucus (Lam.) S.G. Smith, a new species in the flora of the ancient Near East Miche`le M. Wollstonecroft • Zdenka Hroudova´ • Gordon C. Hillman • Dorian Q. Fuller Received: 5 October 2010 / Accepted: 23 May 2011 Ó Springer-Verlag 2011 Abstract Taxonomic advancement in the genus Bolbo- Bolboschoenus in present-day Turkey, indicating that it has schoenus (Cyperaceae, formerly included in the genus a long history of occurrence in this region. The environ- Scirpus) have resulted in the re-classification of the plant mental, ecological and economic implications of this new previously known as Bolboschoenus maritimus (synonym information suggest that it is entirely feasible that this plant Scirpus maritimus) into several closely-related but distinct provided late Pleistocene and Holocene Near Eastern Bolboschoenus species This improved taxonomy is of people with a dependable and possibly a staple food source. importance for archaeobotanical investigations of ancient sites within the temperate zones, where this genus fre- Keywords Bolboschoenus glaucus Á Epipalaeolithic Á quently occurs, because it allows more precise definitions Near East Á Neolithic Á Taxonomy Á Nutlet characteristics of the ecological requirements and growing habits of each species. Moreover, it details the distinct morphological and anatomical characteristics of the fruit (nutlets) of each Introduction species. Using these new nutlet classification criteria, we re-examined charred archaeological specimens which had Bolboschoenus maritimus (sea club-rush) is a semi-aquatic previously been identified as B. maritimus (or S. mariti- species of the Cyperaceae that produces edible nutlets, mus), from five Near Eastern late Pleistocene and early tubers and shoots (Fig. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and Trnl–F Data Kioumars Ghamkhar University of New England, Armidale, New South Wales, Australia
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 12 2007 Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and trnL–F Data Kioumars Ghamkhar University of New England, Armidale, New South Wales, Australia Adam D. Marchant Royal Botanic Gardens, Sydney, New South Wales, Australia Karen L. Wilson Royal Botanic Gardens, Sydney, New South Wales, Australia Jeremy J. Bruhl University of New England, Armidale, New South Wales, Australia Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Ghamkhar, Kioumars; Marchant, Adam D.; Wilson, Karen L.; and Bruhl, Jeremy J. (2007) "Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and trnL–F Data," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 12. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/12 Aliso 23, pp. 149–164 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENY OF ABILDGAARDIEAE (CYPERACEAE) INFERRED FROM ITS AND trnL–F DATA KIOUMARS GHAMKHAR,1,2,4 ADAM D. MARCHANT,2 KAREN L. WILSON,2 AND JEREMY J. BRUHL1,3 1Botany, Centre for Ecology, Evolution, and Systematics, University of New England, Armidale, New South Wales 2351, Australia; 2National Herbarium of New South Wales, Royal Botanic Gardens, Sydney, Mrs Macquaries Road, Sydney, New South Wales 2000, Australia 3Corresponding author ([email protected]) ABSTRACT Within the tribe Abildgaardieae, the relationships between Fimbristylis and its relatives have not been certain, and the limits of Fimbristylis have been unclear, with Bulbostylis and Abildgaardia variously combined with it and each other. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Group B: Grasses & Grass-Like Plants
Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Grasses & grass like plants GROUP B: GRASSES & GRASS-LIKE PLANTS 271 Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Grasses & grass like plants Fig. 25. Cyperus compactus Retz. (a) Habit, (b) spikelet, (c) flower and (d) nut. 272 Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Grasses & grass like plants CYPERACEAE 25 Cyperus compactus Retz. Synonyms : Cyperus dilutus Vahl., Cyperus grabowskianus Bolck., Cyperus luzonensis Llanos, Cyperus septatus Steud., Duraljouvea diluta Palla, Mariscus compactus Boldingh, Mariscus dilutus Nees, Mariscus microcephalus Presl., Sphaeromariscus microcephalus Camus Vernacular name(s) : Prumpungan, Jekeng, Suket (Ind.), Wampi lang (PNG), Baki-baking- pula, Durugi, Giron (Phil.). Description : A robust, perennial herb, 15-120 cm tall. Does not have stolons, and the rhizome is either very short or absent altogether. Stems are bluntly 3-angular, sometimes almost round, smooth, and with a diameter of up to 6 mm. The stem, leaves and sheath have numerous air-chambers. Leaves are 5-12 mm wide, stiff, deeply channelled, and as long as or shorter than the stem. Leaf edges and midrib are coarse towards the end of the leaf. Lower leaves are spongy and reddish-brown. Flowers are terminal and grouped in a large, up to 30 cm diameter umbrella-shaped cluster that has a reddish-brown colour. Large leaflets at the base of the flower cluster are up to 100 cm long. Spikelets (see illustration) are stemless and measure 5-15 by 1-1.5 mm. Ecology : Occurs in a variety of wetlands, including swamps, wet grasslands, coastal marshes, ditches, riverbanks, and occasionally in the landward margin of mangroves. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
A Guide on Common, Herbaceous, Hydrophytic Vegetation of Southern Texas
United States Department of Agriculture Natural Resources Conservation Service Technical Note No: TX-PM-20-02 July 2020 A Guide on Common, Herbaceous, Hydrophytic Vegetation of Southern Texas Plant Materials Technical Note Horsetail Background: Wetlands are those lands that have saturated soils, shallow standing water or flooding during at least a portion of the growing season. These sites have soils that are saturated for at least two consecutive weeks during the growing season and support a distinct vegetation type adapted for life in saturated soil conditions. Purpose: The purpose of this Technical Note is to provide information on the use of some common wetland plants of southern Texas. The list includes plants found along the Guadalupe River around Tivoli southward to the Rio Grande River floodplain. It is not intended to be a comprehensive treatment of the wetland flora of this region. Rather it is intended to introduce to the reader the many common wetland plant species that occur in south Texas. The guide is broken down into four categories: wildlife habitat, shoreline erosion control, water quality improvement and landscaping. Each species has a brief description of its identifying features, notes on its ecology or habitat, use and its National Wetlands Inventory (NWI) assessment. For more detailed information we suggest referring to our listed references. All pictures came from the USDA Plants Data Base or the E. “Kika” de la Garza Plant Materials Center. Plants for wildlife habitat: The plants listed in this section are primarily for waterbird and waterfowl habitat as well as for fish nursery and spawning areas. -
Master Gardener Corner: Hardy Hibiscus Originally Run Week of September 5, 2017
This article is part of a weekly series published in the Batavia Daily News by Jan Beglinger, Agriculture Outreach Coordinator for CCE of Genesee County. Master Gardener Corner: Hardy Hibiscus Originally run week of September 5, 2017 Looking for a plant to add some color and bling to the late summer garden? Check out hardy hibiscus which is blooming now. The dinner plate size blooms bring a dramatic effect to the garden. Some of the new varieties, like ‘Midnight Marvel’ or ‘Kopper King,’ have reddish foliage for even more garden interest. Hardy hibiscus will also help attract hummingbirds and butterflies to your garden. The hibiscus family can be a bit confusing but they can generally be divided into four groups: hardy hibiscus, rose of Sharon, tropical hibiscus and all the other Hibiscus species. Hardy hibiscus usually refers to any of the North American native species (Hibiscus moscheutos, H. coccineus, H. dasycalyx, H. grandiflorus, H. laevis, and H. lasiocarpos and H. aculeatus). The native species tend to grow in or near marshes or swamps but they are tolerant to fluctuations in soil moisture. Flowers last for a single day with bloom colors varying from pure white, scarlet rose, lavender and shades of pink. The best known wild species is probably H. moscheutos commonly known as swamp rose mallow. It grows wild in wetland swamps from Ontario to Massachusetts and south to Florida, and west to Wisconsin and Tex as. It is hardy from USDA Zones 5 to 8. The shrubby plants have multiple upright stems growing up to 8 feet tall with a spread of 3 to 4 feet. -
Mamaki Rust Pucciniastrum Boehmeriae (Dietel) Syd
State of Hawaii New Pest Advisory DEPARTMENT OF AGRICULTURE No. 16-01 May 2016 Mamaki Rust Pucciniastrum boehmeriae (Dietel) Syd. & P. Syd (Pucciniastraceae) Background In August 2013, a diagnostician at the University of Hawaii (UH) Agricultural Diagnostic Service Center, Komohana Research Station incidentally detected an unfamiliar rust on a mamaki (Pipturus albidus) leaf sample from a Hawaiian Acres, Kurtistown residential grower on the Big Island. Consequently, the rust sample was sent to the United States Department of Agriculture, Agricultural Research Service, Systematic Mycology and Microbiology Laboratory (SMML), where it was promptly identified via morphological and molecular means as Pucciniastrum boehmeriae (Dietel) Syd. & P. Syd., a new record in both Hawaii and the U.S. A subsequent visit by the UH diagnostician and Hawaii Department of Agriculture (HDOA) staff to the initial detection site yielded only two more slightly rust infected leaves. Additional surveys at mostly nurseries and botanical gardens throughout the main Hawaiian Islands failed to detect the P. boehmeriae rust. In November 2015, leaf lesions were spotted on wild Boehmeria grandis (akolea) plants in the Southern Koolau Mountains on Oahu by HDOA staff. SMML confirmed the presence of P. boehmeriae on the Oahu akolea leaf samples in February 2016, thus increasing both the known local distribution and susceptible endemic host plant species in the Figure 1. Top view of akolea leaf infected with Pucciniastrum boehmeriae; inset: close - Urticaceae plant family. up. Importance of the Urticaceae in Hawaii Mamaki, akolea, and other related Hawaiian species in the Urticaceae (nettle) family have long been important food sources for various native species of Hawaiian fauna. -
Tidal Marsh Recovery Plan Habitat Creation Or Enhancement Project Within 5 Miles of OAK
U.S. Fish & Wildlife Service Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California California clapper rail Suaeda californica Cirsium hydrophilum Chloropyron molle Salt marsh harvest mouse (Rallus longirostris (California sea-blite) var. hydrophilum ssp. molle (Reithrodontomys obsoletus) (Suisun thistle) (soft bird’s-beak) raviventris) Volume II Appendices Tidal marsh at China Camp State Park. VII. APPENDICES Appendix A Species referred to in this recovery plan……………....…………………….3 Appendix B Recovery Priority Ranking System for Endangered and Threatened Species..........................................................................................................11 Appendix C Species of Concern or Regional Conservation Significance in Tidal Marsh Ecosystems of Northern and Central California….......................................13 Appendix D Agencies, organizations, and websites involved with tidal marsh Recovery.................................................................................................... 189 Appendix E Environmental contaminants in San Francisco Bay...................................193 Appendix F Population Persistence Modeling for Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California with Intial Application to California clapper rail …............................................................................209 Appendix G Glossary……………......................................................................………229 Appendix H Summary of Major Public Comments and Service -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia).